Package ‘ideal’

April 26, 2017

Type Package

Title Interactive Differential Expression AnaLysis

Version 1.0.0

Date 2017-04-04

Maintainer Federico Marini <marinif@uni-mainz.de>

Description This package provides functions for an Interactive
Differential Expression AnaLysis of RNA-sequencing datasets, to
effectively extract information downstream the step
of differential expression. A Shiny application encapsulates
the whole package.

License MIT + file LICENSE

LazyData TRUE

Depends topGO

Imports DESeq2, SummarizedExperiment, GenomicRanges, IRanges,
S4Vectors, ggplot2 (>= 2.0.0), d3heatmap, pheatmap,
pcaExplorer, IHW, gplots, UpSetR, goseq, stringr, plyr, dplyr,
limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0),
shinydashboard, shinyBS, DT, rentrez, rintrojs, knitr,
rmarkdown, shinyAce, BiocParallel, grDevices, methods

Suggests testthat, BiocStyle, airway, org.Hs.eg.db,
TxDb.Hsapiens.UCSC.hg38.knownGene, DEFormats, edgeR

URL https://github.com/federicomarini/ideal

BugReports https://github.com/federicomarini/ideal/issues

biocViews GeneExpression, DifferentialExpression, RNASeq, Sequencing,
Visualization, QualityControl, GUI, GeneSetEnrichment,
ReportWriting

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Federico Marini [aut, cre]
R topics documented:

deseqresult2DEgenes

deseqresult2DEgenes Generate a tidy table with the DE genes from the results of DESeq

Description

Generate a tidy table with the DE genes from the results of DESeq

Usage

deseqresult2DEgenes(deseqresult, FDR = 0.05)

Arguments

 deseqresult A DESeqResults object
 FDR Numeric value, the significance level for thresholding adjusted p-values

Value

 A "tidy" data.frame with only genes marked as differentially expressed

Examples

with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n=100, m=8, betaSD = 2)
dds <- DESeq(dds)
res <- results(dds)
deseqresult2DEgenes(res)
deseqresult2tbl
Generate a tidy table with the results of DESeq

Description
Generate a tidy table with the results of DESeq

Usage
deseqresult2tbl(deseqresult)

Arguments

deseqresult
A DESeqResults object

Value
A "tidy" data.frame with all genes

Examples

with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n=100, m=8, betaSD = 1)
dds <- DESeq2::DESeq(dds)
res <- DESeq2::results(dds)
deseqresult2tbl(res)

ggplotCounts
Plot normalized counts for a gene

Description
Plot for normalized counts of a single gene, with jittered points superimposed on the boxplot

Usage
ggplotCounts(dds, gene, intgroup = "condition", annotation_obj = NULL)

Arguments

dds
A DESeqDataSet object.

gene
A character, specifying the name of the gene to plot

intgroup
Interesting groups: a character vector of names in colData(dds) to use for grouping

annotation_obj
A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols. Optional.
Details

Note: this function relies on the plotCounts function of DESeq2, therefore pseudocounts of 0.5 are added to each point

Value

An object created by ggplot

Examples

```r
library(airway)
data(airway)
airway

dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
colData = colData(airway),
design =~ cell + dex)

ggplotCounts(dds_airway,
gene = "ENSG00000103196", # CRISPLD2 in the original publication
intgroup = "dex")
```

goseqTable

Extract functional terms enriched in the DE genes, based on goseq

Description

A wrapper for extracting functional GO terms enriched in a list of (DE) genes, based on the algorithm and the implementation in the goseq package

Usage

```
goseqTable(de.genes, assayed.genes, genome = "hg38", id = "ensGene",
testCats = c("GO:BP", "GO:MF", "GO:CC"), FDR_GO_cutoff = 1, nTop = 200,
orgDbPkg = "org.Hs.eg.db", addGeneToTerms = TRUE)
```

