Package ‘gprege’

January 14, 2017

Version 1.18.0
Date 2016-10-07
Title Gaussian Process Ranking and Estimation of Gene Expression
 time-series
Author Alfredo Kalaitzis <alkalait@gmail.com>
Maintainer Alfredo Kalaitzis <alkalait@gmail.com>
Depends R (>= 2.10), gptk
Suggests spam
Description The gprege package implements the methodology described in
 Kalaitzis & Lawrence (2011) "A simple approach to ranking differentially
 expressed gene expression time-courses through Gaussian process regression".
 The software fits two GPs with the an RBF (+ noise diagonal) kernel on each
 profile. One GP kernel is initialised with a short lengthscale hyperparameter,
 signal variance as the observed variance and a zero noise variance. It is
 optimised via scaled conjugate gradients (netlab). A second GP has fixed
 hyperparameters: zero inverse-width, zero signal variance and noise
 variance as the observed variance. The log-ratio of marginal likelihoods of
 the two hypotheses acts as a score of differential expression for the profile.
 Comparison via ROC curves is performed against BATS (Angelini et.al, 2007).
 A detailed discussion of the ranking approach and dataset used can be found in
 the paper (http://www.biomedcentral.com/1471-2105/12/180).
License AGPL-3
biocViews Microarray, Preprocessing, Bioinformatics,
 DifferentialExpression, TimeCourse
URL
BugReports alkalait@gmail.com
NeedsCompilation no

R topics documented:

 gprege-package .. 2
 compareROC .. 3
 DellaGattaData .. 3
 demTp63Gp1 .. 4
 DGdat_p63 .. 5
Description

This package implements the method of Kalaitzis and Lawrence (2011) for Gaussian process modelling gene expression time-series data. The method can be used to filter quiet genes and quantify differential expression in time-series expression ratios.

Details

Package: gprege
Type: Package
Version: 0.99.0
Date: 2011-07-08
License: A-GPL Version 3

For details of using the package please refer to the Vignette.

Author(s)

Alfredo Kalaitzis
Maintainer: Alfredo Kalaitzis <alkalait@gmail.com>

References

See Also
demGpCov2D, demGpSample, demInterpolation, demOptimiseGp, demRegression

Examples

see demTp63Gp1.R
compareROC

Make ROC plots.

Description

This rocStats wrapper superimposes ROC curves on a plot to analyse the output performance of a method-A, and optionally compare it with that of a method-B, based on some ground thruth labels.

Usage

```r
compareROC(output, groundTruthLabels, compareToRanking)
```

Arguments

- `output` (vector): The output of ranking scores returned by method-A for each data-point.
- `groundTruthLabels` (vector): A binary vector that contains the ground truth (e.g., which genes are members of the top-100 ground truth list).
- `compareToRanking` (matrix): A matrix where each column is the output vector of ranking scores returned by another competing method.

Value

- `area` (vector): A scalar. The area under the ROC curve of method-A.

See Also

- `rocStats`

Examples

```r
data(FragmentDellaGattaData) ## Load demo data.
compareROC(output=rnorm(length(DGatta_labels_byTSNI))>0, groundTruthLabels=DGatta_labels_byTSNI)
```

DellaGattaData

Fragment dataset of 13 time-point mouse microarray time series of gene expression ratios and and a ranking list of TP63 targets suggested by TSNI.

Description

`exprs_tp63_RMA` 100 gene reporters of 13 time-points mouse Affymetrix microarray gene expression coming from a study on primary mouse keratinocytes with an induced activation of the TRP63 transcription factor (GEO-accession number: GSE10562, see Source section), where a reverse-engineering algorithm was developed (TSNI: time-series network identification) to infer the direct targets of TRP63 (Della Gatta et al. 2008). The data has been processed using `rma` (affy) and the profiles are centred (zero-mean) across the timepoints.
DGatta_labels_byTSNI, DGatta_labels_byTSNItop100
a ranking list suggested based on TSNI is provided. The inferred direct targets were biologically confirmed by correlation with ChIP-Seq binding regions; therefore the list is used as a noisy ground truth. See Source section.

genesymbols
Names of the genes that the transcript_IDs (in exprs_tp63_RMA) correspond to.

gpregeOutput
Its field 'rankingScores' contains log-marginal likelihood ratios, used as ranking scores, for each gene reporter in exprs_tp63_RMA. This is the output from a run of gprege on the full DellaGatta dataset (see demTp63Gp1.R) and stored here for convenience.

