Package ‘iClusterPlus’

March 28, 2017

Title Integrative clustering of multi-type genomic data
Version 1.10.0
Date 2016-10-03
Depends R (>= 2.15.0), parallel
Suggests RUnit, BiocGenerics
Author Qianxing Mo, Ronglai Shen
Maintainer Qianxing Mo <qmo@bcm.edu>, Ronglai Shen <shenr@mskcc.org>
Description Integrative clustering of multiple genomic data using a joint latent variable model
LazyData yes
License GPL (>= 2)
biocViews Microarray, Clustering
NeedsCompilation yes

R topics documented:

- breast.chr17 .. 2
- CNRegions ... 2
- compute.pod .. 3
- coord ... 4
- gbm ... 5
- glp ... 5
- iCluster ... 6
- iCluster2 .. 7
- iClusterPlus .. 9
- plotHeatmap ... 11
- plotiCluster .. 12
- plotRI ... 13
- simuResult .. 14
- tune.iCluster2 ... 14
- tune.iClusterPlus .. 15
- utility ... 17
- variation.hg18.v10.nov.2010 18

Index 19
breast.chr17
Breast cancer data set DNA copy number and mRNA expression measure on chromosome 17

Description
This is a subset of the breast cancer data from Pollack et al. (2002).

Usage
```r
data(breast.chr17)
```

Format
A list object containing two data matrices: DNA and mRNA. They consist chromosome 17 data in 41 samples (4 cell lines and 37 primary tumors).

Source
This data can be downloaded at http://www.pnas.org/content/99/20/12963/suppl/DC1

References

CNregions
* A function to remove redundant copy number regions

Description
This function is used to reduce copy number regions.

Usage
```r
CNregions(seg, epsilon=0.005, adaptive=FALSE, rmCNV=FALSE, cnv=NULL, frac.overlap=0.5, rmSmallseg=TRUE, nProbes=15)
```

Arguments
- `seg`: DNAcopy CBS segmentation output.
- `epsilon`: the maximum Euclidean distance between adjacent probes tolerated for denying a nonredundant region. epsilon=0 is equivalent to taking the union of all unique break points across the n samples.
- `adaptive`: Vector of length-m lasso penalty terms.
- `rmCNV`: If TRUE, remove germline CNV.
- `cnv`: A data frame containing germline CNV data.
- `frac.overlap`: A parameter needed to be explain.
- `rmSmallseg`: If TRUE, remove small segment.
- `nProbes`: The segment length threshold below which the segment will be removed if rmSmallseg = TRUE.
compute.pod

Value

A matrix with reduced copy number regions.

Author(s)

Ronglai Shen <shenr@mskcc.org>

References

See Also

breast.chr17, plotiCluster, compute.pod, iCluster, iClusterPlus

Examples

```r
#data(gbm)
#library(GenomicRanges)
#library(cluster)
#reducedM=CNregions(seg,epsilon=0,adaptive=FALSE,rmCNV=TRUE, cvn=NULL, 
# frac.overlap=0.5, rmSmallseg=TRUE,nProbes=5)
```

```r
compute.pod fit
```

Description

A function to compute the proportion of deviation from perfect block diagonal matrix.

Usage

```r
compute.pod(fit)
```

Arguments

- `fit` A iCluster object

Value

- `pod` proportion of deviation from perfect block diagonal matrix

Author(s)

Ronglai Shen <shenr@mskcc.org>
References

See Also

iCluster, *iCluster2*, *plotiCluster*

Examples

```r
# library(iCluster)
# data(breast.chr17)
# fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2))
# plotiCluster(fit=fit, label=rownames(breast.chr17[[2]]))
# compute.pod(fit)
```

coord

genomic coordinates

Description

Genomic coordinates for the copy number data in gbm.

Usage

```r
data(coord)
```

Format

A data matrix consists of chr number, start and end position for the genes included in the gbm copy number data.

References

Description
This is a subset of the glioblastoma dataset from the cancer genome atlas (TCGA) GBM study (2009) used in Shen et al. (2012).

Usage
data(gbm)

Format
A list object containing three data matrices: copy number, methylation and mRNA expression in 84 samples.

Value
- gbm.seg: GBM copy number segmentation results genereated by DNAcopy package.
- gbm.exp: GBM gene expression data.
- gbm.mut: GBM mutation data.

References

Description
good lattice points using the uniform design (Fang and Wang 1995)

Usage
data(glp)

Format
A list object containing sampling design for s=2-5 where s is the number of tuning parameters.

References
Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types.

Usage

iCluster(datasets, k, lambda, scalar=FALSE, max.iter=50, epsilon=1e-3)

Arguments

datasets: A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features.

k: Number of subtypes.

lambda: Vector of length-m lasso penalty terms.

scalar: If TRUE, assumes scalar covariance matrix Psi. Default is FALSE.

max.iter: Maximum iteration for the EM algorithm.

epsilon: EM algorithm convergence criterion.

