Package ‘isobar’

December 21, 2016

Title Analysis and quantitation of isobarically tagged MSMS proteomics data

Description isobar provides methods for preprocessing, normalization, and report generation for the analysis of quantitative mass spectrometry proteomics data labeled with isobaric tags, such as iTRAQ and TMT. Features modules for integrating and validating PTM-centric datasets (isobar-PTM). More information on http://www.ms-isobar.org.

Version 1.20.0

Author Florian P Breitwieser <florian.bw@gmail.com> and Jacques Colinge <jacques.colinge@inserm.fr>, with contributions from Alexey Stukalov <stukalov@biochem.mpg.de>, Xavier Robin <xavier.robin@unige.ch> and Florent Gluck <florent.gluck@unige.ch>

Maintainer Florian P Breitwieser <florian.bw@gmail.com>

biocViews Proteomics, MassSpectrometry, Bioinformatics, MultipleComparisons, QualityControl

Depends R (>= 2.10.0), Biobase, stats, methods

Imports distr, plyr, biomaRt, ggplot2

Suggests MSnbase, OrgMassSpecR, XML, RJJSONIO, Hmisc, gplots, RColorBrewer, gridExtra, limma, boot, DBI, MASS

LazyLoad yes

License LGPL-2

URL https://github.com/fbreitwieser/isobar

BugReports https://github.com/fbreitwieser/isobar/issues

NeedsCompilation no

R topics documented:

 isobar-package ... 3
 calc.delta.score .. 4
R topics documented:

calcPeptidePosition .. 5
calculate-pvalues ... 5
calculate.dNSAF .. 6
calculate.emPAI ... 7
correct.peptide.ratios ... 8
distr-methods ... 9
fit distributions ... 10
getPeptideModifContext .. 11
getPhosphoRSProbabilities ... 11
getPtmInfo ... 13
groupMemberPeptides .. 15
human.protein.names ... 16
IBSpectra-class .. 16
IBSpectra.log .. 19
Isobar util functions .. 20
isobar-analysis .. 20
isobar-import .. 23
isobar-plots .. 25
isobar-preprocessing ... 26
isobar-reports .. 27
isobar.data .. 29
maplot.protein ... 29
NoiseModel-class ... 30
number.ranges ... 32
observedKnownSites ... 32
peptide.count ... 33
Protein and peptide ratio calculation and summarization 34
ProteinGroup-class ... 37
proteinInfo-methods .. 39
proteinNameAndDescription ... 41
ratiosReshapeWide .. 42
reporter.protein-methods .. 42
sanitize ... 43
shared.ratios ... 43
shared.ratios.sign ... 44
specificities ... 44
spectra.count2 ... 45
subsetIBSpectra .. 46
Tlsd-class ... 47
TlsParameter-class .. 48
writeHscoreData .. 49
writeIBSpectra ... 49

Index 50
Analysis and quantitation of isobarically tagged MSMS proteomics data

Description

isobar provides methods for preprocessing, normalization, and report generation for the analysis of quantitative mass spectrometry proteomics data labeled with OA isobaric tags, such as iTRAQ and TMT.

Details

Package: isobar
Version: 1.1.2
biocViews: Proteomics, MassSpectrometry, Bioinformatics, MultipleComparisons, QualityControl
Depends: R (>= 2.9.0), Biobase, stats, methods, ggplot2
Imports: distr, biomaRt
Suggests: MSnbase, XML
LazyLoad: yes
License: LGPL-2
URL: http://bioinformatics.cemm.oeaw.ac.at

Index:

IBSpectra-class IBSpectra objects
NoiseModel-class NoiseModel objects
ProteinGroup-class ProteinGroup objects
do.log Log functions for IBSpectra objects
fitCauchy Fit weighted and unweighted Cauchy and Normal distributions
groupMemberPeptides Peptide info for protein group members
human.protein.names Info on proteins
ibspiked_set1 Isobar Data packages
isobar-analysis IBSpectra analysis: Protein and peptide ratio calculation
isobar-import Loading data into IBSpectra objects using readIBSpectra
isobar-package Analysis and quantitation of isobaric tag Proteomics data
isobar-plots IBSpectra plots
isobar-preprocessing IBSpectra preprocessing
isobar-reports Isobar reports
maplot.protein MAplot for individual proteins
number.ranges Helper function to transform number lists to ranges
proteinInfo-methods Methods for Function proteinInfo
proteinRatios protein and peptide ratios
sanitize Helper function for LaTeX export
calc.delta.score

shared.ratios Shared ratio calculation
shared.ratios.sign Plot and get significantly shared ratios.

Further information is available in the following vignettes:

- isobar Isobar Overview (source, pdf)
- isobar-devel Isobar for developers (source, pdf)

Author(s)

Florian P Breitwieser <fbreitwieser@cemm.oeaw.ac.at> and Jacques Colinge <jcolinge@cemm.oeaw.ac.at>, with contributions from Xavier Robin <xavier.robin@unige.ch>

Maintainer: Florian P Breitwieser <fbreitwieser@cemm.oeaw.ac.at>

calc.delta.score Calculate Delta Score from Ion Score

Description

Calculates delta score from raw search engine score by subtracting the best matching hit with the second best matching. Data needs to have not only the best hit per spectrum, but multiple, to be able to calculate the delta score. filterSpectraDeltaScore calls calc.delta.score and filters spectra below a minimum delta score.

Usage

calc.delta.score(my.data)
filterSpectraDeltaScore(my.data, min.delta.score=10, do.remove=FALSE)

Arguments

- my.data IBSpectra data frame.
- min.delta.score Minimum delta score.
- do.remove If TRUE, spectra below the min.prob threshold are not just set as 'use.for.quant=FALSE' but removed.

Value

Returns data with additional column 'delta.score'.

Author(s)

Florian P. Breitwieser
calcPeptidePosition

Recalculate peptide start positions based on protein sequence

Description

Function to recalculate start position of peptide in protein when it is missing or wrong.

Usage

```
calcPeptidePosition(peptide.info, protein.info, calc.il.peptide)
```

Arguments

- `peptide.info`: Peptide info object of ProteinGroup.
- `protein.info`: Protein info object of ProteinGroup.
- `calc.il.peptide`: Should the ‘real’ peptide (I/L difference) be calculated?

calculate-pvalues

Calculate and Adjust Ratio and Sample p-values.

Description

Functions for calculating and adjusting ratios and sample p-values. Usually, these are called by `proteinRatios` or `peptideRatios`.

Usage

```
calculate.ratio.pvalue(lratio, variance, ratiodistr = NULL)
calculate.sample.pvalue(lratio, ratiodistr)
calculate.mult.sample.pvalue(lratio, ratiodistr, strict.pval,
  lower.tail, n.possible.val, n.observed.val)
adjust.ratio.pvalue(quant.tbl, p.adjust, sign.level, globally = FALSE)
```

Arguments

- `lratio`: log 10 protein or peptide ratios.
- `ratiodistr`: Fitted ratio distribution.
- `variance`: Variance of ratios.
- `strict.pval`: If FALSE, missing ratios are ignored. If TRUE, missing ratios are penalized by giving them a sample.pval of 0.5.
- `lower.tail`: lower.tail of distribution?
- `n.possible.val`: Number of possible ratios.
- `n.observed.val`: Number of observed ratios.
- `quant.tbl`: Quantification table (from `proteinRatios` or `peptideRatios`).
p.adjust p-value adjustment method (see `p.adjust`).
sign.level Ratio significance level.
globally Whether the p-values should be adjusted over all conditions, or individually in each condition.

Author(s)
Florian P. Breitwieser

See Also
`proteinRatios`, `peptideRatios`

Examples

```r
lratio <- c(-1,-1,seq(from=-1,to=1,by=.25),1,1)
variance <- c(0,1,rep(0.1,9),0,1)
ratiodistr.precise <- new("Norm",mean=0,sd=.25)
ratiodistr.wide <- new("Norm",mean=0,sd=.5)

# ratio p-value is impacted only by the variance
# sample p-value captures whether the ratio distribution is narrow ('precise')
# or wide
data.frame(lratio, variance,
            ratio.pvalue=calculate.ratio.pvalue(lratio, variance),
            sample.pvalue.precise=calculate.sample.pvalue(lratio, ratiodistr.precise),
            sample.pvalue.wide=calculate.sample.pvalue(lratio, ratiodistr.wide))
```

calculate.dNSAF
dNSAF approximate abundance calculations.

Description
Distributed normalized spectral abundance factor (dNSAF) is a label free quantitative measure of protein abundance based on spectral counts which are corrected for peptides shared by multiple proteins. Original publication: Zhang Y et al., Analytical Chemistry (2010).

Usage

```r
calculate.dNSAF(protein.group, use.mw = FALSE, normalize = TRUE, combine.f = mean)
```

Arguments

- `protein.group` ProteinGroup object. Its `proteinInfo` slot `data.frame` must contain a `length` column.
- `use.mw` Use MW to account for protein size
- `normalize` Normalize dSAF to dNSAF?
- `combine.f` How to handle proteins seen only with shared peptides?
calculate.emPAI

Value

Named numeric vector of dNSAF values.

Author(s)

Florian P Breitwieser

References

Zhang Y et al., Analytical Chemistry (2010)

See Also

proteinInfo, getProteinInfoFromUniprot, calculate.emPAI, ProteinGroup

Examples

data(ibspiked_set1)
protein.group <- proteinGroup(ibspiked_set1)
calculate.dNSAF(protein.group)

calculate.emPAI

emPAI approximate abundance calculations.

Description

The Exponentially Modified Protein Abundance Index (emPAI) is a label free quantitative measure of protein abundance based on protein coverage by peptide matches. The original publication is Ishihama Y, et al., Proteomics (2005).

Usage

calculate.emPAI(protein.group, protein.g = reporterProteins(protein.group), normalize = FALSE, observed.pep = c("pep", "mod.charge.pep"), use.mw = FALSE, combine.f = mean, ..., nmc = 0, report.all = FALSE)
n.observable.peptides(...)
observable.peptides(seq, nmc = 1, min.length = 6, min.mass = 600, max.mass = 4000, custom = list(code = c("B", "Z", "J", "U"), mass = c(164.554862, 278.61037, 213.12392, 150.953636)), ...)

Arguments

protein.group ProteinGroup object. Its @proteinInfo slot data.frame must contain a sequence column to calculate the number of observable peptides per protein.
protein.g Protein group identifiers.
normalize Normalize to sum = 1?.
observed.pep What counts as observed peptide?
report.all TOADD
use.mw Use MW to normalize for protein size
combine.f How to handle proteins seen only with shared peptides?
seq Protein sequence.
nmc Number of missed cleavages.
min.length Minimum length of peptide.
min.mass Minimum mass of peptide.
max.mass Maximum mass of peptide.
custom User defined residue for Digest.

Further arguments to observable.peptides/Digest.

Details

The formula is

\[emPAI = 10^{\frac{N_{\text{observed}}}{N_{\text{observable}}} - 1} \]

N_{\text{observed}} is the number of observed peptides - we use the count of unique peptide without consideration of charge state. N_{\text{observable}} is the number of observable peptides. Sequence cleavage is done using Digest.

Value

Named numeric vector of emPAI values.

Author(s)

Florian P Breitwieser

References

See Also

Digest, proteinInfo, getProteinInfoFromUniprot, calculate.dNSAF, ProteinGroup

Examples

data(ibspiked_set1)
protein.group <- proteinGroup(ibspiked_set1)
calculate.emPAI(protein.group, protein.g=protein.g(protein.group,"CERU"))

Correct peptide ratios with protein ratios from a separate experiment.

Usage

correct.peptide.ratios(ibspectra, peptide.quant.tbl, protein.quant.tbl, protein.group.combined, adjust.variance = TRUE, correlation = 0, recalculate.pvalue = TRUE)
Arguments
ibspectra IBSpectra object.
peptide.quant.tbl
 Calculated with peptideRatios.
protein.quant.tbl
 Calculated with proteinRatios.
protein.group.combined
 ProteinGroup object generated on both PTM and protein data.
adjust.variance Adjust variance of ratios.
correlation Assumed correlation between peptide and protein ratios for variance adjustment.
recalculate.pvalue Recalculate p-value after variance adjustment.