Usage

data(FragmentDellaGattaData)

Source

GEO: http://www.ncbi.nlm.nih.gov/geo/, TSNI ranking: genome.cshlp.org/content/suppl/2008/05/05/gr.073601.107.DC1/DellaGatta_SupTable1.xls

References

demTp63Gp1
gprege on TP63 expression time-series.

Description

Demo script of Gaussian Process Regression and Estimation of Gene Expression on TP63 time-series data (see gprege.m). See Kalaitzis & Lawrence (2011) for a detailed discussion of the ranking algorithm and dataset used.

Usage

demTp63Gp1(fulldataset=FALSE)

Arguments

fulldataset
(Logical) TRUE downloads and uses the full dataset.

See Also

gprege

Examples

demTp63Gp1(fulldataset=FALSE)
BATS rankings (Angelini, 2007)

Case 1: Delta error prior
Case 2: Inverse Gamma error prior
Case 3: Double Exponential error prior

Description

- **DGdat_p63_case1_GL**
 Case 1: Delta error prior
- **DGdat_p63_case2_GL**
 Case 2: Inverse Gamma error prior
- **DGdat_p63_case3_GL**
 Case 3: Double Exponential error prior

Usage

```r
data(DGdat_p63)
```

Source

 TSNI ranking: genome.cshlp.org/content/suppl/2008/05/05/gr.073601.107.DC1/DellaGatta_SupTable1.xls

References

exhaustivePlot

Plot of the LML function by exhaustive search.

Description

Exhaustively searches the hyperparameter space by a grid, whose resolution is passed as an argument, and plots the LML function for every point in the space.

Usage

```r
exhaustivePlot(y, x, xstar, options, maxwidth, res, nlevels)
```

Arguments

- **y**
 the target (output) data.
- **x**
 the input data matrix.
- **xstar**
 the points to predict function values.
- **options**
 options structure as defined by gpOptions.m.
- **maxwidth**
 maximum lengthscale to search for.
- **res**
 The search resolution. Number of points to plot for in the search range.
- **nlevels**
 Number of contour levels.
Value
area Area under the ROC curve of method-A.

See Also
rocStats

Examples
noiseLevel <- 0.2
noiseVar <- noiseLevel^2
options <- gpOptions()
options$kern$comp <- list('rbf','white')
Create data set
l <- 9; x <- matrix(seq(0,240,by=20), ncol=1)
tureKern <- kernCreate(x, 'rbf')
trueKern$inverseWidth <- 1/(20^2) ## Characteristic inverse-width.
K <- kernCompute(trueKern, x) + diag(dim(x)[1])*noiseVar
Sample some true function values.
y <- gaussSamp(Sigma=K, numSamps=1)
xTest <- as.matrix(seq(0, 240, length=200))
graphics.off(); dev.new(); plot.new(); dev.new(); plot.new()
exhaustivePlot(y, x, xTest, options=options, maxwidth=100, res=50, nlevels=75)

Description
Fits two GPs with the an RBF (+ noise diagonal) kernel on each profile. One GP kernel is initialised with a short lengthscale hyperparameter, signal variance as the observed variance and a zero noise variance. It is optimised via scaled conjugate gradients (netlab). The other GP has fixed hyperparameters with a zero inverse-width, zero signal variance and noise variance as the observed variance. The log-ratio of marginal likelihoods of the two hypotheses acts as a score of differential expression for the profile. Comparison via ROC curves is performed against BATS (Angelini et.al, 2007). See Kalaitzis & Lawrence (2011) for a detailed discussion of the ranking algorithm and dataset used.

