Package ‘heatmaps’

April 25, 2017

Title Flexible Heatmaps for Functional Genomics and Sequence Features

Version 1.0.0

Date 18-01-2016

Author Malcolm Perry <mgperry32@gmail.com>

Maintainer Malcolm Perry <mgperry32@gmail.com>

Depends R (>= 3.4)

Imports methods, grDevices, graphics, stats, Biostrings, GenomicRanges, IRanges, KernSmooth, plotrix, Matrix, EBImage, RColorBrewer, BiocGenerics, GenomeInfoDb

Suggests BSgenome.Drerio.UCSC.danRer7, knitr, rmarkdown, testthat

biocViews Visualization, SequenceMatching, FunctionalGenomics

License Artistic-2.0

Description This package provides functions for plotting heatmaps of genome-wide data across genomic intervals, such as ChIP-seq signals at peaks or across promoters. Many functions are also provided for investigating sequence features.

VignetteBuilder knitr

Collate Heatmap-class.R PlotHeatmap.R PlotHeatmapList.R

NeedsCompilation no

RoxygenNote 6.0.1

R topics documented:

coors ... 2
CoverageHeatmap ... 3
default_color ... 4
getScale .. 4
Heatmap .. 5
Heatmap-class ... 6
HeatmapExamples ... 6
heatmapOptions .. 7
image ... 9
label ... 10
length,Heatmap-method .. 10
coords

Description
Return or set the coords in a Heatmap

Usage
coords(x)

S4 method for signature 'Heatmap'
coords(x)

coords(x) <- value

S4 replacement method for signature 'Heatmap'
coords(x) <- value

Arguments
x A heatmap
value Replacement value

Value
integer, length 2, value of x@coords

Examples

data(HeatmapExamples)
coords(hm) = c(-100, 100)
Description

Generate a Heatmap of coverage

Usage

CoverageHeatmap(windows, track, ...)

S4 method for signature 'GenomicRanges,GenomicRanges'
CoverageHeatmap(windows, track,
 coords = NULL, weight = 1, label = NULL, nbin = 0)

S4 method for signature 'GenomicRanges,RleList'
CoverageHeatmap(windows, track,
 coords = NULL, label = NULL, nbin = 0)

Arguments

windows
A set of GRanges of equal length

track
A GRanges or RleList object specifying coverage

...
additional arguments used by methods

This function generates a Heatmap object from a set of windows and an object containing genome-wide information about coverage. Either a GRanges or an RleList can be used. In the former case, the "weight" parameter is passed directly to the 'coverage' function. If nbin is set, binned coverage is calculated which will save memory and time when plotting and average out variable data. If the coverage track contains negative values, then the scale will be centered on zero, i.e. c(-max(abs(image(hm))), max(abs(image(hm))))). This makes more sense for most color schemes which are centered on zero, and avoids misleading plots where either positive or negative values are over-emphasised. See ?getScale for details. The scale can be manually reset if desired using the "scale" method.

coords
Co-ordinates for the heatmap, defaults to c(0, width(windows))

weight
Passed to coverage(track) constructor if class(track) == "GRanges"

label
Label for the heatmap

nbin
If set, number of bins to use across each window

Value

A Heatmap object

Methods (by class)

- windows = GenomicRanges, track = GenomicRanges: Heatmap of Coverage from 2 GRanges
- windows = GenomicRanges, track = RleList: Heatmap of Coverage from GRanges + RleList
getScale

Examples

data(HeatmapExamples)
CoverageHeatmap(windows, rle_list, coords=c(-100, 100), label="Example")

default_color

Predifined color palettes from RColorBrewer + Rainbow

Description
Predifined color palettes from RColorBrewer + Rainbow

Usage
default_color(col)

Arguments
col Character, RColorBrewer colorscheme or "Rainbow"
This function provides a convenient function to all color palettes from RColorBrewer, and a better version of R’s rainbow function (specifically rev(rainbow(9, start=0, end=4/6)), so it starts blue and ends with red).