Author(s)
Florian P. Breitwieser

distr-methods Functions for distribution calculations

Description
calcProbXGreaterThanY calculates the probability that X >= Y. calcProbXDiffNormals calculates the probabilities of a set of normals, defined by the vectors mu_Y and sd_Y are greater or less than the reference distribution Y.

Usage
calcProbXGreaterThanY(X, Y, rel.tol = .Machine$double.eps^0.25, subdivisions = 100L)
calcProbXDiffNormals(X, mu_Y, sd_Y, ..., alternative = c("greater", "less", "two-sided"), progress = FALSE)
#calcCumulativeProbXGreaterThanY(Xs, mu_Ys, sd_Ys, alternative = c("greater", "less", "two-sided"), progress = FALSE)
distrprint(X, round.digits = 5)
twodistr.plot(X, Y, n.steps = 1000, min.q = 10^-3)

Arguments
X Object of the class Distribution.
Y Object of the class Distribution.
min.q minimum quantile
n.steps Number of steps.
mu_Y Numeric vector of parameter mu of a Normal.
sd_Y Numeric vector of parameter sd of a Normal.
subdivisions the maximum number of subintervals
rel.tol relative accuracy requested
... Additional arguments to calcProbXGreaterThanY.
alternative "less", "greater", or "two-sided".
progress Show text progress bar?
round.digits Round digits for printing.
fit distributions

Author(s)
Florian P. Breitwieser

Examples

library(distr)
calcProbXGreaterThanY(Norm(0,.25),Norm(1,.25))

Description
Functions to fit the probability density functions on ratio distribution.

Usage

fitCauchy(x)
fitNorm(x, portion = 0.75)
fitWeightedNorm(x, weights)
fitNormalCauchyMixture(x)
fitGaussianMixture(x, n = 500)
fitTlsd(x)

Arguments

x
weights
portion
n
Ratios
Weights
Central portion of data to take for computation
number of sampling steps

Value

Cauchy,Norm

Author(s)
Florian P Breitwieser, Jacques Colinge.

See Also
proteinRatios
getPeptideModifContext

Examples

```r
library(distr)
data(ibspiked_set1)
data(noise.model.hcd)
# calculate protein ratios of Trypsin and CERU_HUMAN. Note: this is only
# for illustration purposes. For estimation of sample variability, data
# from all protein should be used
pr <- proteinRatios(ibspiked_set1, noise.model=noise.model.hcd,
                      cl=as.character(c(1,1,2,2)), combn.method="intraclass", protein=c("136429", "P00450"))

# fit a Cauchy distribution
ratiodistr <- fitCauchy(pr$lratio)
plot(ratiodistr)
```

getPeptideModifContext

Get context of modification

Description

Gets neighboring amino acids around modification which can be used to find enriched motifs.

Usage

```r
getPeptideModifContext(protein.group, modif, n.aa.up = 7, n.aa.down = 7)
```

Arguments

- **protein.group**: ProteinGroup object.
- **modif**: Modification of interest.
- **n.aa.up**: Number of AA downstream to report.
- **n.aa.down**: Number of AA upstream to report.

getPhosphoRSProbabilities

Generate input files for PhosphoRS, call it, and get modification site probabilities

Description

Get phosphorylation site localization probabilities by calling PhosphoRS and parsing its output.

getPhosphoRSProbabilities generates a XML input file for PhosphoRS calling writePhosphoRSInput, then executes phosphoRS.jar with java, and parses the XML result file with readPhosphoRSOutput.
getPhosphoRSProbabilities

Usage

```r
getPhosphoRSProbabilities(id.file, mgf.file, massTolerance, activationType, 
simplify = FALSE, mapping.file = NULL, mapping = 
c(peaklist = "even", id = "odd"), pepmodif.sep = 
"##.##", besthit.only = TRUE, phosphors.cmd = 
paste("java -jar", system.file("phosphors", 
"phosphoRS.jar", package = "isobar")), file.basename = 
tempfile("phosphors."))
```

```r
writePhosphoRSInput(phosphoRS.infile, id.file, mgf.file, massTolerance, 
activationType, mapping.file = NULL, mapping = 
c(peaklist = "even", id = "odd"), pepmodif.sep = 
"##.##", modif.masses = rbind(c("PHOS", "1", 
c("Oxidation_M", "2", 
"2:Oxidation:Oxidation:15.994919:null:0:M"), 
c("Cys_CAM", "3", 
"3:Carbamidomethylation:Carbamidomethylation:57.021464:null:0:C"), 
c("iTRAQ4plex", "4", 
"4:iTRAQ4:iTRAQ4:144.1544:null:0:KX"), c("iTRAQ8plex", 
"5", "5:iTRAQ8:iTRAQ8:304.308:null:0:KX"), 
c("TMT6plex", "7", 
"7:TMT6:TMT6:229.162932:KX"), c("TMTsixplex", 
```

```r
readPhosphoRSOutput(phosphoRS.outfile, simplify = FALSE, pepmodif.sep = "##.##", besthit.only = 
filterSpectraPhosphoRS(id.file, mgf.file, ..., min.prob = NULL, do.remove=FALSE)
```

Arguments

- **id.file**: Database search results file in ibspectra.csv or mzIdentML format. See IBSpectra and isobar vignette for information on converting Mascot dat and Phenyx pidres files into ibspectra format.
- **mgf.file**: Peaklist file
- **massTolerance**: Fragment ion mass tolerance (in Da)
- **activationType**: Activation types of spectra. CID, HCD, or ETD.
- **simplify**: If TRUE, returns a data.frame instead of a list.
- **mapping.file**: Mapping file. See also readIBSpectra.
- **mapping**: Mapping columns.
- **besthit.only**: Only show best hit, simplifies result to data.frame instead of list.
- **phosphors.cmd**: PhosphoRS script.
- **file.basename**: Base name for creating phosphoRS input and output files.
- **phosphoRS.infile**: PhosphoRS input XML file name.
- **phosphoRS.outfile**: PhosphoRS output XML file name.
getPtmInfo

pepmodif.sep separator of peptide and modification in XML id
modif.masses masses and ID used for PhosphoRS
min.prob Threshold for PhosphoRS peptide probability to consider it for quantification
... Further arguments to getPhosphoRSProbabilities
do.remove If TRUE, spectra below the min.prob threshold are not just set as ‘use.for.quant=FALSE’ but removed.

Details
PhosphoRS is described in Taus et al., 2011. It can be downloaded from http://cores.imp.ac.at/protein-chemistry/download/ and used as Freeware. Java is required at runtime.

Value
If simplify=TRUE, a data.frame with the following columns: spectrum, peptide, modif, PepScore, PepProb, seqpos
If simplify=FALSE, a list (of spectra) of lists (of peptide identifications) of lists (with information about identification and localization). spectrum -> peptide 1, peptides 2, ... -> peptide. First level: - spectrum Second level: - peptide identifications for spectrum (might be more than one) Third level: - peptide: vector with peptide sequence and modification string - site.probs: matrix with site probabilities for each phospho site - isoforms: peptide score and probabilities for each isoform

Author(s)
Florian P Breitwieser

References
Taus et al., 2011

getPtmInfo
Get PTM site information for identified proteins from public databases.

Description
Get PTM site information for identified proteins from public databases.

Usage

captureFromNextprot(protein.group, nextprot.url = "http://www.nextprot.org/rest/entry/NX_XXX/ptm?format=json", url.wildcard = "XXX")
getPtmInfo

Arguments

- **protein.group**: ProteinGroup object.
- **file.name**: File name to save downloaded data, defaults to the original file name (see mapping).
- **modif**: Selects dataset to download (see mapping).
- **psp.url**: PhosphoSitePlus main URL for datasets.
- **mapping**: Names of PhosphoSitePlus modification datasets, mapped by modif name.
- **nextprot.url**: URL for fetching Nextprot results.
- **url.wildcard**: wildcard to replace with Uniprot Protein AC in nextprot.url.

Details

PhosphoSitePlus datasets are downloaded and written to the working directory with its original name (see mapping) unless a file with that name exists, which is then parsed into a data.frame of suitable format.

Value

data.frame with (at least) the columns: isoform_ac, description, evidence, position

Note

PhosphoSitePlus is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License and is freely available for non-commercial purpose, see http://www.phosphosite.org/staticDownloads.do.

NextProt is licensed under the Creative Commons Attribution-NoDerivs License, see: http://creativecommons.org/licenses/by-nd/3.0.

Please read the conditions and use the data only if you agree.

Author(s)

Florian P. Breitwieser

References

Examples

```r
# Not run:
data(ib_phospho)
ptm.info.np <- getPtmInfoFromNextprot(proteinGroup(ib_phospho))
ptm.info.np <- ptm.info.np[(ptm.info.np$modification.name == "Phospho")]
ptm.info.psp <- getPtmInfoFromPhosphoSitePlus(proteinGroup(ib_phospho), modif="PHOS")
```
groupMemberPeptides

str(ptm.info.np)
str(ptm.info.psp)

End(Not run)

groupMemberPeptides Peptide info for protein group members

Description

For a given reporter protein group identifier, information on its peptides is returned. It contains information on how the peptides are shared and in which member they occur.

Usage

groupMemberPeptides(x, reporter.protein.g, ordered.by.pos = TRUE, only.first.pos = TRUE)

Arguments

x ProteinGroup object
reporter.protein.g group reporter protein
ordered.by.pos if TRUE, start position of peptides in proteins is exported and peptides are ordered by position
only.first.pos if TRUE, only first occurrence of peptide in protein is reported

Value

list of two: [1] peptide.info: data.frame peptide specificity n.shared.groups n.shared.proteins start.pos
[2] group.member.peptides: data.frame each column corresponds to a group member, and each row to a peptide

Author(s)

Florian P Breitwieser

Examples

data(ibspiked_set1)
protein.group <- proteinGroup(ibspiked_set1)
ceru.rat <- protein.g(protein.group,"CERU_RAT")
groupMemberPeptides(protein.group,ceru.rat)

find protein groups with members
t <- table(proteinGroupTable(protein.group)$reporter.protein)
t[t>2]
protein.g <- names(t)[t>2][1]
groupMemberPeptides(protein.group,protein.g)
human.protein.names
Info on proteins

Description
Gather human readable information from protein group codes.

Usage
my.protein.info(x, protein.g)

human.protein.names(my.protein.info)

Arguments
x ProteinGroup object
protein.g protein
my.protein.info Return value of function my.protein.info

Author(s)
Florian P Breitwieser

IBSpectra-class
IBSpectra Class for Isobarically Tagged Quantitative MS Proteomics Data

Description
This class represents a quantitative MS proteomics experiment labeled using Isobaric tags (iTRAQ, TMT). IBSpectra is a abstract class which is implemented in the IBSpectraTypes classes iTRAQ4plexSpectra, iTRAQ8plexSpectra, TMT2plexSpectra, TMT6plexSpectra and TMT10plexSpectra.

It contains per-spectrum measurements of the reporter tag intensity and m/z in assayData, and protein grouping in proteinGroup.

Objects from the Class
IBSpectra objects are typically created using the readIBSpectra method or by calls of the form new("iTRAQ4plexSpectra",data=NULL,data.ions=NULL,...).
IBSpectra-class

Slots

IBSpectra extends eSet which is a container for high-throughput assays and experimental metadata. Slots introduced in eSet (for more details on slots and methods refer to eSet help):

assayData: Contains matrices 'ions' and 'mass storing reporter tag intensities and m/z values for each tag and spectrum. Can be accessed by reporterIntensities and reporterMasses. Class: AssayData

phenoData: Contains experimenter-supplied variables describing phenotypes behind reporter tags. Class: AnnotatedDataFrame-class

featureData: Describes the spectra's retention time, charge, peptide sequence, etc and can be accessed by fData. Class: AnnotatedDataFrame

experimentData: Contains details of experimental methods. Class: MIAME

annotation: UNUSED. Label associated with the annotation package used in the experiment. Class: character

protocolData: UNUSED. Contains equipment-generated variables describing reporter tags. Class: AnnotatedDataFrame

log: character matrix logging isotope impurity correction, normalization, etc.