Value

A list with the following elements:

meanZ: Relaxed cluster indicator matrix.

beta: Coefficient matrix.

clusters: Cluster assignment.

conv.rate: Convergence history.

Author(s)

Ronglai Shen <shenr@mskcc.org>

References

See Also

breast.chr17, plotiCluster, compute.pod
iCluster2

Examples

data(breast.chr17)
fit=iCluster(breast.chr17, k=4, lambda=c(0,2,0,2))
plot.iCluster(fit=fit, label=rownames(breast.chr17[[2]]))
compute.pod(fit)

#library(gplots)
#library(lattice)
#col.scheme = alist()
#col.scheme[[1]] = bluered(256)
#col.scheme[[2]] = greenred(256)
#cn.image=breast.chr17[[2]]
#cn.image[cn.image>1.5]=1.5
#cn.image[cn.image<-1.5]=-1.5
#exp.image=breast.chr17[[1]]
#exp.image[exp.image>3]=3
#exp.image[exp.image<-3]=3
#plotHeatmap(fit, datasets=list(cn.image,exp.image), type=c("gaussian","gaussian"),
row.order=c(FALSE,FALSE), width=5, col.scheme=col.scheme)

iCluster2

Integrative clustering of multiple genomic data types

Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types

Usage

iCluster2(x, K, lambda, method=c("lasso","enet","flasso","glasso","gflasso"),
chr=NULL, maxiter=50, eps=1e-4, eps2=1e-8)

Arguments

x
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features.

K
Number of subtypes.

lambda
A list with m elements; each element is a vector with one or two elements depending on the methods used.

method
Method used for clustering and variable selection.

chr
Chromosome labels

maxiter
Maximum iteration for the EM algorithm.

eps
EM algorithm convergence criterion 1.

eps2
EM algorithm convergence criterion 2.
Value
A list with the following elements.

- cluster: Cluster assignment.
- centers: Cluster centers.
- Phivec: parameter phi; a vector.
- beta: parameter B; a matrix.
- meanZ: meanZ
- EZZt: EZZt
- dif: difference
- iter: iteration

Author(s)

Qianxing Mo <qmo@bcm.edu>, Ronglai Shen, Sijian Wang

References

See Also

plotiCluster, compute.pod, iClusterPlus

Examples

```r
## clustering
n1 = 20
t2 = 20
n3 = 20
n = n1+n2+n3
p = 5
q = 100

x = NULL
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5, 1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a, x2a, x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[1]] = cbind(xa, xb)

x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5, 1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a, x2a, x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[2]] = cbind(xa, xb)

x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5, 1), ncol=p)
```
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iClusterPlus fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types.
iClusterPlus

Usage

iClusterPlus(dt1, dt2=NULL, dt3=NULL, dt4=NULL,
 type=c("gaussian","binomial","poisson","multinomial"),
 K=2, alpha=c(1,1,1,1), lambda=c(0.03,0.03,0.03,0.03),
 n.burnin=100, n.draw=200, maxiter=20, sdev=0.05, eps=1.0e-4)

Arguments

dt1 A data matrix. The rows represent samples, and the columns represent genomic features.
dt2 A data matrix. The rows represent samples, and the columns represent genomic features.
dt3 A data matrix. The rows represent samples, and the columns represent genomic features.
dt4 A data matrix. The rows represent samples, and the columns represent genomic features.
type Data type, which can be gaussian, binomial, poisson, multinomial.
K The number of eigen features. Given K, the number of cluster is K+1.
alpha Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1.
lambda Vector of lasso penalty terms.
n.burnin Number of MCMC burnin.
n.draw Number of MCMC draw.
maxiter Maximum iteration for the EM algorithm.
sdev standard deviation of random walk proposal.
eps Algorithm convergence criterion.

Value

A list with the following elements.

alpha Intercept parameter.
beta Information parameter.
clusters Cluster assignment.
centers Cluster center.
meanZ Latent variable.
BIC Bayesian information criterion.
dev.ratio see dev.ratio defined in glmnet package.
dif absolute difference for the parameters in the last and next-to-last iterations.

Author(s)

Qianxing Mo <qmo@bcm.edu>, Ronglai Shen, Sijian Wang
References

See Also
plotICluster,iCluster,compute.pod

Examples
see iManual.pdf

plotHeatmap
A function to generate heatmap panels sorted by integrated cluster assignment.

Description
A function to generate heatmap panels sorted by integrated cluster assignment.