Value
character, a length-9 color palette

Examples
default_color("Blues")
default_color("Rainbow")

getScale

Make an appropriate scale for a heatmap

Description
Make an appropriate scale for a heatmap

Usage
getScale(x, y)

Arguments
x Min/max values for the heatmap
y Min/max values for the heatmap
This function takes min/max values for a heatmap and generates a scale either starting, ending or centered on zero.
Heatmap

Value
numeric, length 2, a new scale

Examples
getScale(0.5, 5) # c(0, 5)
getScale(-6, -2) # c(-6, 6)
getScale(-6, 2) # c(-6, 6)

Heatmap
Function to create a heatmap object

Description
Function to create a heatmap object

Usage
Heatmap(image, coords = NULL, label = "", nseq = NULL, scale = NULL, metadata = list())

Arguments
image A numeric Matrix
coords A length-2 integer vector
label A character vector
nseq An integer
scale A length-2 vector
metadata A list containing arbitrary metadata

Using this function avoids calling ‘new’ directly or manually setting coords and nseq to integers. Other constructors exist for creating heatmaps from data, rather than a raw matrix.

Value
A Heatmap object

See Also
PatternHeatmap CoverageHeatmap PWMScanHeatmap

Examples
data(HeatmapExamples)
hm = Heatmap(mat, coords=c(-100, 100), label="Test")
Heatmap-class

An S4 class to represent a heatmap

Description

An S4 class to represent a heatmap

Slots

image A numeric Matrix
scale A length-2 vector
coords A length-2 integer vector
nseq An integer
label A character vector
metadata A list containing arbitrary metadata

A class used to represent a heatmap in a simple, self-contained way.
Slots can be accessed and set using getters and setters with the same name.

See Also

CoverageHeatmap PatternHeatmap plotHeatmap plotHeatmapMeta

Examples

data(HeatmapExamples)

hm = new("Heatmap",
image=mat,
scale=c(0, max(mat)),
coords=c(-100L, 100L),
nseq=1000L,
label="Test",
metadata=list())

or use the constructor:
hm = Heatmap(mat, coords=c(-100, 100), label="Test")
Description

Generated Data for examples
An example heatmap
A second example heatmap
An example matrix
An example RleList
An example DNAStringSet
An example PWM
An example GRanges

Usage

hm
hm2
mat
rle_list
string_set
tata_pwm
windows

Format

An object of class Heatmap of length 500.

Value

invisible("HeatmapExamples")

heatmapOptions

Generate default options for a Heatmap

Description

Generate default options for a Heatmap

Usage

heatmapOptions(...)
Arguments

options to set manually

Guide to Heatmap options

This is an reference to all the possible options for plotting heatmaps. Some options are handled by heatmaps functions (either plotHeatmap or plotHeatmapList), others are passed directly to plotting functions. Further explanation is available in the vignette. Arguments are numeric if not otherwise stated.

color: A vector of colors or a default color, see ?default_color. plotHeatmap will interpolate between these colors to form a scale.

box.width: width of box around the heatmap, passed to box()

x.ticks: Logical, plot x axis ticks

x.tick.labels: Character, labels to use for x ticks, (default blank)

tcl: Length of x axis ticks

padj: Vertical adjustment of x axis labels

cex.axis: cex for axis labels

scale: Logical, Plot scale or not

scale.label: Character, label for scale

scale.lwd: Width for line around scale

cex.scale: Cex for Scale

label: Logical, plot label or not

label.xpos: x position for label, from left

label.ypos: y position for label, from top

cex.label: cex for axis labels

label.col: Color for label, white is often useful for dark plots

legend: Logical, plot legend (scale indicating values for colors)

legend: Color for label, white is often useful for dark plots

legend.pos: Character, position of legend relative to heatmap: 'l' for left, 'r' for right

legend.ticks: Number of ticks to use on legend.

cex.legend: cex to use for legend marks

refline: Logical, Draw dashed line at coords = 0

label.xpos: x position for label, from left

label.ypos: y position for label, from top

cex.label: cex for axis labels

label.col: Color for label, white is often useful for dark plots

legend: Logical, plot legend (scale indicating values for colors)

legend: Color for label, white is often useful for dark plots

legend.pos: Character, position of legend relative to heatmap: 'l' for left, 'r' for right

legend.ticks: Number of ticks to use on legend.

cex.legend: cex to use for legend marks

refline: Logical, Draw dashed line at coords = 0

refline.width: Width of reference line

transform: Function to transform values before plotting

plot.mai: Length-4 numeric, margins around plot

legend.mai: Length-4 numeric, margins around legend
partition: Numeric, relative sizes of clusters
partition.lines: Logical, plot lines delineating clusters
partition.legend: Logical, plot cluster legend in HeatmapList
partition.col: Character, colours to use for plotting clusters. Defaults to RColorBrewer's Set1
hook: Function called after plotting is complete.