Slots introduced in IBSpectra:

proteinGroup: A ProteinGroup object describing peptide and protein identifications grouped by shared peptides.

reporterTagNames: A character vector denoting the reporter tag labels.

reporterMasses: The 'true' m/z of the reporter tags in the MS/MS spectrum, used to isolate m/z-intensity pairs from peaklist.

isotopeImpurities: Manufacturer supplied isotope impurities, need to be set per batch and used for correction by correctIsotopeImpurities.

Constructor

See readIBSpectra for creation based on peaklist (e.g. MGF format) and identification files (Mascot and Phenyx output).

new(type, data): Creates a IBSpectra object.

type Denotes the type of IBSpectra, either 'iTRAQ4plexSpectra', 'iTRAQ8plexSpectra', 'TMT2plexSpectra', 'TMT6plexSpectra' or 'TMT10plexSpectra'. Call IBSpectraTypes() to see a list of the implemented types.

data A 'data.frame' in a ibspectra-csv format.

Coercion

In the code snippets below, x is a IBSpectra object. IBSpectra object can be coerced to

as(x, "data.frame"): Creates a data.frame containing all identification and quantitation information. Peptide matching to multiple proteins produce multiple lines.

ibSpectra.as.concise.data.frame(x): Creates a data.frame containing all identification and quantitation information. Proteins are concatenated - so the resulting data.frame has one line per spectrum.

as(x, "MSnSet"): Coerces to a MSnSet object (package MSnbase).

as(msnset, "IBSpectra"): Coerces a MSnSet to IBSpectra object.
IBSpectra-class

Accessors

In the following code snippets, `x` is a IBSpectra object.

- `proteinGroup(x)`: Gets and sets the ProteinGroup.
- `isotopeImpurities(x)`: Gets and sets the isotope impurities of the isobaric tags as defined by the manufacturers per batch.
- `reporterData(x, element="ions", na.rm=FALSE, na.rm.f='any', ...)`: Gets and sets the element ('ions' or 'mass') for each tag and spectrum. `'...'` is handed down to spectrumSel, so it is possible to select for peptides or proteins. If `na.rm` is `TRUE`, than spectra missing quantitative information in 'any' or 'all' channels (parameter `na.rm.f`) are removed.
- `reporterIntensities(x, ...)`: Convenience function, calls `reporterData(..., element="ions")`
- `reporterMasses(x, ...)`: Convenience function, calls `reporterData(..., element="mass")`
- `spectrumTitles(x, ...)`: Gets the spectrum titles. `'...'` is passed down to spectrumSel.
- `classLabels(x)`: Gets and sets the class labels in phenoData. Used for summarization, see also `estimateRatio` and `phenoData`.

Methods

In the following code snippets, `x` is a IBSpectra object.

- `subsetIBSpectra(x, protein=NULL, peptide=NULL, direction="exclude", specificity)`: Get a 'subset' of IBSpectra: include or exclude proteins or peptides. When selection is based on proteins, it can be defined to exclude only peptides which are specific to the protein ('reporter-specific'), specific to the group ('group-specific') or which are shared with other proteins ('unspecific'). See `subsetIBSpectra`.
- `spectrumSel(x, peptide, protein, specificity="reporter-specific")`: Gets a boolean vector selecting the corresponding spectra: If peptide is given, all spectra assigned to this peptide. If protein is given, all spectra assigned to peptides of this protein with specificity 'specificity'. See also `ProteinGroup`.

Author(s)

Florian P. Breitwieser

See Also

- `ProteinGroup`, `isobar-preprocessing`, `isobar-analysis`, `isobar-plots`

Examples

data(ibspiked_set1)
ibspiked_set1
head(reporterIntensities(ibspiked_set1))
head(reporterMasses(ibspiked_set1))
proteinGroup(ibspiked_set1)
isotopeImpurities(ibspiked_set1)

create new object
set.seed(123)
data <- data.frame(spectrum=letters,
IBSpectra.log

peptide = sample(c("pepA","pepB","pepC"),26,TRUE),
start.pos = 1,
modif = sample(c("::X:::","::Y:::","::Z:::"),26,TRUE),
accession = c("protein1","protein2"))
data.ions <- matrix(rnorm(26*2,1000,50),
ncol=2,dimnames=list(letters,NULL))
data.mass <- matrix(rep(c(126.1,127.1),26),
ncol=2,byrow=TRUE,dimnames=list(letters,NULL))
ib <- new("TMT2plexSpectra",data,data.ions,data.mass)
ib
reporterIntensities(ib)
isotopeImpurities(ib) <- matrix(c(0.8,0.1,0.2,0.9),nrow=2)
reporterIntensities(correctIsotopeImpurities(ib))

Description

The slot log of IBSpectra objects contains a matrix with two columns which contain a timestamp and message. Rownames relate to the item logged.
Used by correctIsotopeImpurities and normalize.

Usage

do.log(x, name, msg)
get.log(x, name)
is.logged(x, name)

Arguments

x IBSpectra object
name Name of property to be logged (translates to row name).
msg Message to be logged for name.

Details

A warning message will be displayed if a already logged property is logged again.

Value

do.log: IBSpectra object with updated log. get.log:

Author(s)

Florian P Breitwieser

See Also

IBSpectra-class
Examples

data(ibspiked_set1)
ib <- normalize(correctIsotopeImpurities(ibspiked_set1))
ib@log

Isobar util functions

Description

Utility functions. paste0 as a shorthand to paste(...,sep="") in versions of R pre 2.14.

Usage

paste0(..., sep = "")
a %inrange% b

Arguments

... Arguments to paste.
sep Separator.
a values.
b range.

Author(s)

Florian P Breitwieser

Examples

1:10

IBSpectra analysis: Protein and peptide ratio calculation

Description

Calculates the relative abundance of a peptide or protein in one tag compared to another.
Usage

estimateRatio(ibspectra, noise.model = NULL, channel1, channel2, protein, peptide, ...)
estimateRatioForPeptide(peptide, ibspectra, noise.model, channel1, channel2, combine = TRUE, ...)
estimateRatioForProtein(protein, ibspectra, noise.model, channel1, channel2, combine = TRUE, method = "isobar", specificity = REPORTERSPECIFIC, quant.w.grouppeptides = NULL, ...)

S4 method for signature 'numeric,numeric,missing'
estimateRatioNumeric(channel1,channel2,summarize.f=median, ...)

S4 method for signature 'numeric,numeric,NoiseModel'
estimateRatioNumeric(channel1,channel2,noise.model,ratiodistr=NULL,variance.function="maxi",
 sign.level=0.05,sign.level.rat=sign.level,sign.level.sample=sign.level,
 remove.outliers=TRUE,outliers.args=list(method = "isobar",fc.threshold=1.3,
 channel1.raw=NULL,channel2.raw=NULL,use.na=FALSE)

S4 method for signature
'IBSpectra,ANY,character,character,character,missing'
estimateRatio(ibspectra,noise.model,channel1,channel2,protein,peptide,...)

S4 method for signature 'IBSpectra,ANY,character,character,character,NULL'
estimateRatio(ibspectra,noise.model,channel1,channel2,protein=NULL,...)

S4 method for signature
'IBSpectra,ANY,character,character,missing,character'
estimateRatio(ibspectra,noise.model,channel1,channel2,peptide,...)
S4 method for signature 'IBSpectra,ANY,character,character,NULL,character'
estimateRatio(ibspectra,noise.model,channel1,channel2,protein=NULL,peptide,...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibspectra</td>
<td>IBSpectra object.</td>
</tr>
<tr>
<td>noise.model</td>
<td>NoiseModel object.</td>
</tr>
<tr>
<td>channel1</td>
<td>Tag channel 1. Can either be a character denoting a 'reporter name’ or a numeric vector whose value should be summarized. Ratio is calculated as channel2/channel1.</td>
</tr>
<tr>
<td>channel2</td>
<td>Tag channel 2. Can either be a character denoting a 'reporter name’ or a numeric vector whose value should be summarized. Ratio is calculated as channel2/channel1.</td>
</tr>
<tr>
<td>protein</td>
<td>Protein(s) of interest. If present, channel1 and channel2 must be reporter names. Provide either proteins or peptides.</td>
</tr>
<tr>
<td>peptide</td>
<td>Peptide(s) of interest. If present, channel1 and channel2 must be reporter names. Provide either proteins or peptides.</td>
</tr>
<tr>
<td>combine</td>
<td>If true, a single ratio is returned even for multiple peptides/spectra. If false, a data.frame with a row for each peptide/protein is returned.</td>
</tr>
<tr>
<td>specificity</td>
<td>See specificities.</td>
</tr>
<tr>
<td>quant.w.grouppeptides</td>
<td>Proteins which should be quantified with group specific peptides. Normally, only reporter specific peptides are used.</td>
</tr>
</tbody>
</table>
ratiodistr distr object of ratio distribution.

variance.function

Defines how the variance for ratio is calculated. 'ev' is the estimator variance and thus 1/\(\text{sum}(1/\text{variances})\). 'wsv' is the weighted sample variance. 'maxi' method takes the maximum of the former two variances.

sign.level Significance level.

sign.level.rat Signal p-value significance level.

sign.level.sample Sample p-value significance level.

remove.outliers Should outliers be removed?

outliers.args Arguments for outlier removal, see OUTLIERS function (TODO).

method method taken for ratio computation and selection: one of 'isobar', 'libra', 'multiq', 'pep', 'ttest' and 'compare.all'.

fc.threshold When method equals fc, takes this as fold change threshold.

summarize.f A method for summarizing spectrum ratios when no other information is available. For example median or mean.

channel1.raw When given, noise estimation is based on channel1.raw and channel2.raw. These are the intensities of the channels before normalization.

channel2.raw See channel1.raw.

use.na Use NA values to calculate ratio. Experimental feature - use with caution.

preweights Specifies weights for each spectrum. Experimental feature - use with caution.

... Passed down to estimateRatioNumeric methods.

Value

In general, a named character vector with the following elements: - lratio: log ratio - variance - n.spectra: number of spectra available in the ratio calculation - p.value.rat: Signal p-value. NA if called w/o ratiodistr - p.value.sample: Sample p-value. NA if called w/o ratiodistr - is.significant: NA if called w/o ratiodistr

If combine=FALSE, estimateRatio returns a data.frame, with columns as described above.

Author(s)

Florian P. Breitwieser, Jacques Colinge

See Also

ProteinGroup, IBSpectra, isobar-preprocessing, isobar-plots proteinRatios

Examples

data(ibspiked_set1)
data(noise.model.hcd)
cerus.human <- protein.g(proteinGroup(ibspiked_set1),"CERU_HUMAN")
cerus.rat <- protein.g(proteinGroup(ibspiked_set1),"CERU_RAT")
cerus.mouse <- protein.g(proteinGroup(ibspiked_set1),"CERU_MOUSE")
cerus.proteins <- c(cerus.human,cerus.rat,cerus.mouse)
Calculate ratio based on all spectra of peptides specific to CERU_HUMAN, CERU_RAT or CERU_MOUSE. Returns a named numeric vector.

```r
estimateRatio(ibspiked_set1, noise.model.hcd, channel1="114", channel2="115", protein=ceru.proteins)['lratio']
```

If argument 'combine=FALSE', estimateRatio returns a data.frame with one row per protein

```r
estimateRatio(ibspiked_set1, noise.model.hcd, channel1="114", channel2="115", protein=ceru.proteins,combine=FALSE)['lratio']
```

spiked material channel 115 vs 114:

- CERU_HUMAN (P00450): 1
- CERU_RAT (P13635): 2
- CERU_MOUSE (Q61147): 0.5

Loading data into IBSpectra objects using readIBSpectra

Description

Read ibspectra-csv files and peaklist files as an IBSpectra object of type 'type' (see `IBSpectra`, e.g. `iTRAQ4plexSpectra` or `TMT6plexSpectra`). If peaklist.file is missing, it is assumed that id.file contains intensity and m/z columns for the reporter tags.