Usage
plotHeatmap(fit, datasets, type=c("gaussian","binomial","poisson","multinomial"), sample.order=NULL, row.order=NULL, sparse=NULL, threshold=rep(0.25,length(datasets)), width=5, scale=rep("none",length(datasets)), col.scheme=rep(list(bluered(256)), length(datasets)), chr=NULL, plot.chr=NULL, cap=NULL)

Arguments
fit A iCluster object.
datasets A list object of data matrices.
type Types of data in the datasets.
sample.order User supplied cluster assignment.
row.order A vector of logical values each specify whether the genomic features in the corresponding data matrix should be reordered by similarity. Default is TRUE.
sparse A vector of logical values each specify whether to plot the top cluster-discriminant features. Default is FALSE.
threshold When sparse is TRUE, a vector of threshold values to include the genomic features for which the absolute value of the associated coefficient estimates fall in the top quantile. threshold=c(0.25,0.25) takes the top quartile most discriminant features in data type 1 and data type 2 for plot.
width Width of the figure in inches
scale A vector of logical values each specify whether data should be scaled. Default is FALSE.
col.scheme Color scheme. Can use bluered(n) in gplots R package.
chr A vector of chromosome number.
plotiCluster

plotiCluster A function to generate cluster separability matrix plot.

Description
A function to generate cluster separability matrix plot.

Usage
plotiCluster(fit,label=NULL)

Arguments
fit A iCluster object
label Sample labels

Value
no value returned.

plotiCluster

plotiCluster A vector of logical values each specifying whether to annotate chromosome number on the left of the panel. Typically used for copy number data type. Default is FALSE.

cap Image color option

Value
no value returned.

Author(s)
Ronglai Shen <shenr@mskcc.org>

References

See Also
iCluster, iCluster2

Examples
see iManual.pdf
plotRI

Author(s)
Ronglai Shen <shenr@mskcc.org>

References
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and lung cancer subtype

See Also
iCluster, compute.pod

Examples
```r
# library(iCluster)
# data(breast.chr17)
# fit=iCluster(datasets=breast.chr17, k=4, lambda=c(0.2,0.2))
# plotiCluster(fit=fit, label=rownames(breast.chr17[[2]]))
# compute.pod(fit)
```

plotRI

A function to generate reproducibility index plot.

Description
A function to generate reproducibility index plot.

Usage
```r
plotRI(cv.fit)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv.fit</td>
<td>A tune.iCluster2 object</td>
</tr>
</tbody>
</table>

Value

no value returned.

Author(s)
Ronglai Shen <shenr@mskcc.org>

References
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and lung cancer subtype
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason
Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using
iCluster. *PLoS ONE* 7, e35236
tune.iCluster2

See Also
iCluster

Examples

```r
#data(simu.datasets)
#cv.fit=alist()
#for(k in 2:5){
#  cat(paste("K=",k,sep=""),\n#
#  cv.fit[[k]]=tune.iCluster2(datasets=simu.datasets, k,nrep=2, n.lambda=8)
#}