Value

a list containing the specified options

See Also

plotHeatmap plotHeatmapList

Examples

myOptions = heatmapOptions()
myOptions$color = "Reds"
plotHeatmap(hm, options=myOptions)

image(hm) = log(image(hm))
scale(hm) = c(0, max(image(hm)))
label

Return or set the label in a Heatmap

Description

Return or set the label in a Heatmap

Usage

```r
label(x)
```

```r
## S4 method for signature 'Heatmap'
label(x)
```

```r
label(x) <- value
```

```r
## S4 replacement method for signature 'Heatmap'
label(x) <- value
```

Arguments

- `x` A heatmap
- `value` Replacement value

Value

character, value of hm@label

Examples

```r
data(HeatmapExamples)
label(hm) = "NewLabel"
label(hm) # "NewLabel"
```

length

Return the number of sequences in a heatmap

Description

Return the number of sequences in a heatmap

Usage

```r
## S4 method for signature 'Heatmap'
length(x)
```

Arguments

- `x` A heatmap
metadata

Value

integer, value of x@nseq

metadata (Return or set the metadata in a Heatmap)

Description

Store arbitrary metadata in a list, if desired.

Usage

metadata(x)

S4 method for signature 'Heatmap'
metadata(x)

metadata(x) <- value

S4 replacement method for signature 'Heatmap'
metadata(x) <- value

Arguments

x A heatmap

value Replacement value

Value

list, value of hm@metadata

Examples

data(HeatmapExamples)
metadata(hm) = list(replicate=1, cell_line="ESC")
metadata(hm)$replicate == 1

nseq (Return or set nseq in a Heatmap)

Description

Return or set nseq in a Heatmap
Usage
nseq(x)

S4 method for signature 'Heatmap'
nseq(x)

nseq(x) <- value

S4 replacement method for signature 'Heatmap'
nseq(x) <- value

Arguments
x A heatmap
value Replacement value

Value
integer, value of hm@nseq

Examples

data(HeatmapExamples)
nseq(hm) = 1000

PatternHeatmap Generate a Heatmap of patterns in DNA sequence

Description
Generate a Heatmap of patterns in DNA sequence

Usage
PatternHeatmap(seq, pattern, ...)

S4 method for signature 'DNAStringSet,character'
PatternHeatmap(seq, pattern, coords = NULL,
 min.score = NULL, label = NULL)

S4 method for signature 'DNAStringSet,matrix'
PatternHeatmap(seq, pattern, coords = NULL,
 min.score = "80\%", label = NULL)

Arguments
seq A DNAString of equal length
pattern A nucleotide pattern or PWM
... additional arguments used by methods

This function creates a Heatmap from a set of DNA sequences. The resulting
heatmap will be binary, with 1 representing a match and 0 otherwise. Patterns
can be specified as a character vector, e.g., "CTCCC", or as a PWM. These ar-
guments are passed to Biostrings functions, 'vmatchPattern' and 'matchPWM'.
Character arguments can contain standard ambiguity codes. PWMs must be 4
by n matrices with columns names ACGT. "min.score" is specified either as an
absolute value, or more commonly as a percentage e.g. "80 for details.
PatternHeatmaps often look much better after smoothing.

coords Co-ordinates for the heatmap, defaults to c(0, width(windows))

min.score Minimum score for PWM match

label Label for the heatmap

Value

A heatmap

Methods (by class)

- seq = DNAStringSet, pattern = character: Heatmap of sequence patterns from sequence
 and character
- seq = DNAStringSet, pattern = matrix: Heatmap of sequence patterns from sequence
 and matrix

See Also

smoothHeatmap

Examples

data(HeatmapExamples)
PatternHeatmap(string_set, "TA", coords=c(-100, 100), label="TA")
PatternHeatmap(string_set, tata_pwm, coords=c(-100, 100), min.score="80", label="TATA PWM")

plotHeatmap(heatmap, options = NULL, ...)

Description

Plot a Heatmap object to the device

Usage

plotHeatmap(heatmap, options = NULL, ...)