Usage

```r
## S4 method for signature 'character,character'
readIBSpectra(type, id.file)
```

reads id file

```r
## S4 method for signature 'character,character,character'
readIBSpectra(
  type, id.file, peaklist.file, sep = "\t", mapping.file = NULL, mapping = c(quantification.spectrum = "hcd", identification.spectrum = "cid"), id.file.domap = NULL, identifications.format = NULL, decode.titles = FALSE, ...)
```

reads peaklist file

```r
## S4 method for signature 'character,data.frame,character'
readIBSpectra(
  type, id.file, peaklist.file, annotate.spectra.f = NULL, peaklist.format = NULL, scan.lines = 0, fragment.precision = NULL, fragment.outlier.prob = NULL, ...)
```

Arguments

- **type**
 Name of class of new IBSpectra object: `iTRAQ4plexSpectra`, `iTRAQ8plexSpectra`, `TMT2plexSpectra`, `TMT6plexSpectra`, or `TMT10plexSpectra`
id.file

Database search results file in ibspectra.csv or mzIdentML format. See identifications.format. See the vignette for information on converting Mascot dat and Phenyx pidres files into ibspectra format.

peaklist.file

Peaklist file, typically in MGF format, see peaklist.format. MGF must be centroid!

mapping.file

If defined, spectrum titles from the peaklist file are linked to the identifications via this file. This can be used when running HCD runs for quantification and CID runs for identification. See Koecher et al., 2009 for details.

mapping

Named character vector defining the names of columns in mapping.file. The names must be 'peaklist' and 'id', and the values must correspond to colnames of the mapping files.

id.file.domap

When using HCD-CID or a method akin and every spectrum is used for identification, the ID result files of the HCD run can be specified in id.file.domap. Then, the results are merged after mapping the identification results.

annotate.spectra.f

Function which changes or annotates the spectra feature data before it is written to IBspectra object. This can be used to calculate and threshold additional scores, for example localization scores of post-translational modifications such as Delta Score (filterSpectraDeltaScore) or PhosphoRS site localization probabilities (annotateSpectraPhosphoRS).

peaklist.format

"mgf" (Mascot Generic format) or "mcn" (iTracker Machine Readable output). When NULL, it detects the format on file name extension.

identifications.format

"ibspectra.csv" or "mzid" (PSI MzIdentML format). When NULL, file format is guessed based on extension.

fragment.precision

Fragment precision for extraction of reporter tags: for each tag and spectrum the m/z-intensity pair with it’s mass closest to the known reporter tag mass is extracted within the window true_mass +/- fragment.precision/2.

fragment.outlier.prob

Fragment outlier probability filter: After all m/z-intensity pairs have been extracted, those pairs with the fragment.outlier.prob/2 most unprecise m/z values are filtered out.

decode.titles

Boolean. Decode spectrum titles in identification file using URLdecode. When extracting the DAT file from Mascot web interface, the spectrum titles are encoded - %20 instead of space, etc. Set decode.titles to TRUE to map these titles to the unescaped MGF titles.

scan.lines

Read files sequentially scan.lines lines at a time. Can help in case of memory issues, set to 10000 or higher, for example.

sep

sep argument of read.table

... Further arguments handed down to initialize.

Author(s)

Florian P. Breitwieser, Jacques Colinge

See Also

ProteinGroup, IBspectra, isobar-preprocessing, isobar-analysis, isobar-plots
Examples

data(ibspiked_set1)

get identifier for Ceruplasmin proteins
ceru.acs <- protein.g(proteinGroup(ibspiked_set1),"CERU")
create a smaller ibspectra w/ only Ceruplasmins
ib.ceru <- subsetIBSpectra(ibspiked_set1,protein=ceru.acs,direction="include")

write it to a file
tf <- tempfile("isobar")
write.table(as.data.frame(ib.ceru),sep="\t",file=tf,quote=FALSE)

read it again into an IBSpectra object
ib.ceru2 <- readIBSpectra("iTRAQ4plexSpectra",tf,identifications.format="ibspectra")
ib.ceru2

unlink(tf)

isobar-plots IBSpectra plots

Description

Various plots are implement to assure data quality, and accompany preprocessing and analysis.

reporterMassPrecision

reporterMassPrecision(x): Calculates and displays the deviation from the 'true' tag mass - as specified in the IBSpectra object - of each channel.

reporterIntensityPlot

reporterIntensityPlot(x): Displays boxplots of intensity of channels before and after normalization - useful to check the result of normalization.

raplot

raplot(x,...): Ratio-Absolute intensity plot - will be deprecated by maplot
 x IBSpectra object
 ... Parameters to plot function.

plotRatio

plotRatio(x,channel1,channel2,protein,...): Plots abundances of one protein
 x IBSpectra object
 channel1
 channel2
 protein
 ... Parameters to plot function.
maplot

maplot(x, channel1, channel2, ...): Creates a ratio-versus-intensity plot.
 x IBSpectra object.

maplot2

maplot2():

Author(s)
Florian P. Breitwieser, Jacques Colinge

See Also
IBSpectra, isobar-preprocessing isobar-analysis

Examples

data(ibspiked_set1)
maplot(ibspiked_set1, main="IBSpiked, not normalized")
maplot(normalize(ibspiked_set1), main="IBSpiked, normalized")

Description

Preprocessing is a necessary step prior to analysis of data. In a sequential order, it is often necessary to correct isotope impurities, to normalize, and subtract additive noise.

Isotope impurity correction

correctIsotopeImpurities(x): Returns impurity corrected IBSpectra object by solving a linear system of equations. See also isotopeImpurities.

Normalization

normalize(x, f=median, target="intensity", exclude.protein=NULL, use.protein=NULL, f.doapply=TRUE, log=TRUE, channels=NULL, na.rm=FALSE)

Normalizes the intensities for multiplicative errors. Those changes are most likely produced by pipetting errors, and different hybridization efficiencies, but can also be due to biological reasons. By default, tag intensities are multiplied by a factor so that the median intensity is equal across tags.

f: f is applied to each column, unless f.doapply is FALSE. Then f is supposed to compute column-wise statistics of the matrix of intensities. E.g. colSums and colMeans.

target: One of "intensity" and "ratio".
exclude.proteins Spectra of peptides which might come from these proteins are excluded. Use for example for contaminants and proteins depleted in the experiment.
use.protein: If specified, only spectra coming from this protein are used. Use when a protein is spiked-in as normalization control.
f.isglobal: If true, f is applied on each column. If false, f is supposed to compute column-wise statistics of the matrix of intensities. E.g. colSums and colMeans.

log: Used when target=ratio.

Substract additive noise

subtractAdditiveNoise(x, method="quantile", shared=TRUE, prob=0.01): method 'quantile' method is supported for now. It take’s the prob (0.01) quantile to estimate the noise level. This value is subtracted from all intensities, and all remaining intensities have to be at least that value.

prob See 'method'.

shared If channels are assumed similar in intensity and hence a shared noise level is reasonable. If not, then one level per channel is necessary.

Exclusion of proteins

exclude(x, proteins.to.exclude): Removes spectra which are assigned to proteins in protein.to.exclude from the object. This can be useful to remove contaminants. It create a new grouping based on the data which is left.

proteins.to.exclude Proteins to exclude.

Author(s)

Florian P. Breitwieser, Jacques Colinge

See Also

ProteinGroup, IBSpectra, isobar-analysis, isobar-plots

Examples

data(ibspiked_set1)
maplot(ibspiked_set1, main="IBSpiked, not normalized")
maplot(normalize(ibspiked_set1), main="IBSpiked, normalized")

Description

Generation of LaTeX and XLS reports is helped with functions which facilitate the gathering of relevant information and creation of tikz plots. create.reports parses properties (by calling load.properties) and initialize environments and computations (by calling initialize.env) required by the reports, calls Sweave and pdflatex.
isobar-reports

Usage

create.reports(properties.file = "properties.R",
global.properties.file = system.file("report","properties.R", package = "isobar"),
args = NULL, ...,
recreate.properties.env = TRUE, recreate.report.env = TRUE)

load.properties(properties.file = "properties.R",
global.properties.file = system.file("report","properties.R",package="isobar"),
args = NULL, ...)

initialize.env(env, properties.env)

Arguments

properties.file
File which holds the parameters for data analysis and report generation. It is
parsed as R code after the global report configuration file global.properties.file
and defines peaklists, identification files, significance levels, etc. See the global
properties file for the available options and values.

global.properties.file
system.file("report","properties.R",package="isobar")

args
Additional (command line) arguments which overrids those in properties.file.
...
Additional properties.

recreate.properties.env
Whether a properties.env existing in the global environment should be used, or
it should be recreated.

recreate.report.env
Whether a report.env existing in the global environment should be used, or it
should be recreated.

env
Item to be initialized.

properties.env
Environment into which properties are read.

Details

The directory inst in the isobar installation directory system.file("inst",package="isobar")
contains R, Sweave, and LaTeX files as examples of how to create XLS and PDF reports using
isobar.

create_reports.R Call with Rscript. It is the main file which
1. parses command line options. --compile and --zip are parsed directly and given as
arguments to create.reports. Other arguments are given load.properties.
2. calls a perl script to generate a XLS report
3. generates a LaTeX quality control and analysis report
for the XLS report the script pl/tab2xls.pl is used, which concatenates CSV files to a XLS. See
All files are written the working directory.

isobar-qc.Rnw Quality control Sweave file.
isobar-analysis.Rnw Data analysis Sweave file.
properties.R Default configuration for data analysis.
report-utils.tex LaTeX functions for plotting tikz graphics, etc.
isobar.data

Author(s)
Florian P Breitwieser

See Also
IBSpectra, isobar-preprocessing isobar-analysis

isobar.data Isobar Data packages

Description
ibspiked_set1 and ibspiked_set2 are objects of class iTRAQ4plexSpectra. It contains over 160 protein groups, over 1600 peptides from about 15,000 spectra each, mainly from background proteins and three spiked-in Ceruplasmins (CERU_HUMAN, CERU_MOUSE, CERU_RAT).

Usage
data(ibspiked_set1)
data(ibspiked_set2)
data(ib_phospho)

Format
iTRAQ4plexSpectra objects.

Source
isobar publication. Acquired on Orbitrap instrument w/ 20 offline-fractions and HCD fragmentation.

Examples
data(ibspiked_set1)
print(ibspiked_set1)

maplot.protein Ratio intensity plot for individual proteins

Description
Plots ratio-versus-intensity for a selected protein against a reference channel.

Usage
maplot.protein(x, relative.to, protein, noise.model = NULL, channels = NULL, xlim = NULL, ylim = NULL, identify = FALSE, add = FALSE, pchs = NULL, log="xy", legend.pos = "topright", names = NULL, legend.cex = 0.8, cols = pchs, lty.s = 1, main = protein, xlab = NULL, ylab = NULL, type="ma", show.lm = FALSE, ...)
Arguments

- `x`: IBSpectra object
- `relative.to`: a character vector specifying reporter tag names. Either of length 1 or same length as channels.
- `protein`: Protein group identifier.
- `noise.model`: NoiseModel object.
- `channels`: Reporter tag names.
- `xlim`: See par.
- `ylim`: See par.
- `identify`: boolean. If true, `identify` is called with peptide labels.
- `add`: a vector of the same length as `channels`. See pch in `plot.default`.
- `log`: a character string which contains `x` if the x axis is to be logarithmic, `y` if the y axis is to be logarithmic and `xy` or `yx` if both axes are to be logarithmic.
- `legend.pos`: see pos in `legend`.
- `names`: a character string of the same length as `channels`, legend text.
- `legend.cex`: see cex in `legend`.
- `cols`: a vector of the same length as `channels`. See col in `plot.default`.
- `lty`: a vector of the same length as `channels`. See lty in `plot.default`.
- `main`: a main title for the plot
- `xlab`: a label for the x axis, defaults to a description of x.
- `ylab`: a label for the y axis, defaults to a description of y.
- `type`: type of plot
- `...`: passed to `plot`.
- `show.lm`: show LM

Author(s)

Florian P. Breitwieser

NoiseModel-class

NoiseModel objects

Description

A NoiseModel represent the technical variation which is dependent on signal intensity.
NoiseModel-class

Constructor

```
new(type, ibspectra, reporterTagNames=NULL, one.to.one=TRUE, min.spectra=10, plot=FALSE, pool=FALSE):
```

Creates a new NoiseModel object based on ibspectra object.