##Reproducibility index (RI) plot
#plotRI(cv.fit)
```

simuResult

The results for the analysis of the simulated data.

Description

The simulation and analysis are described in iClusterPlus/inst/unitTests/test_iClusterPlus.R.

Usage

data(simuResult)

Format

list

Value

A list of objects returned by the iClusterPlus function.

References

iClusterPlus/inst/unitTests/test_iClusterPlus.R

tune.iCluster2

Integrative clustering of multiple genomic data types

Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types

Usage

tune.iCluster2(x, K, method=c("lasso","enet","flasso","glasso","gflasso"),base=200, chr=NULL,true.class=NULL,lambda=NULL,n.lambda=NULL,save.nonsparse=F,nrep=10,eps=1e-4)
Arguments

- **x**: A list object containing \(m \) data matrices representing \(m \) different genomic data types measured in a set of \(n \) samples. For each matrix, the rows represent samples, and the columns represent genomic features.
- **K**: Number of subtypes.
- **lambda**: User supplied matrix of lambda to tune.
- **method**: Method used for clustering and variable selection.
- **chr**: Chromosome labels.
- **n.lambda**: Number of lambda to sample using uniform design.
- **nrep**: Fold of cross-validation.
- **base**: Base.
- **true.class**: True class label if available.
- **save.nonsparse**: Logic argument whether to save the nonsparse fit.
- **eps**: EM algorithm convergence criterion.

Value

A list with the following elements.

- **best.fit**: Best fit.
- **best.lambda**: Best lambda.
- **ps**: Rand index.
- **ps.adjusted**: Adjusted Rand index.

Author(s)

Qianxing Mo <qmo@bcm.edu>, Ronglai Shen, Sijian Wang

References

See Also

iCluster2

Description

Given multiple genomic data (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, `tune.iClusterPlus` uses a series of lambda values to fit a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data.
Usage

tune.iClusterPlus(cpus=8, dt1, dt2=NULL, dt3=NULL, dt4=NULL, type=c("gaussian", "binomial", "poisson", "multinomial"), K=2, alpha=c(1,1,1,1), n.lambda=NULL, scale.lambda=c(1,1,1,1), n.burnin=200, n.draw=200, maxiter=20, sdev=0.05, eps=1.0e-4)

Arguments

cpus Number of CPU used for parallel computation.
dt1 A data matrix. The rows represent samples, and the columns represent genomic features.
dt2 A data matrix. The rows represent samples, and the columns represent genomic features.
dt3 A data matrix. The rows represent samples, and the columns represent genomic features.
dt4 A data matrix. The rows represent samples, and the columns represent genomic features.
type data type, which can be "gaussian", "binomial", "poisson", and "multinomial".
K The number of eigen features. Given K, the number of cluster is K+1.
alpha Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1.
n.lambda Number of lambda are tuned.
scale.lambda A value between (0,1); the actual lambda values will be scale.lambda multiplying the lambda values of the uniform design.
n.burnin Number of MCMC burnin.
n.draw Number of MCMC draw.
maxiter Maximum iteration for the EM algorithm.
sdev standard deviation of random walk proposal.
eps EM algorithm convergence criterion.

Value

A list with the two elements 'fit' and 'lambda', where fit itself is a list and lambda is a matrix. Each row of lambda is the lambda values used to fit iClusterPlus model. Each component of fit is an object return by iClusterPlus, one-to-one corresponding to the row of lambda. Each component of fit has the following objects.

alpha Intercept parameter for the genomic features.
beta Information parameter for the genomic features. The rows and the columns represent the genomic features and the coefficients for the latent variable, respectively.
clusters Cluster assignment.
centers Cluster centers.
meanZ Latent variable.

Author(s)

Qianxing Mo <qmo@bcm.edu>, Ronglai Shen <shenr@mskcc.org>
References

See Also
plotiCluster, iClusterPlus, iCluster2, iCluster, compute.pod

Examples
see the users’ guide iManul.pdf

utility

Utility functions for iClusterPlus package

Description
Some utility functions for processing the results produced by iClusterPlus methods.

Usage
getBIC(resultList)
getDevR(resultList)
getClusters(resultList)
iManual(view=TRUE)

Arguments
resultList A list object as shown in the following example.
view A logical value TRUE or FALSE

Value
getBIC produce a matrix containing the BIC value for each lambda and K; the rows correspond to the lambda (vector) and the columns correspond to the K latent variables.
getDevR produce a matrix containing the deviance ratio for each lambda and K; the rows correspond to the lambda (vector) and the columns correspond to the K latent variables.
getClusters produce a matrix containing the cluster assignments for the samples under each K; the rows correspond to the samples; the columns correspond to the K latent variables.

Author(s)
Qianxing Mo <qmo@bcm.edu>
References

See Also
tune.iClusterPlus, iClusterPlus, iCluster2

Examples
see the users' guide iManual.pdf

```r
#data(simuResult)
#BIC = getBIC(simuResult)
#devR = getDevR(simuResult)
#clusters = getClusters(simuResult)
```

variation.hg18.v10.nov.2010

Human genome variants of the NCBI 36 (hg18) assembly

Description
Human genome variants of the NCBI 36 (hg18) assembly

Usage
data(variation.hg18.v10.nov.2010)

Format
data frame

Value
variation.hg18.v10.nov.2010

Human genome variants of the NCBI 36 (hg18) assembly

References
http://projects.tcag.ca/variation/tableview.asp?table=DGV_Content_Summary.txt
Index

*Topic **datasets**
breast.chr17, 2
coord, 4
gbm, 5

glp, 5
simuResult, 14
variation.hg18.v10.nov.2010, 18

*Topic **models**
CNregions, 2
compute.pod, 3
iCluster, 6
iCluster2, 7
iClusterPlus, 9
plotHeatmap, 11
iClusterPlus, 9, 17, 18
tune.iCluster2, 14
tune.iClusterPlus, 15
utility, 17

breast.chr17, 2, 3, 6

CNregions, 2
compute.pod, 3, 3, 6, 8, 11, 13, 17
coord, 4

gbm, 5
getBIC (utility), 17
getClusters (utility), 17
getDevR (utility), 17
glp, 5

iCluster, 3, 4, 6, 11–14, 17
iCluster2, 4, 7, 12, 15, 17, 18
iClusterPlus, 3, 8, 9, 17, 18
iManual (utility), 17

plotHeatmap, 11
plotiCluster, 3, 4, 6, 8, 11, 12, 17
plotRI, 13

simuResult, 14

tune.iCluster2, 14
tune.iClusterPlus, 15, 18