S4 method for signature 'Heatmap'
plotHeatmap(heatmap, options = NULL, ...)
plotHeatmapList

Arguments

heatmap A heatmap object
options A list containing plotting options
... Used for passing individual options

This function will take a heatmap and plot it to the device with the specified options. Options can be passed together in a list or individually as additional arguments. If passing options as a list, it’s best to first create a list containing the default settings using heatmapOptions() and method then setting options individually.

plotHeatmap() does not control device settings at all, these can be set using plotHeatmapList() and the relevant options in heatmapOptions()

See ?heatmapOptions for a full list of options.

Value

invisible(0)

Methods (by class)

• Heatmap: Plot a Heatmap object to the device

See Also

heatmapOptions plotHeatmapList

Examples

data(HeatmapExamples)
plotHeatmap(hm, color="Blues")

plotHeatmapList Plot a list of heatmaps

Description

Plot a list of heatmaps

Usage

plotHeatmapList(heatmap_list, groups = 1:length(heatmap_list),
 options = heatmapOptions(), ...)

Arguments

heatmap_list A list of Heatmaps
groups Optionally group heatmaps together
options Heatmap options
plotHeatmapMeta

Additional options

This function takes a list of one or more heatmaps and plots them to a single image tiled horizontally. The "groups" argument specifies heatmaps to be grouped together and plotted using the same display parameters and a unified scale. plotHeatmapList will try to guess the best scale, either starting or finishing at zero, or symmetrical around zero - if this is not the desired behaviour, make sure the scales are identical before the heatmaps are passed to the function.

Options are specified as for plotHeatmap, but can be specified per group by passing a list of options instead of a single vector. Note the difference between a length-2 character vector, c("Reds", "Blues"), and a list containing two length-1 character vectors: list("Reds", "Blues"). These are generally large, complex plots, so it can better to plot straight to a file. PNG is preferred since pdf files generated can be if the images are not downsized. The default settings are designed for plots of about 10cm x 20cm per heatmap, but all of the relevant settings can be tweaked using the options. For display-quality images, it helps to increase the resolution at to at least 150ppi, double the default of 72ppi on most systems.

Value

invisible(0)

See Also

plotHeatmap heatmapOptions plot_legend

Examples

data(HeatmapExamples)
plotHeatmapList(list(hm, hm2), groups=c(1,2), color=list("Reds", "Blues"))

plotHeatmapMeta

Plot a Meta-region plot from heatmaps

Description

Plot a Meta-region plot from heatmaps

Usage

plotHeatmapMeta(hm_list, binsize = 1, colors = gg_col(length(hm_list)), addReferenceLine = FALSE)

Arguments

hm_list A list of heatmaps
binsize Integer, size of bins to use in plot
colors Color to use for each heatmap
addReferenceLine

Logical, add reference line at zero or not

This function creates a meta-region plot from 1 or more heatmaps with the same
coordinates. A meta-region plot graphs the sum of the signal at each position
in each heatmap rather than visualising the signal in two dimensions. Often
binning is required to smooth noisy signal.

Value

invisible(0)

Examples

data(HeatmapExamples)
plotHeatmapMeta(hm, color="steelblue")

plotPatternDensityMap

Plot heatmaps for several patterns in DNA sequence

Description

Plot heatmaps for several patterns in DNA sequence

Usage

plotPatternDensityMap(seq, patterns, ...)

S4 method for signature 'DNAStringSet'
plotPatternDensityMap(seq, patterns, coords = NULL,
 min.score = "80\%", sigma = c(3, 3), output.size = NULL,
 options = NULL, ...)

Arguments

seq

DNAStringSet of equal width

patterns

A vector or list of patterns

...

Additional Heatmap plotting options

This function is a convenient wrapper for plotting many different patterns for
the same set of sequences. PatternHeatmap() is applied to the sequence for
each pattern in the list, they are passed to smoothHeatmap() with the supplied
parameters and finally PlotHeatmapList().