- **type**: A non-virtual class deriving from NoiseModel: ExponentialNoiseModel, ExponentialNoANoiseModel, InverseNoiseModel, InverseNoANoiseModel
- **reporterTagNames**: When NULL, all channels from ibspectra are taken (i.e. sampleNames(ibspectra)). Otherwise, specify subset of names, or a matrix which defines the desired combination of channels (nrow=2).
- **one.to.one**: Set to false to learn noise model one a non one-to-one dataset
- **min.spectra**: When one.to.one=FALSE, only take proteins with min.spectra to learn noise model.
- **plot**: Set to true to plot data the noise model is learnt on.
- **pool**: If false, a NoiseModel is estimated on each combination of channels individually, and then the parameters are averaged. If true, the ratios of all channels are pooled and then a NoiseModel is estimated.

Accessor methods

- **noiseFunction**: Gets the noise function.
- **parameter**: Gets and sets the parameters for the noise function.
- **variance**: Gets the variance for data points based on the noise function and parameters.
- **stddev**: Convenience function, sqrt(variance(...)).
- **lowIntensity**: Gets and sets the low intensity slot, denoting the noise region.
- **naRegion**: Gets and sets the na.region slot.

Examples

```
data(ibspiked_set1)

ceru.proteins <- protein.g(proteinGroup(ibspiked_set1),"CERU")

# normalize
ibspiked_set1 <- normalize(correctIsotopeImpurities(ibspiked_set1))

# remove spiked proteins
ibspiked_set1.noceru <- exclude(ibspiked_set1,ceru.proteins)
ibspiked_set1.justceru <- subsetIBSpectra(ibspiked_set1,protein=ceru.proteins,direction="include")

# learn noise models
nm.i <- new("InverseNoiseModel",ibspiked_set1.noceru)
nm.e <- new("ExponentialNoiseModel",ibspiked_set1.noceru)

# learn on non-one.to.one data: not normalized, with spiked proteins
nm.n <- new("ExponentialNoiseModel",ibspiked_set1.justceru,one.to.one=FALSE)

maplot(ibspiked_set1,noise.model=c(nm.e,nm.i,nm.n),ylim=c(0.1,10))
```
number.ranges
Helper function to transform number lists to ranges

Description

1,2,3,4,5,8,9,10 -> 1-5,8-10

Usage

```r
number.ranges(numbers)
```

Arguments

- `numbers` numeric

Value

character

Author(s)

Florian P Breitwieser

Examples

```r
number.ranges(c(1,2,3,9,3,10,8,11))
```

observedKnownSites

Observed modification sites.

Description

Functions to display the modification sites observed for each protein isoform and count the number of modified residues per protein.

Usage

```r
observedKnownSites(protein.group, protein.g, ptm.info, modif, modification.name = NULL)
modif.site.count(protein.group, protein.g = reporterProteins(protein.group), modif, take = max)
modif.sites(protein.group, protein.g = reporterProteins(protein.group), modif)
```
peptide.count

Arguments

- **protein.group**: ProteinGroup object.
- **protein.g**: protein group identifier.
- **ptm.info**: ptm information data.frame, see ?getPtInfo.
- **modif**: Modification to track, e.g. 'PHOS'.
- **modification.name**: Value to filter 'modification.name' column in ptm.info.
- **take**: Should be either max or min: When multiple isoforms are present, which value should be taken for the count?

Author(s)

Florian P. Breitwieser

Examples

data(ib_phospho)
data(ptm.info)

Modification sites of reporter proteins:
a list of protein groups,
containing sub-lists of identified sites for each isoform
protein.modif.sites <- sort(modif.site.count(proteinGroup(ib_phospho),modif="PHOS"))

Details on modification sites of proteins
detected with most modifications
modif.sites(proteinGroup(ib_phospho),modif="PHOS",protein.g=names(tail(protein.modif.sites)))

How many sites are known, and how many known sites have been observed?
observedKnownSites(proteinGroup(ib_phospho),modif="PHOS",protein.g=names(tail(protein.modif.sites)),ptm.info=ptm.info)

peptide.count

Peptide counts, spectral counts and sequence coverage for Protein-Group objects.

Description

Report the peptide count, spectral count and sequence coverage for supplied proteins.

Usage

peptide.count(protein.group, protein.g = reporterProteins(protein.group),
 specificity = c("reporter-specific", "group-specific", "unspecific"), ...)

spectra.count(protein.group, protein.g = reporterProteins(protein.group),
 specificity = c("reporter-specific", "group-specific", "unspecific"),
 modif = NULL, ...)

sequence.coverage(protein.group, protein.g = reporterProteins(protein.group),
 specificity = c("reporter-specific", "group-specific", "unspecific"),
 simplify = TRUE, ...)
Protein and peptide ratio calculation and summarization

Arguments

- **protein.group**: ProteinGroup object.
- **protein.g**: Protein group identifier.
- **specificity**: Specificity of peptides.
- **modif**: Only count peptides having a certain modification.
- **simplify**: If simplify=TRUE, a named numeric vector is returned, with the mean sequence coverage of the ACs of each protein.g supplied. Else, a list with the length of protein.g is returned having the sequence coverage for each protein AC.

Further arguments to **peptides**

Author(s)

Florian P Breitwieser

See Also

- calculate.emPAI
- calculate.dNSAF
- ProteinGroup

Examples

```r
data(ibspiked_set1)
sc <- spectra.count(proteinGroup(ibspiked_set1))
pc <- peptide.count(proteinGroup(ibspiked_set1))
plot(jitter(sc), jitter(pc), log="xy")
```

Protein and peptide ratio calculation and summarization

Calculating and Summarizing Protein and Peptide Ratios

Description

A set of functions to create ratios within groups and summarize them. proteinRatios serves as hub and calls combn.matrix, combn.protein.tbl and summarize.ratios successively. It can be used to calculate intra-class and inter-class ratios, to assess ratios and variability within and over cases.

Usage

```r
proteinRatios(ibspectra, noise.model, reporterTagNames = NULL,
proteins = reporterProteins(proteinGroup(ibspectra)),
peptide = NULL, cl = classLabels(ibspectra),
combn.method = "global", combn.vs = NULL,
symmetry = FALSE, summarize =
FALSE, summarize.method = "mult.pval", min.detect =
NULL, strict.sample.pval = TRUE, strict.ratio.pval =
TRUE, orient.div = 0, sign.level = 0.05,
sign.level.rat = sign.level, sign.level.sample =
sign.level, ratiodistr = NULL, zscore.threshold =
NULL, variance.function = "maxi", combine = FALSE,
p.adjust = NULL, reverse = FALSE, cmbn = NULL,
```
Protein and peptide ratio calculation and summarization

before.summarize.f = NULL, ...)

peptideRatiosNotQuant(ibspectra, ..., peptide = unique(fData(ibspectra)[![Data(ibspectra)["use.f",
peptideRatios(ibspectra, ..., peptide = peptides(proteinGroup(ibspectra), columns = c("peptide", '

combn.matrix(x, method = "global", cl = NULL, vs = NULL)

combn.protein.tbl(cmbn, reverse = FALSE, ...)

summarize.ratios(ratios, by.column = "ac", summarize.method = "mult.pval",
 min.detect = NULL, n.combination = NULL,
 strict.sample.pval = TRUE, strict.ratio.pval = TRUE,
 orient.div = 0, sign.level = 0.05, sign.level.rat =
 sign.level, sign.level.sample = sign.level,
 variance.function = "maxi", ratiodistr = NULL)

Arguments

ibspectra IBSpectra object
x for combn.matrix: reporter names. See reporterTagNames. argument of pro-
 teinRatios.
ratios result of combn.protein.tbl
by.column Column(s) which are the identifiers. Usually 'ac', 'peptide' or c('peptide','modif')
cmbn result of combn.matrix
before.summarize.f Function which is called after calculating ratios before summarizing them.
noise.model NoiseModel for spectra variances
reporterTagNames Reporter tags to use. By default all reporterTagNames of ibspectra object.
proteins proteins for which ratios are calculated - defaults to all proteins with peptides
 specific to them.
peptide peptides for which ratios are calculated.
cl Class labels. See also ?classLabels.
vs Class label or reporter tag name. When combn.method is "versus.class", all
 combinations against class vs are computed, when combn.method is "versus.channel",
 all combinations against channel vs.
combn.method ",global", "interclass", "intra-class", "versus.class" or "versus.channel". Defines
 which ratios are computed, based on class labels cl
method See combn.method
combn.vs vs argument for combn, if combn.method is "versus.class" or "versus.channel".
symmetry If true, reports also the inverse ratio
summarize If true, ratios for each protein are summarized.
summarize.method

"isobar", for now.
min.detect How many times must a ratio for a protein be present when summarizing? When
 NULL, defaults to the maximum number of combinations.
Protein and peptide ratio calculation and summarization

strict.sample.pval
If true, missing ratios are penalized by giving them a sample.pval of 0.5.

strict.ratio.pval
If true, take all ratios into account. If false, only take ratios into account which are in the same direction as the majority of ratios.

orient.div
Number of ratios which might go in the wrong direction.

sign.level
Significance level

sign.level.rat
Significance level on ratio p-value

sign.level.sample
Significance level on sample p-value

ratiodistr
Protein ratio distribution

variance.function
Variance function

zscore.threshold
z-score threshold to apply

... Passed to estimateRatio()

combine
If true, a single ratio for all proteins and peptides, resp., is calculated. See estimateRatio.

p.adjust
Set to one of p.adjust.methods to adjust ratio p-values for multiple comparisons. See p.adjust.

reverse
reverse

n.combination
number of combinations possible

Value
'data.frame': 11 variables:

lratio
log ratio

variance
variance

n.spectra
Number of spectra used for quantification

p.value.rat
Signal p-value (NA if ratiodistr is missing)

p.value.sample
Sample p-value (NA if ratiodistr is missing)

is.significant
Is the ratio significant? (NA if ratiodistr is missing)

protein
Protein quantified

r1
r1

r2
r2

Author(s)
Florian P Breitwieser, Jacques Colinge

See Also
IBSpectra, isobar-preprocessing isobar-analysis
ProteinGroup-class

Examples

```r
combn.matrix(114:117, method="interclass", cl=as.character(c(1,1,2,2)))
combn.matrix(114:117, method="interclass", cl=as.character(c(1,1,2,2)))
combn.matrix(114:117, method="global")
```

data(ibsiked_set1)
data(noise.model.hcd)
ceru.proteins <- c("P13635","Q61147")
proteinRatios(ibsiked_set1, noise.model=noise.model.hcd, proteins=ceru.proteins, cl=c("T","T","C","C"), combn.method="interclass", summarize=TRUE)
```

ProteinGroup-class        ProteinGroup objects

Description

The ProteinGroup class is a container for identified peptides and proteins, and groups them to distinguish proteins with specific peptides.

Usage

```r
ProteinGroup(from, template=NULL, proteinInfo=data.frame())
protein.ac(x, protein.g)
protein.g(x, pattern, variables=c("AC","name"), ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>from</code></td>
<td>data.frame object to create a ProteinGroup from. See Details from column specifications</td>
</tr>
<tr>
<td><code>template</code></td>
<td>'template’ ProteinGroup object for grouping.</td>
</tr>
<tr>
<td><code>x</code></td>
<td>ProteinGroup object</td>
</tr>
<tr>
<td><code>protein</code></td>
<td>character string</td>
</tr>
<tr>
<td><code>proteinInfo</code></td>
<td>data.frame for proteinInfo slot</td>
</tr>
<tr>
<td><code>protein.g</code></td>
<td>character string, denoting a 'protein group'.</td>
</tr>
<tr>
<td><code>pattern</code></td>
<td>character string, see <code>grep</code> for details.</td>
</tr>
<tr>
<td><code>variables</code></td>
<td>AC maps a protein accession code to a protein group. name maps using protein information from proteinInfo.</td>
</tr>
<tr>
<td><code>...</code></td>
<td>Passed on to <code>grep</code>.</td>
</tr>
</tbody>
</table>

Details

The ProteinGroup class stores spectrum to peptide to protein mapping.