Arguments

de.genes A vector of (differentially expressed) genes
assayed.genes A vector of background genes, e.g. all (expressed) genes in the assays
genome A string identifying the genome that genes refer to, as in the goseq function
id A string identifying the gene identifier used by genes, as in the goseq function
testCats A vector specifying which categories to test for over representation amongst DE genes - can be any combination of "GO:CC", "GO:BP", "GO:MF" & "KEGG"
FDR_GO_cutoff Numeric value for subsetting the results
nTop Number of categories to extract, and optionally process for adding genes to the respective
orgDbPkg Character string, named as the org.XX.eg.db package which should be available in Bioconductor
addGeneToTerms Logical, whether to add a column with all genes annotated to each GO term
Details

Note: the feature length retrieval is based on the `goseq` function, and requires that the corresponding TxDb packages are installed and available

Value

A table containing the computed GO Terms and related enrichment scores

Examples

```r
library(airway)
data(airway)

airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
  colData = colData(airway),
  design=~cell+dex)

dds_airway <- DESeq2::DESeq(dds_airway)
res_airway <- DESeq2::results(dds_airway)

res_subset <- deseqresult2DEgenes(res_airway)[1:100,]
myde <- res_subset$id
myassayed <- rownames(res_airway)

## Not run:
mygo <- goseqTable(myde,
  myassayed,
  testCats = "GO:BP",
  addGeneToTerms = FALSE)

head(mygo)

## End(Not run)
```
res_obj A `DESeqResults` object. If not provided, it can be computed during the execution of the application.

annotation_obj A `data.frame` object, with row names as gene identifiers (e.g. ENSEMBL ids) and a column, `gene_name`, containing e.g. HGNC-based gene symbols. If not provided, it can be constructed during the execution via the `org.eg.XX.db` packages - these need to be installed.

countmatrix A count matrix, with genes as rows and samples as columns. If not provided, it is possible to upload the data during the execution of the Shiny App.

expdesign A `data.frame` containing the info on the covariates of each sample. If not provided, it is possible to upload the data during the execution of the Shiny App.

Value

A Shiny App is launched for interactive data exploration and differential expression analysis.

Examples

```r
# with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n=100, m=8)
cm <- counts(dds)
cd <- colData(dds)

# with the well known airway package...
library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
                                          colData = colData(airway),
                                          design=~cell+dex)

## Not run:
ideal()
ideal(dds)
ideal(dds_airway)

#ds_airway <- DESeq2::DESeq(dd_airway)
res_airway <- DESeq2::results(dd_airway)
ideal(dd_airway, res_airway)

## End(Not run)
```

Description

ideal makes differential expression analysis interactive, easy and reproducible. The analysis of RNA-seq datasets is guided by the Shiny app as main component of the package, which also provides a wide set of functions to efficiently extract information from the existing data. The app can be also deployed on a Shiny server, to allow its usage without any installation on the user’s side.
Details

ideal makes differential expression analysis interactive, easy and reproducible. The analysis of RNA-seq datasets is guided by the Shiny app as main component of the package, which also provides a wide set of functions to efficiently extract information from the existing data. The app can be also deployed on a Shiny server, to allow its usage without any installation on the user’s side.

Author(s)

Federico Marini <marinif@uni-mainz.de>, 2016-2017
Maintainer: Federico Marini <marinif@uni-mainz.de>

PLOT_MA

plot_ma

MA-plot from base means and log fold changes

Description

MA-plot from base means and log fold changes, in the ggplot2 framework, with additional support to annotate genes if provided.

Usage

plot_ma(res_obj, FDR = 0.05, point_alpha = 0.2, sig_color = "red", annotation_obj = NULL, hlines = NULL, title = NULL, xlab = "mean of normalized counts - log10 scale", ylim = NULL, add_rug = TRUE, intgenes = NULL, intgenes_color = "steelblue", labels_intgenes = TRUE)