If fine-grained control is desired, or you want to mix other plot types, then more
information is available in the vignette.

coords

Heatmap coords

min.score

Minimum score for PWM match

sigma

Bandwith for smoothing kernel

output.size

Output size of final image

options

Heatmap plotting options
plot_clusters

Value

invisible(0)

Methods (by class)

• DNASTringSet: Plot heatmaps for several patterns in DNA sequence

See Also

PatternHeatmap plotHeatmapList smoothHeatmap

Examples

data(HeatmapExamples)
plotPatternDensityMap(string_set, c("AT", "CG"), coords=c(-200, 200))

plot_clusters

Plot partition in a separate panel

Description

Plot partition in a separate panel

Usage

plot_clusters(options)

Arguments

options heatmapOptions passed as a list
Two heatmapOptions values are relevant:
* partition Numeric vector containing relative sizes of the clusters * colors Colors to use for clusters, additional colors are discarded
This function plots a vertical color scale (or legend). With the default parameters, it looks good at about 1/5 the width of a heatmap, about 1cm x 10cm. This function only plots the legend, it does not set margin parameters.

Value

invisible(0)

See Also

plotHeatmapList

Examples

data(HeatmapExamples)
opts = heatmapOptions()
opts$partition = c(1,2,3,4)
par(mai=opts$legend.mai)
plot_clusters(opts)
plot_legend

Plot a color legend for a heatmap

Description

Plot a color legend for a heatmap

Usage

`plot_legend(scale, options)`

Arguments

- `scale`: Numeric vector contain min and max for the scale
- `options`: heatmapOptions passed as a list

This function plots a vertical color scale (or legend). With the default parameters, it looks good at about 1/5 the width of a heatmap, about 1cm x 10cm. This function only plots the legend, it does not set margin parameters.

Value

`invisible(0)`

See Also

`plotHeatmapList`

Examples

```r
data(HeatmapExamples)
opts = heatmapOptions()
opts$color = "Rainbow"
par(mai=opts$legend.mai)
plot_legend(c(0,1), opts)
```

PWMScanHeatmap

Generate a Heatmap of PWM Scores in DNA sequence

Description

Generate a Heatmap of PWM Scores in DNA sequence

Usage

```r
PWMScanHeatmap(seq, pwm, ...)
```

S4 method for signature 'DNAStringSet,matrix'

```r
PWMScanHeatmap(seq, pwm, coords = NULL, label = "")
```
Arguments

seq A DNAString of equal length
pwm A PWM

Additional arguments used by methods

This function creates a heatmap where each point is the score of a PWM match starting from that position, which can visualise regions of enrichment or exclusion of certain motifs.

coords Co-ordinates for the heatmap, defaults to c(0, width(windows))
label Label for the heatmap

Value

A heatmap

Methods (by class)

• seq = DNAStringSet, pwm = matrix: Heatmap of PWM Scores

See Also

PatternHeatmap

Examples

data(HeatmapExamples)
PatternHeatmap(string_set, tata_pwm, coords=c(-100, 100), label="TATA Scan")

Description

Reflect a heatmap in the x axis

Usage

S4 method for signature 'Heatmap'
rev(x)

Arguments

x A heatmap

Value

A heatmap
scale Return or set the scale in a Heatmap

Description
Return or set the scale in a Heatmap

Usage
scale(x)

S4 method for signature 'Heatmap'
scale(x)

scale(x) <- value

S4 replacement method for signature 'Heatmap'
scale(x) <- value

Arguments
x A heatmap
value Replacement value

Value
d numeric, length 2, the value of hm@scale

Examples

data(HeatmapExamples)
scale(hm) = c(-1000, 1000)

smoothHeatmap Smooth a heatmap

Description
Smooth a heatmap

Usage
smoothHeatmap(heatmap, ...)

S4 method for signature 'Heatmap'
smoothHeatmap(heatmap, sigma = c(3, 3),
 output.size = dim(image(heatmap)), algorithm = NULL)
Arguments

heatmap A heatmap object
... additional arguments to S4 methods

This function smooths a heatmap using either binned kernel density (more efficient for binary heatmaps) or gaussian blur.

Sigma controls the SD of the kernel in both cases, defined in terms of pixels. This means that if you have very different x and y dimensions (eg. a 200bp heatmap around 10000 promoters) you will need to compensate by setting sigma[2] higher to get the same visual effect in both dimensions

"output.size" specifies the dimensions of the output matrix. This can be useful to reduce plotting time significantly.

Smoothing can use either a kernel density estimate or a blurring function. The methods implemented are KernSmooth::bkde2D and EBImage::filter2 with a gaussian filter. The kernel based method assumes we are smoothing individual points so the value of these points are ignored. This is most useful for smoothing PatternHeatmaps where each cell in the matrix is either 1 or 0. For non-binary heatmaps, blur is most appropriate. Not setting this parameter will choose the method automatically.