The proteins are grouped by their evidence, i.e. peptides:

- Peptides with changes only from Leucin to Isoleucin are considered the same, as they cannot be distinguished by MS.
ProteinGroup-class

- Proteins which are detected with the same peptides are grouped together to a 'indistinguishable protein'- normally these are splice variants.
- Proteins with specific peptides are 'reporters'.
- Proteins with no specific peptides are grouped under these 'reporters'.

This information is stored in six slots:

- `spectra.n.peptides` a named 'character' vector, names being spectrum identifier and values are peptides.
- `peptide.n.proteins` a 'data.frame' containing the number of proteins the peptides could derive from.
- `peptide.n.protein` a character 'matrix' linking peptides to proteins.
- `indistinguishable.proteins` a 'matrix' contain.

Constructor

`ProteinGroup(tbl.prot.pep,template=NULL)`: Creates a ProteinGroup object.

- `template` Optional ProteinGroup object the grouping is based upon.

Coercion

In the code snippets below, x is a ProteinGroup object.

- `as(from, "ProteinGroup")`: Creates a ProteinGroup object from a data.frame.
- `as.data.frame(x, row.names = NULL, optional = FALSE)`: Creates a data.frame with columns protein (character), peptide (character), spectrum.
- `as.concise.data.frame(from)`: Creates a 'concise' data.frame with one spectrum per row, and protein ACs combined

Accessors

In the following code snippets, x is a ProteinGroup object.

- `spectrumToPeptide(x)`: Gets spectrum to peptide assignment.
- `peptideInfo(x)`: Peptide information such as protein start position.
- `peptideSpecificity(x)`: Gets a 'data.frame' containing the peptide specificity: they can be reporter-specific, group-specific, or non-specific.
- `peptideNProtein(x)`: Gets peptide to protein assignment.
- `indistinguishableProteins(x)`: Gets the proteins which cannot be distinguished based on peptide evidence.
- `proteinGroupTable`: Gets the protein grouping, listing reporters and group members.
- `peptides(x,protein=NULL,specificity=c("reporter-specific", "group-specific","unspecific"),columns="peptide",set=union)`: Gets all peptides detected, or just those for a protein with the defined specificity. columns might define multiple columns of peptideSpecificity(x). set=union returns the union of peptides of all proteins defined, set=intersect returns the intersection.

Author(s)

Florian P. Breitwieser
**proteinInfo-methods**

**Description**

proteinInfo slot in Proteingroup objects contains information about proteins. `proteinInfo` method allows to get and set it.

getProteinInfoFromUniprot downloads information of contained proteins from Uniprot, `getProteinInfoFromBiomart` from Biomart.

**Usage**

```r
S4 method for signature 'ProteinGroup'
proteinInfo(x)

S4 method for signature 'ProteinGroup,character,missing'
proteinInfo(x, protein.g, select="name", collapse=" ",
 simplify = TRUE, do.warn = TRUE)

S4 method for signature 'ProteinGroup,missing,character'
proteinInfo(x, protein.ac, select="name", collapse=" ",
 simplify = TRUE, do.warn = TRUE)

proteinInfoIsOnSpliceVariants(protein.info)
```

```r
getProteinInfoFromUniprot(x, splice.by = 200, fields = c(accession = "id", name
```
getProteinInfoFromTheInternet(x)
getProteinInfoFromNextProt(x)
getProteinInfoFromBiomart(x, database = "Uniprot")
getProteinInfoFromBioDb(x, ..., con = NULL)
getProteinInfoFromEntrez(x, splice.by = 200)

Arguments

- **x**
  - ProteinGroup object

- **protein.g**
  - Protein group identifier. If supplied, only information for these proteins is returned.

- **protein.ac**
  - Protein ACs. If supplied, only information for these proteins is returned.

- **select**
  - indicating columns to select. See Details.

- **collapse**
  - passed to `paste` to concatenate information of multiple proteins in one protein group.

- **simplify**
  - If true, a vector or matrix is returned, with the pasted protein information. If false, a list is returned.

- **do.warn**
  - If true, report diagnostic warning messages.

- **splice.by**
  - Chunk size for query of Uniprot database.

- **database**
  - database from which the ACs stem from. Only Uniprot is supported for now.

- **con**
  - database connection

- **fields**
  - mapping of CSV field names to proteinInfo field names

- **...**
  - arguments to build database connection.

- **protein.info**
  - protein info data.frame

Details

proteinInfo contains columns `accession`, `name`, `gene_name`, `protein_name`, and possibly `length` and `sequence`. accession is mapped with the entry AC is mapped to the entry AC in the database. getProteinInfoFromUniprot is the preferred method to get the information. getProteinInfoFromBioDb is an example how to implement the query on a local database. Depending on the database, protein information might be available on protein ACs or also on the specific splice variants. This can be queried with the `proteinInfoIsOnSpliceVariants` function.

See Also

- `protein.g`
proteinNameAndDescription

Examples

data(ibspiked_set1)
pg <- proteinGroup(ibspiked_set1)

## Not run:
  proteinInfo(pg) <- getProteinInfoFromUniprot(pg)
  proteinInfo(pg) <- getProteinInfoFromBiomart(pg)

## End(Not run)

proteinInfo(pg.protein.g="P13635")
protein.g(pg,"CERU")

proteinNameAndDescription

Get protein gene names and description from protein info of protein group.

Description

Convenience functions to retrieve protein gene names and description for a list of protein group identifiers.

Usage

proteinNameAndDescription(protein.group, protein.g = reporterProteins(protein.group), collapse = FALSE)
proteinGeneName(protein.group, protein.g = reporterProteins(protein.group))
proteinDescription(protein.group, protein.g = reporterProteins(protein.group))
proteinID(protein.group, protein.g = reporterProteins(protein.group))

Arguments

  protein.group  ProteinGroup object.
  protein.g      protein group identifier.
  collapse       If TRUE, the information for all protein.g is combined.

Author(s)

  Florian P Breitwieser

Examples

data(ibspiked_set1)
pg <- proteinGroup(ibspiked_set1)
protein.gs <- protein.g(pg,"CERU")
protein.gs
proteinNameAndDescription(pg,protein.gs)
proteinNameAndDescription(pg,protein.gs,collapse=TRUE)
proteinGeneName(pg,protein.gs)
proteinDescription(pg,protein.gs)
proteinID(pg,protein.gs)
**ratiosReshapeWide**  
*Reshape output of proteinRatios into wide format*

**Description**

Reshape output of proteinRatios into wide format

**Usage**

```r
ratiosReshapeWide(quant.tbl, vs.class = NULL, sep = ".", cmbn = NULL,
short.names = FALSE)
```

**Arguments**

- `quant.tbl`: Output of proteinRatios or peptideRatios.
- `vs.class`: Only return ratios where class1 is vs.class.
- `sep`: Separator for column names in the reshape.
- `cmbn`: Not functional.
- `short.names`: If vs.class is set and short.names=TRUE, then the comparison name will be i.e.
  `class2` instead of `class2/class1`.

**Author(s)**

Florian P. Breitwieser

---

**reporter.protein-methods**

*Get reporter protein group identifier for protein group identifier*

**Description**

Methods for function `reporter.protein` in package `isobar`

**Methods**

```r
signature(x = "ProteinGroup", protein.g = "character") Get reporter protein for protein group identifier.
```
**sanitize**

*Helper function for LaTeX export*

**Description**
Sanitizes strings for LaTeX

**Usage**
```r
sanitize(str, dash = TRUE)
```

**Arguments**
- `str`: character string to be escaped
- `dash`: should a dash (`-`) should be escaped to a `\nobreakdash-`?

**Value**
escaped character

**Author(s)**
iQuantitator, Florian P Breitwieser

**Examples**
```r
sanitize("\textbf{123-123}")
```

---

**shared.ratios**

*Shared ratio calculation*

**Description**
Calculate ratios of reporter proteins and subset proteins with shared peptides.

**Usage**
```r
shared.ratios(ibspectra, noise.model, channel1, channel2, protein = reporterProteins(proteinGroup(ibspectra)), ...)
```

**Arguments**
- `ibspectra`: IBspectra object.
- `noise.model`: NoiseModel object.
- `channel1`: `channel1` to compare.
- `channel2`: `channel2` to compare.
- `protein`: proteins for which the calculation should be made.
- `...`: Additional arguments passed to `estimateRatio`.
specificities

Value
data.frame

Author(s)
Florian P. Breitwieser

See Also
shared.ratios.sign

shared.ratios.sign  Plot and get significantly shared ratios.

Description
Plot and get significantly shared ratios.

Usage
shared.ratios.sign(ress, z.shared, min.spectra = 1, plot = TRUE)

Arguments
ress  Result of shared.ratios.
z.shared  z.
min.spectra  Minimal number of spectra needed.
plot  plot.

Author(s)
Florian P. Breitwieser

See Also
shared.ratios.

specificities  Peptide specificities

Description
Peptides can appear in multiple proteins and therefore have different specificities.

Details
reporter specific: peptides specific to reporter. group specific: peptides specific to the group. un-specific: peptides shared with other proteins.
spectra.count2

Spectral count for peptides and proteins in ProteinGroup objects.

Description

Spectral count for peptides and proteins in ProteinGroup objects. It can - other than `spectra.count` - quantify the spectra count on the level of peptides, potentially modified, too,

Usage

```r
spectra.count2(ibspectra, value = reporterProteins(protein.group),
 type = "protein.g", specificity = c("reporter-specific", "group-specific", "unspecific"),
 modif = NULL, combine = FALSE, subset = NULL, require.quant = NULL, ...)
```

Arguments

- `ibspectra`: IBSpectra object.
- `value`: List of protein group identifiers or peptides.
- `type`: Either 'protein.g' or 'peptide'.
- `specificity`: Specificity of peptides.
- `modif`: Only count peptides having a certain modification.
- `combine`: If TRUE, only one combined result is returned.
- `subset`: Allows to specify an expression to subset `link{featureData}` of the ibspectra.
- `require.quant`: If not NULL, it may be 'any' or 'all' to only consider spectra with quantitative information in at least one or all channels.
- `...`: Further arguments to `peptides`

Author(s)

Florian P Breitwieser

See Also

- `spectra.count`, `ProteinGroup`

Examples

```r
data(ibspiked_set1)
pg <- proteinGroup(ibspiked_set1)
protein.gs <- protein.g(pg,"CERU")
sc <- spectra.count2(ibspiked_set1,protein.gs)
sc.ik <- spectra.count2(ibspiked_set1,protein.gs,modif="iTRAQ4plex_K")
rbind(spectra.counts=sc,spectra.counts_iTRAQk=sc.ik)
```
subsetIBSpectra  Subset IBSpectra objects

Description

Returns an IBSpectra object which is a subset of the input, excluding or exclusively containing the peptides or proteins supplied.

Usage

subsetIBSpectra(x, protein = NULL, peptide = NULL, direction = "exclude", specificity = c(REPORTERSPECIFIC, GROUPSPECIFIC, UNSPECIFIC), ...)

Arguments

x  
IBSpectra object.

protein  
Protein group identifiers. Use protein.g to get protein group identifiers from protein database ACs.

peptide  
Peptide sequences.

direction  
either 'include' or 'exclude'.

specificity  
When 'protein' is supplied: Which peptides should be selected? See specificities.

...  
Further arguments passed to spectrumSel

Author(s)

Florian P Breitwieser

See Also

protein.g, spectrumSel, specificities

Examples

data(ibspiked_set1)

# get Keratin proteins
keratin.proteins <- protein.g(proteinGroup(ibspiked_set1),"Keratin")

# exclude Keratin proteins
subsetIBSpectra(ibspiked_set1,protein=keratin.proteins,direction="exclude")
**Tlsd-class**

**Description**

Location scale family T distribution, based on the original T function.

**Objects from the Class**

Objects can be created by calls of the form `new("Tlsd", df, location, scale)`.

**Slots**

- `gaps`: Object of class "OptionalMatrix"
- `img`: Object of class "rSpace"
- `param`: Object of class "OptionalParameter"
- `r`: Object of class "function"
- `d`: Object of class "OptionalFunction"
- `p`: Object of class "OptionalFunction"
- `q`: Object of class "OptionalFunction"
- `.withSim`: Object of class "logical"
- `.withArith`: Object of class "logical"
- `.logExact`: Object of class "logical"
- `.lowerExact`: Object of class "logical"

**Symmetry**: Object of class "DistributionSymmetry"

**Extends**


**Methods**

No methods defined with class "Tlsd" in the signature.