Arguments

res_obj A DESeqResults object
FDR Numeric value, the significance level for thresholding adjusted p-values
point_alpha Alpha transparency value for the points (0 = transparent, 1 = opaque)
sig_color Color to use to mark differentially expressed genes. Defaults to red
annotation_obj A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols. Optional
hlines The y coordinate (in absolute value) where to draw horizontal lines, optional
title A title for the plot, optional
xlab X axis label, defaults to "mean of normalized counts - log10 scale"
ylim Vector of two numeric values, Y axis limits to restrict the view
add_rug Logical, whether to add rug plots in the margins
intgenes Vector of genes of interest. Gene symbols if a symbol column is provided in res_obj, or else the identifiers specified in the row names
intgenes_color The color to use to mark the genes on the main plot.
labels_intgenes Logical, whether to add the gene identifiers/names close to the marked plots
plot_volcano

Details

The genes of interest are to be provided as gene symbols if a symbol column is provided in \textit{res_obj}, or else be using the identifiers specified in the row names.

Value

An object created by \texttt{ggplot}

Examples

\begin{verbatim}
library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
 colData = colData(airway),
 design=~cell+dex)

dds_airway <- DESeq2::DESeq(dds_airway)
res_airway <- DESeq2::results(dds_airway)

plot_ma(res_airway, FDR = 0.05, hlines = 1)

plot_ma(res_airway, FDR = 0.1,
 intgenes = c("ENSG00000103196", # CRISPLD2
 "ENSG00000120129", # DUSP1
 "ENSG00000163884", # KLF15
 "ENSG00000179094") # PER1
)
\end{verbatim}

plot_volcano

Volcano plot for log fold changes and log p-values

Description

Volcano plot for log fold changes and log p-values in the \texttt{ggplot2} framework, with additional support to annotate genes if provided.

Usage

\begin{verbatim}
plot_volcano(res_obj, FDR = 0.05, ylim_up = NULL, vlines = NULL,
 title = NULL, intgenes = NULL, intgenes_color = "steelblue",
 labels_intgenes = TRUE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{res_obj} A \texttt{DESeqResults} object
 \item \texttt{FDR} Numeric value, the significance level for thresholding adjusted p-values
 \item \texttt{ylim_up} Numeric value, Y axis upper limits to restrict the view
 \item \texttt{vlines} The x coordinate (in absolute value) where to draw vertical lines, optional
 \item \texttt{title} A title for the plot, optional
\end{itemize}
intgenes Vector of genes of interest. Gene symbols if a symbol column is provided in res_obj, or else the identifiers specified in the row names

intgenes_color The color to use to mark the genes on the main plot.

labels_intgenes Logical, whether to add the gene identifiers/names close to the marked plots

Details

The genes of interest are to be provided as gene symbols if a symbol column is provided in res_obj, or else using the identifiers specified in the row names.

Value

An object created by ggplot.

Examples

```r
library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
colData = colData(airway),
design=~cell+dex)

dds_airway <- DESeq2::DESeq(dds_airway)
res_airway <- DESeq2::results(dds_airway)

plot_volcano(res_airway)
```

sepguesser

Make an educated guess on the separator character

Description

This function tries to guess which separator was used in a text delimited file.

Usage

```r
sepguesser(file, sep_list = c("","\t",";"," "))
```

Arguments

- **file** The name of the file which the data are to be read from
- **sep_list** A vector containing the candidates for being identified as separators. Defaults to c("","\t",";"," ")

Value

A character value, corresponding to the guessed separator. One of "," (comma), "\t" (tab), ";" (semicolon), " " (whitespace)
Examples

sepguesser(system.file("extdata/design_commas.txt",package = "ideal"))
sepguesser(system.file("extdata/design_semicolons.txt",package = "ideal"))
sepguesser(system.file("extdata/design_spaces.txt",package = "ideal"))
mysep <- sepguesser(system.file("extdata/design_tabs.txt",package = "ideal"))

to be used for reading in the same file, without having to specify the sep
Index

DESeqDataSet. 3, 5
deseqresult2DEgenes. 2
deseqresult2tbl. 3
DESeqResults. 2, 3, 6–8

ggplotCounts. 3
goseq. 4, 5
goseqTable. 4

ideal. 5
ideal-pkg. 6
ideal-pkg-package (ideal-pkg). 6

plot_ma. 7
plot_volcano. 8
plotCounts. 4

sepguesser. 9