Scaling the output heatmap is handled as in CoverageHeatmap.

sigma Numeric, length2, (recycled if length 1)
output.size Numeric, length 2
algorithm "kernel" or "blur"

Value

A heatmap

Methods (by class)

• Heatmap: Smooth a heatmap

Examples

data(HeatmapExamples)
hm_smoothed = smoothHeatmap(hm, sigma=c(5,5), algorithm="blur")

width,Heatmap-method

Return the width of sequence represented in a heatmap

Description

Return the width of sequence represented in a heatmap

Usage

S4 method for signature 'Heatmap'
width(x)
Arguments

x A heatmap

Value

integer

Generate co-ordinates for each row of the image matrix of a Heatmap

Description

Generate co-ordinates for each row of the image matrix of a Heatmap

Usage

xm(x)

S4 method for signature 'Heatmap'

xm(x)

Arguments

x A Heatmap

Value

numeric, a list of co-ordinates for plotting values in hm@image

Methods (by class)

- Heatmap: Generate co-ordinates for each row of the image matrix of a Heatmap

Examples

data(HeatmapExamples)
xm(hm)
ym

Generate co-ordinates for each column of the image matrix of a Heatmap

Description

Generate co-ordinates for each column of the image matrix of a Heatmap

Usage

ym(x)

S4 method for signature 'Heatmap'
ym(x)

Arguments

x A Heatmap

Value

numeric, a list of co-ordinates for plotting values in hm@image

Methods (by class)

• Heatmap: Generate co-ordinates for each column of the matrix

Examples

data(HeatmapExamples)
ym(hm)
Index

Topic datasets
 HeatmapExamples, 6
 coords, 2
 coords,Heatmap-method (coords), 2
 coords<-(coords), 2
 coords<-,Heatmap-method (coords), 2
 CoverageHeatmap, 3
 CoverageHeatmap,GenomicRanges,GenomicRanges-method
(CoverageHeatmap), 3
 CoverageHeatmap,GenomicRanges,RleList-method
(CoverageHeatmap), 3
 default_color, 4
 getScale, 4
 Heatmap, 5
 Heatmap-class, 6
 HeatmapExamples, 6
 heatmapOptions, 7
 hm (HeatmapExamples), 6
 hm2 (HeatmapExamples), 6
 image, 9
 image,Heatmap-method (image), 9
 image<-(image), 9
 image<-,Heatmap-method (image), 9
 label, 10
 label,Heatmap-method (label), 10
 label<-(label), 10
 label<-,Heatmap-method (label), 10
 length,Heatmap-method, 10
 mat (HeatmapExamples), 6
 metadata, 11
 metadata,Heatmap-method (metadata), 11
 metadata<-(metadata), 11
 metadata<-,Heatmap-method (metadata), 11
 nseq, 11
 nseq,Heatmap-method (nseq), 11
 nseq<-(nseq), 11
 nseq<-,Heatmap-method (nseq), 11
 PatternHeatmap, 12
 PatternHeatmap,DNAStringSet,character-method
(PatternHeatmap), 12
 PatternHeatmap,DNAStringSet,matrix-method
(PatternHeatmap), 12
 plot_clusters, 17
 plot_legend, 18
 plotHeatmap, 13
 plotHeatmap,Heatmap-method
(plotHeatmap), 13
 plotHeatmapList, 14
 plotHeatmapMeta, 15
 plotPatternDensityMap, 16
 plotPatternDensityMap,DNAStringSet-method
(plotPatternDensityMap), 16
 PWMScanHeatmap, 18
 PWMScanHeatmap,DNAStringSet,matrix-method
(PWMScanHeatmap), 18
 rev,Heatmap-method, 19
 rle_list (HeatmapExamples), 6
 scale, 20
 scale,Heatmap-method (scale), 20
 scale<-(scale), 20
 scale<-,Heatmap-method (scale), 20
 smoothHeatmap, 20
 smoothHeatmap,Heatmap-method
(smoothHeatmap), 20
 string_set (HeatmapExamples), 6
 width,Heatmap-method, 21
 windows (HeatmapExamples), 6
 xm, 22
 xm,Heatmap-method (xm), 22
 ym, 23
 ym,Heatmap-method (ym), 23