Usage
gprege(data, inputs, gpregeOptions)

Arguments
data The matrix of gene expression profiles; one profile per row.
inputs Inputs (timepoints) to the GP.
gpregeOptions Options list for gprege with fields
 explore Logical. TRUE operates in a user interactive mode. Used for examining individual gene expression profiles.
 labels A binary vector. TRUE specifies whether the corresponding profile comes from a differentially expressed gene (usually from a ground truth).
indexRange A numeric vector. Range of indices of profiles on which the function should operate. Useful for selective exploration of specific profiles, e.g. only genes marked as differentially expressed in a ground truth list.

interpolatedT A numeric vector. New timepoints to interpolate for each profile, based on the estimated function values.

iters A scalar. The number of iterations for scaled-conjugate gradients (SCG) optimisation.

display Logical. Display gradient and LML information on each SCG iteration.

inithypers The matrix of hyperparameter configurations as its rows. Each row has the following format: [inverse-lengthscale percent-signal-variance percent-noise-variance] The first row corresponds to a (practically constant) function with a very large lengthscale. Such a function will account for 0 percent of the observed variance in the expression profile (hence 0 for signal) and explain it as noise (hence 1 for noise). Subsequent rows (initialisations for SCG optimisation) correspond to functions of various lengthscales that explain all the observed variance as signal. A reasonable lengthscale would be roughly in line with the time-point sampling intervals.

exhaustPlotRes A scalar. The search resolution. Used for interactive mode (explore == 1).

exhaustPlotLevels A scalar. Number of contour levels in the exhaustive plot. Used for interactive mode (explore == 1).

exhaustPlotMaxWidth A scalar. the maximum lengthscale to search for. Used for interactive mode (explore == 1).

Value

gpregeOutput Output list with fields:

signalvar A numeric vector of the vertical lengthscales of the optimised RBF kernel; one for each profile.

noisevar A numeric vector. Similar to signalvar, but for the noise hyperparameter.

width A numeric vector. Similar to signalvar and noisevar, but for the horizontal lengthscales of the RBF.

LMLs A numeric vector of log-marginal likelihoods of the GP; one for each profile.

interpolatedData A matrix of the extended dataset with interpolated values as the augmenting columns.

rankingScores A numeric vector of the ranking scores, based on the log-ratio of marginal likelihoods.

See Also

gpOptions, gpCreate, gpExpandParam, gpOptimise, gpExtractParam, gpLogLikelihood, gpPosterior

Examples

see demTp63Gp1.R
data(FragmentDellaGattaData) ## Load demo data.
Setup other gprege options.
gpregeOptions = list(indexRange=(1:2), explore=TRUE, exhaustPlotRes=30, exhaustPlotLevels=10,
rocStats

Make ROC curve data.

Description

Computes the points on an ROC curve by varying a threshold on the sorted outputs of the method in question.

Usage

```r
rocStats(outputs, groundTruthLabels, decreasing = TRUE)
```

Arguments

- `outputs`: A numeric vector with the outputs of the evaluated method (e.g. likelihoods from `gprege`).
- `groundTruthLabels`: A binary vector than contains the ground truth (e.g. which genes belong in the top-100 ground truth list).
- `decreasing`: Logical. TRUE sorts outputs by decreasing order.

Value

- `stats`: A list of numeric variables with the necessary statistics to compute an ROC curve, a precision-recall curve, etc.

Examples

```r
## see compareROC.R
data(FragmentDellaGattaData) ## Load demo data.
rocStats(gpregeOutput$rankingScores, DGatta_labels_byTSNItop100, decreasing=TRUE)
```
Index

*Topic datasets
 DellaGattaData, 3
 DGdat_p63, 5
*Topic package
 gprege-package, 2

compareROC, 3
DellaGattaData, 3
demGpCov2D, 2
demGpSample, 2
demInterpolation, 2
demOptimiseGp, 2
demRegression, 2
demTp63Gp1, 4
DGatta_labels_byTSNI (DellaGattaData), 3
DGatta_labels_byTSNItop100 (DellaGattaData), 3
DGdat_p63, 5
DGdat_p63_case1_GL (DGdat_p63), 5
DGdat_p63_case2_GL (DGdat_p63), 5
DGdat_p63_case3_GL (DGdat_p63), 5

exhaustivePlot, 5
exprs_tp63_RMA (DellaGattaData), 3
FragmentDellaGattaData (DellaGattaData), 3

genesymbols (DellaGattaData), 3
gpCreate, 7
gpExpandParam, 7
gpExtractParam, 7
gpLogLikelihood, 7
gpOptimise, 7
gpOptions, 7
gpPosteriorMeanVar, 7
gprege, 4, 6
gprege-package, 2
gpregeOutput (DellaGattaData), 3

rma, 3
rocStats, 3, 6, 8