**Author(s)**

Florian P. Breitwieser, based on original T distribution class.

**Examples**

`showClass("Tlsd")`
Description

The parameter of a location scale t distribution, used by Tlsd-class

Objects from the Class

Objects can be created by calls of the form new("TlsParameter", ...). Usually an object of this class is not needed on its own, it is generated automatically when an object of the class Tlsd is instantiated.

Slots

df: Object of class "numeric" ~
location: Object of class "numeric" ~
scale: Object of class "numeric" ~
name: Object of class "character" ~

Extends


Methods

No methods defined with class "TlsParameter" in the signature.

Author(s)

Florian P. Breitwieser, based on original TParameter class.

See Also

Tlsd

Examples

showClass("TlsParameter")
writeHscoreData  Write identifications into a format suitable for Hscore.

Description
Write identifications into a format suitable for Hscore.

Usage
writeHscoreData(outfile, ids, massfile = "defs.txt")

Arguments
outfile  Output file.
ids  IBSpectra identifications data.frame (ie fData).
massfile  Definition file for Hscore.

Author(s)
Florian P. Breitwieser

writeIBSpectra  Write IBSpectra file as CSV in a format readable by readIBSpectra.

Description
Write IBSpectra file using write.table with defaults in a format readable by readIBSpectra.

Usage
writeIBSpectra(ibspectra, file, sep = "\t", row.names = FALSE, ...)

Arguments
ibspectra  IBSpectra object
file  file name.
sep  field separator string.
row.names  indicates whether row.names should be written.
...  further arguments to write.table

Author(s)
Florian P Breitwieser
Index

*Topic `\textasciitilde` other possible keyword(s)
  reporter.protein-methods, 42
*Topic `\textasciitildeNSAF`
calculate.dNSAF, 6
*Topic `\textasciitildeemPAI`
calculate.emPAI, 7
*Topic `\textasciitildephospho`
getPhosphoRSProbabilities, 11
*Topic `\textasciitilde`
class:IBSpectra (IBSpectra-class), 16
class:NoiseModel (NoiseModel-class), 30
class:ProteinGroup (ProteinGroup-class), 37
classLabels (IBSpectra-class), 16
classLabels (IBSpectra-method (IBSpectra-class), 16
classLabels<-(IBSpectra-class), 16
correctIsotopeImpurities,IBSpectra-method (IBSpectra-class), 16
correctIsotopeImpurities<-(IBSpectra-class), 16
connect.nodes (isobar-reports), 27
correct.prec.isotope.ratios, 8
correctIsotopeImpurities, 17, 19
correctIsotopeImpurities (isobar-preprocessing), 26
correctIsotopeImpurities,IBSpectra-method (isobar-preprocessing), 26
create.meta.reports (isobar-reports), 27

calccumulativeProbXGreaterThanY (distr-methods), 9
calcPeptidePosition, 5
calcProbXDiffNormals (distr-methods), 9
calcProbXGreaterThanY (distr-methods), 9
calculate-pvalues, 5
calculate.dNSAF, 6, 8, 34
calculate.emPAI, 7, 34
calculate.mult.sample.pvalue (calculate-pvalues), 5
calculate.ratio.pvalue (calculate-pvalues), 5
calculate.sample.pvalue (calculate-pvalues), 5
Cauchy, 10
class:IBSpectra (IBSpectra-class), 16
class:NoiseModel (NoiseModel-class), 30
class:ProteinGroup (ProteinGroup-class), 37
classLabels (IBSpectra-class), 16
classLabels (IBSpectra-method (IBSpectra-class), 16
classLabels<-(IBSpectra-class), 16
correctIsotopeImpurities,IBSpectra-method (IBSpectra-class), 16
correctIsotopeImpurities<-(IBSpectra-class), 16
connect.nodes (isobar-reports), 27
correct.prec.isotope.ratios, 8
correctIsotopeImpurities, 17, 19
correctIsotopeImpurities (isobar-preprocessing), 26
correctIsotopeImpurities,IBSpectra-method (isobar-preprocessing), 26
create.meta.reports (isobar-reports), 27

calccumulativeProbXGreaterThanY (distr-methods), 9
calcPeptidePosition, 5
calcProbXDiffNormals (distr-methods), 9
calcProbXGreaterThanY (distr-methods), 9
calculate-pvalues, 5
calculate.dNSAF, 6, 8, 34
calculate.emPAI, 7, 34
calculate.mult.sample.pvalue (calculate-pvalues), 5
calculate.ratio.pvalue (calculate-pvalues), 5
calculate.sample.pvalue (calculate-pvalues), 5
Cauchy, 10
class:IBSpectra (IBSpectra-class), 16
class:NoiseModel (NoiseModel-class), 30
class:ProteinGroup (ProteinGroup-class), 37
classLabels (IBSpectra-class), 16
classLabels (IBSpectra-method (IBSpectra-class), 16
classLabels<-(IBSpectra-class), 16
correctIsotopeImpurities,IBSpectra-method (IBSpectra-class), 16
correctIsotopeImpurities<-(IBSpectra-class), 16
connect.nodes (isobar-reports), 27
correct.prec.isotope.ratios, 8
correctIsotopeImpurities, 17, 19
correctIsotopeImpurities (isobar-preprocessing), 26
correctIsotopeImpurities,IBSpectra-method (isobar-preprocessing), 26
create.meta.reports (isobar-reports), 27

AbscontDistribution, 47
AbscontDistribution-class (distr-methods), 9
AcDcLcDistribution, 47
adjust.ratio.pvalue (calculate-pvalues), 5
AnnotatedDataFrame, 17
as.data.frame,IBSpectra-method (IBSpectra-class), 16
as.data.frame,ProteinGroup-method (ProteinGroup-class), 37
as.data.frame.IBSpectra (IBSpectra-class), 16
as.data.frame.ProteinGroup (ProteinGroup-class), 37
AssayData, 17
calc.delta.score, 4
calc.pep.delta.score (calc.delta.score), 4
### Index

- `create.reports(isobar-reports)`, 27
- `Digest`, 8
- `distr-methods`, 9
- `Distribution`, 47
- `Distribution-class (distr-methods)`, 9
- `distrprint (distr-methods)`, 9
- `do.log (IBSpectra.log)`, 19
- `do.log, IBSpectra, character-method (IBSpectra.log)`, 19
- `draw.boxplot (isobar-reports)`, 27
- `draw.protein.group (isobar-reports)`, 27
- `eSet`, 17
- `estimateRatio`, 18, 36
- `estimateRatio (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, NULL-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, character, character, character, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, missing, missing, missing-method (isobar-analysis)`, 20
- `estimateRatio, IBSpectra, ANY, missing, missing, missing-method (isobar-analysis)`, 20
- `estimateRatioForPeptide`, 20
- `estimateRatioForProtein`, 20
- `estimateRatioNumeric (isobar-analysis)`, 20
- `estimateRatioNumeric, numeric, numeric, missing-method (isobar-analysis)`, 20
- `estimateRatioNumeric, numeric, numeric, NoiseModel-method (isobar-analysis)`, 20
- `estimateRatioNumeric, numeric, numeric, NULL-method (isobar-analysis)`, 20
- `exclude (isobar-preprocessing)`, 26
- `exclude, IBSpectra, character-method (isobar-preprocessing)`, 26

---

**ExponentialNoANoiseModel-class**

- `Expression`, 45

- `fData`, 17
- `filterSpectraDeltaScore (calc.delta.score)`, 4
- `filterSpectraPhosphoRS (getPhosphoRSProbabilities)`, 11
- `fit distributions`, 10
- `fit.Cauchy (fit distributions)`, 10
- `fit.GaussianMixture (fit distributions)`, 10
- `fit.Normal (fit distributions)`, 10
- `fit.Normal.Cauchy.Mixture (fit distributions)`, 10
- `fit.Weight.Distribution`, 10
- `fit.Weighted.Norm (fit distributions)`, 10
- `GeneralNoiseModel-class (fit distributions)`, 10
- `GeneralNoiseModel-class (fit distributions)`, 10
- `fit.distributions`, 10
- `fit.distributions`, 10
- `get.log (IBSpectra.log)`, 19
- `get Mult.Unif.Density (isobar-analysis)`, 20
- `get Mult.Unif.Values (isobar-analysis)`, 20
- `get.Phospho.RS.Probabilities`, 11
- `proteinInfo-methods`, 39
- `proteinInfo-methods`, 39
- `proteinInfo-methods`, 39
- `proteinInfo-methods`, 39
- `getProteinInfoFromNextProt`, 39
- `getProteinInfoFromTheInternet`, 39
- `getProteinInfoFromUniprot`, 7, 8
- `getProteinInfoFromUniprot`, 7, 8
- `getPtmInfoFromPhosphoSitePlus`, 13
- `getPtmInfoFromPhosphoSitePlus`, 13
- `grep`, 37
- `group-specific (specificities)`, 44
- `groupMemberPeptides`, 15
- `GROUPSPECIFIC (specificities)`, 44
INDEX

human.protein.names, 16
ib_phospho (isobar.data), 29
IBSpectra, 12, 22–24, 26, 27, 29, 36, 39
IBSpectra (IBSpectra-class), 16
IBSpectra-class, 16
ibSpectra.as.concise.data.frame (IBSpectra-class), 16
IBSpectra.log, 19
IBSpectraTypes, 16
IBSpectraTypes (IBSpectra-class), 16
ibspiked_set1 (isobar.data), 29
ibspiked_set2 (isobar.data), 29
identify, 30
indistinguishableProteins (ProteinGroup-class), 37
indistinguishableProteins, ProteinGroup, ANY, ANY-method
(indistinguishableProteins, ProteinGroup-class), 37
indistinguishableProteins, ProteinGroup, character-method
(indistinguishableProteins, ProteinGroup-class), 37
indistinguishableProteins, ProteinGroup, missing-method
(indistinguishableProteins, ProteinGroup-class), 37
indistinguishableProteins, ProteinGroup, character, missing-method
(indistinguishableProteins, ProteinGroup-class), 37
indistinguishableProteins, ProteinGroup-method
(indistinguishableProteins, ProteinGroup-class), 37
initialize, IBSpectra-method (IBSpectra-class), 16
initialize, NoiseModel-method (NoiseModel-class), 16
initialize.env (isobar-reports), 27
InverseNoANoiseModel-class (NoiseModel-class), 30
InverseNoiseModel-class (NoiseModel-class), 30
is.logged (IBSpectra.log), 19
is.logged, IBSpectra-character-method (IBSpectra.log), 19
isobar (isobar-package), 3
Isobar utility functions, 20
isobar-analysis, 18, 20, 24, 26, 27, 29, 36
isobar-import, 23
isobar-package, 3
isobar-plots, 18, 22, 24, 25, 27
isobar-preprocessing, 18, 22, 24, 26, 29, 36
isobar-reports, 27
isobar.data, 29
isotopeImpurities, 26
isotopeImpurities (IBSpectra-class), 16
isotopeImpurities, IBSpectra-method (IBSpectra-class), 16
isotopeImpurities<-(IBSpectra-class), 16
isotopeImpurities<-, IBSpectra-method (IBSpectra-class), 16
iTRAQ4plexSpectra, 23
iTRAQ4plexSpectra (IBSpectra-class), 16
iTRAQ4plexSpectra-class (IBSpectra-class), 16
iTRAQ8plexSpectra, 23
iTRAQ8plexSpectra (IBSpectra-class), 16
iTRAQ8plexSpectra-class (IBSpectra-class), 16
iTRAQspectra (IBSpectra-class), 16
iTRAQspectra-class (IBSpectra-class), 16
load, 30
load.properties, 28
load.properties (isobar-reports), 27
load.properties (isobar-reports), 27
lowIntensity<-, NoiseModel-method (NoiseModel-class), 30
lowIntensity<-, NoiseModel-method (NoiseModel-class), 30
lowIntensity<-, NoiseModel-method (NoiseModel-class), 30
lowIntensity<-, NoiseModel-method (NoiseModel-class), 30
maplot (isobar-plots), 25
maplot, IBSpectra, character-character-method (isobar-plots), 25
maplot, IBSpectra, character-character-method (isobar-plots), 25
maplot, IBSpectra, numeric-numeric-method (isobar-plots), 25
maplot, IBSpectra, numeric-numeric-method (isobar-plots), 25
maplot.protein, 29
maplot2 (isobar-plots), 25
maplot2, ANY, character-character-method (isobar-plots), 25
maplot2, ANY, character-character-method (isobar-plots), 25
MIAME, 17
modif.site.count (observedKnownSites), 32
modif.sites (observedKnownSites), 32
modifs (isobar-reports), 27
MSnbase, 17
MSnSet, 17
my.protein.info (human.protein.names), 16
n.observable.peptides (calculate.emPAI), 7
naRegion (NoiseModel-class), 30
naRegion<-,NoiseModel-method
(NoiseModel-class), 30
naRegion<-(NoiseModel-class), 30
naRegion<-,NoiseModel-method
(NoiseModel-class), 30
noise.model.hcd(isobar.data), 29
noiseFunction (NoiseModel-class), 30
noiseFunction,NoiseModel-method
(NoiseModel-class), 30
NoiseModel (NoiseModel-class), 30
NoiseModel,IBSpectra-method
(NoiseModel-class), 30
NoiseModel-class, 30
Norm, 10
normalize, 19
normalize(isobar-preprocessing), 26
number.ranges, 32

observable.peptides, 8
observable.peptides (calculate.emPAI), 7
observedKnownSites, 32
OptionalParameter, 48

p.adjust, 36
Parameter, 48
parameter (NoiseModel-class), 30
parameter,NoiseModel-method
(NoiseModel-class), 30
Parameter-class (distr-methods), 9
parameter<-(NoiseModel-class), 30
parameter<-,NoiseModel-method
(NoiseModel-class), 30
paste, 40
paste0 (Isobar util functions), 20
peptide.count, 33
peptideInfo (ProteinGroup-class), 37
peptideInfo,ProteinGroup-method
(ProteinGroup-class), 37
peptideInfo-methods
(ProteinGroup-class), 37
peptideNProtein (ProteinGroup-class), 37
peptideNProtein,ProteinGroup-method
(ProteinGroup-class), 37
peptideRatios, 6
peptideRatios (Protein and peptide ratio calculation and summarization), 34
peptideRatiosNotQuant (Protein and peptide ratio calculation and summarization), 34
peptides, 34, 45
peptides (ProteinGroup-class), 37

peptides,ProteinGroup,character-method
(ProteinGroup-class), 37
peptides,ProteinGroup,missing-method
(ProteinGroup-class), 37
peptideSpecificity
(ProteinGroup-class), 37
peptideSpecificity,ProteinGroup-method
(ProteinGroup-class), 37
phenoData, 18
plot, 30
plot.default, 30
plot.NoiseModel (NoiseModel-class), 30
plotRatio (isobar-plots), 25
plotRatio,IBSpectra,character,character,character-method
(isobar-plots), 25
print_classlabels_tbl (isobar-reports), 27
print_groupsizes (isobar-reports), 27
print_longtablehdr (isobar-reports), 27
print_longtablehdr_peptide
(isobar-reports), 27
print_protein_grp_info
(isobar-reports), 27
print_protein_grp_tbl (isobar-reports), 27
print_protein_notquant_tbl
(isobar-reports), 27
print_protein_quant_tbl
(isobar-reports), 27
property (isobar-reports), 27
Protein and peptide ratio calculation and summarization, 34
protein.ac (ProteinGroup-class), 37
protein.ac,ProteinGroup,character-method
(ProteinGroup-class), 37
protein.ac,ProteinGroup,missing-method
(ProteinGroup-class), 37
protein.g, 40, 46
protein.g (ProteinGroup-class), 37
protein.g,ProteinGroup,character,character-method
(ProteinGroup-class), 37
protein.g,ProteinGroup,character-method
(ProteinGroup-class), 37
proteinDescription
(proteinNameAndDescription), 41
proteinGeneName
(proteinNameAndDescription), 41
ProteinGroup, 7, 8, 17, 18, 22, 24, 27, 34, 45
ProteinGroup (ProteinGroup-class), 37
proteinGroup (IBSpectra-class), 16
ProteinGroup, data.frame, missing-method (ProteinGroup-class), 37
ProteinGroup, data.frame, NULL-method (ProteinGroup-class), 37
ProteinGroup, data.frame, ProteinGroup-method (ProteinGroup-class), 37
proteinGroup, IBSpectra-method (IBSpectra-class), 16
ProteinGroup-class, 37
proteinGroup as concise data.frame (ProteinGroup-class), 37
proteinGroup <- (IBSpectra-class), 16
proteinGroup <-, IBSpectra-method (IBSpectra-class), 16
proteinGroupTable (ProteinGroup-class), 37
proteinGroupTable, ProteinGroup-method (ProteinGroup-class), 37
proteinID (proteinNameAndDescription), 41
proteinInfo, 7, 8
proteinInfo (proteinInfo-methods), 39
proteinInfo, ProteinGroup, character, missing-method (proteinInfo-methods), 39
proteinInfo, ProteinGroup, missing, character-method (proteinInfo-methods), 39
proteinInfo, ProteinGroup, missing, missing-method (proteinInfo-methods), 39
proteinInfo, ProteinGroup-method (proteinInfo-methods), 39
proteinInfo-methods, 39
proteinInfo <- (proteinInfo-methods), 39
proteinInfo <-, ProteinGroup-method (proteinInfo-methods), 39
proteinInfoIsOnSpliceVariants (proteinInfo-methods), 39
proteinNameAndDescription, 41
proteinRatios, 6, 10, 22
proteinRatios (Protein and peptide ratio calculation and summarization), 34
protGgdata (isobar-plots), 25
protGgdata, ANY, character, character-method (isobar-plots), 25

raplot (isobar-plots), 25
raplot, IBSpectra-method (isobar-plots), 25
ratiosReshapeWide, 42
read.mzid (isobar-import), 23
readIBSpectra, 12, 16, 17
readIBSpectra (isobar-import), 23
readIBSpectra, character, character, character-method (isobar-import), 23
readIBSpectra, character, character, missing-method (isobar-import), 23
readIBSpectra, character, character-method (isobar-import), 23
readIBSpectra, character, data.frame, character-method (isobar-import), 23
readIBSpectra, character, data.frame, missing-method (isobar-import), 23
readPhosphoRSOutput (getPhosphoRSProbabilities), 11
readProteinGroup (ProteinGroup-class), 37
readProteinGroup2 (ProteinGroup-class), 37
reporter-specific (specificities), 44
reporter.protein (reporter.protein-methods), 42
reporter.protein, ProteinGroup, character-method (reporter.protein-methods), 42
reporter.protein-methods, 42
reporterData (IBSpectra-class), 16
reporterData, IBSpectra-method (IBSpectra-class), 16
reporterData <- (IBSpectra-class), 16
reporterData <-, IBSpectra-method (IBSpectra-class), 16
reporterIntensities, 17
reporterIntensities (IBSpectra-class), 16
reporterIntensities, IBSpectra-method (IBSpectra-class), 16
reporterIntensities <- (IBSpectra-class), 16
reporterIntensities <-, IBSpectra-method (IBSpectra-class), 16
reporterIntensityPlot (isobar-plots), 25
reporterIntensityPlot, IBSpectra-method (isobar-plots), 25
reporterIntensityPlot-methods (isobar-plots), 25
reporterMasses, 17
reporterMasses (IBSpectra-class), 16
reporterMasses, IBSpectra-method (IBSpectra-class), 16
reporterMasses <- (IBSpectra-class), 16
reporterMasses <-, IBSpectra-method (IBSpectra-class), 16
reporterMassPrecision (isobar-plots), 25
reporterMassPrecision, IBSpectra, logical-method (isobar-plots), 25
INDEX

reporterMassPrecision, IBSpectra, missing-method (isobar-plots), 25
reporterProteins (ProteinGroup-class), 37
reporterProteins, ProteinGroup-method (ProteinGroup-class), 37
REPORTERSPECIFIC (specificities), 44
reporterTagMasses (IBSpectra-class), 16
reporterTagMasses, IBSpectra-method (IBSpectra-class), 16
reporterTagNames (IBSpectra-class), 16
reporterTagNames, IBSpectra-method (IBSpectra-class), 16
sanitize, 43
sequence.coverage (peptide.count), 33
shared.ratios, 43, 44
shared.ratios.sign, 44, 44
show, IBSpectra-method (IBSpectra-class), 16
show, NoiseModel-method (NoiseModel-class), 30
show, ProteinGroup-method (ProteinGroup-class), 37
SPECIFICITIES (specificities), 44
specificities, 21, 44, 46
spectra.count, 45
spectra.count (peptide.count), 33
spectra.count2, 45
spectrumSel, 46
spectrumSel (IBSpectra-class), 16
spectrumSel, IBSpectra, character, missing-method (IBSpectra-class), 16
spectrumSel, IBSpectra, data.frame, missing-method (IBSpectra-class), 16
spectrumSel, IBSpectra, matrix, missing-method (IBSpectra-class), 16
spectrumSel, IBSpectra, missing, character-method (IBSpectra-class), 16
spectrumSel, IBSpectra, missing, missing-method (IBSpectra-class), 16
spectrumTitles (IBSpectra-class), 16
spectrumTitles, IBSpectra-method (IBSpectra-class), 16
spectrumToPeptide (ProteinGroup-class), 37
spectrumToPeptide, ProteinGroup-method (ProteinGroup-class), 37
stddev (NoiseModel-class), 30
stddev, NoiseModel-method (NoiseModel-class), 30
subsetIBSpectra, 46
subtractAdditiveNoise (isobar-preprocessing), 26
subtractAdditiveNoise, IBSpectra-method (isobar-preprocessing), 26
summarize.ratios (Protein and peptide ratio calculation and summarization), 34
summary.ProteinGroup (ProteinGroup-class), 37
testPdflatex (isobar-reports), 27
testPerl (isobar-reports), 27
tikz.proteingroup (isobar-reports), 27
Tlsd, 48
Tlsd (Tlsd-class), 47
Tlsd-class, 47
TlsParameter-class, 48
TMT10plexSpectra, 23
TMT10plexSpectra (IBSpectra-class), 16
TMT10plexSpectra-class (IBSpectra-class), 16
TMT2plexSpectra, 23
TMT2plexSpectra (IBSpectra-class), 16
TMT2plexSpectra-class (IBSpectra-class), 16
TMT6plexSpectra, 23
TMT6plexSpectra (IBSpectra-class), 16
TMT6plexSpectra-class (IBSpectra-class), 16
TMT6plexSpectra2 (IBSpectra-class), 16
TMT6plexSpectra2-class (IBSpectra-class), 16
TMTSpectra (IBSpectra-class), 16
TMTSpectra-class (IBSpectra-class), 16
transform_pepmodif (isobar-reports), 27
twodistr.plot (distr-methods), 9
UnivariateDistribution, 47
UnivariateDistribution-class (distr-methods), 9
UnivDistrListOrDistribution, 47
UNSPECIFIC (specificities), 44
UNSPECIFIC (specificities), 44
URLdecode, 24
variance (NoiseModel-class), 30
variance, NoiseModel, numeric, missing-method (NoiseModel-class), 30
variance, NoiseModel, numeric, numeric-method (NoiseModel-class), 30
VARMETADATA (IBSpectra-class), 16
weightedMean (Protein and peptide ratio calculation and summarization), 34
weightedMean, numeric, numeric-method (Protein and peptide ratio calculation and summarization), 34
weightedVariance (Protein and peptide ratio calculation and summarization), 34
weightedVariance, numeric, numeric, missing-method (Protein and peptide ratio calculation and summarization), 34
weightedVariance, numeric, numeric, numeric-method (Protein and peptide ratio calculation and summarization), 34
write.table, 49
write.tex.commands (isobar-reports), 27
write.xls.report (isobar-reports), 27
writeData (IBSpectra-class), 16
writeData, IBSpectra-method (IBSpectra-class), 16
writeHscoreData, 49
writeIBSpectra, 49
writePhosphoRSInput (getPhosphoRSProbabilities), 11