Package ‘isomiRs’

April 26, 2017

Version 1.4.0
Date 2017-04-08
Type Package
Title Analyze isomiRs and miRNAs from small RNA-seq
Description Characterization of miRNAs and isomiRs, clustering and differential expression.
biocViews miRNA, RNASeq, DifferentialExpression, Clustering
Suggests knitr, RUnit, org.Mm.eg.db, cluster, clusterProfiler,
BiocStyle
Depends R (>= 3.2), DiscriMiner, IRanges, S4Vectors (>= 0.9.25),
GenomicRanges, SummarizedExperiment (>= 1.1.6)
Imports BiocGenerics (>= 0.7.5), DESeq2, reshape, tidyr, plyr, readr,
dplyr, RColorBrewer, gplots, methods, ggplot2, gtools,
ggridExtra, grid, GGally
Author Lorena Pantano, Georgia Escaramis
Maintainer Lorena Pantano <lorena.pantano@gmail.com>
License MIT + file LICENSE
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation no

R topics documented:

 counts .. 2
design .. 3
find_targets .. 3
isoCounts ... 4
isoDE .. 5
IsomirDataSeq-class 6
IsomirDataSeqFromFiles 7
isoNetwork .. 8
isoNorm .. 9
isoPlot .. 10
isoPlotNet .. 11
isoPlotPosition ... 11
Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for each isomiR, and one column for each sample. The normalized matrix can be obtained by using the parameter `norm=TRUE`.

Usage

```r
counts.IsomirDataSeq(object, norm = FALSE)
```

```r
## S4 method for signature 'IsomirDataSeq'
counts(object, norm = FALSE)
```

```r
## S4 replacement method for signature 'IsomirDataSeq,matrix'
counts(object) <- value
```

Arguments

- **object**: a `IsomirDataSeq` object
- **norm**: TRUE return log2-normalized counts
- **value**: an integer matrix

Value

- **matrix**: with raw or normalized count data.

Author(s)

Lorena Pantano

Examples

```r
data(mirData)
head(counts(mirData))
```
design

Accessors for the 'design' slot of a IsomirDataSeq object.

Description
The design holds the R formula which expresses how the counts depend on the variables in colData. See IsomirDataSeq for details.

Usage
```r
## S4 method for signature 'IsomirDataSeq'
design(object)
## S4 replacement method for signature 'IsomirDataSeq,formula'
design(object) <- value
```

Arguments
- `object` a IsomirDataSeq object
- `value` a formula to pass to DESeq2

Examples
```r
data(mirData)
design(mirData) <- formula(~ 1)
```

find_targets

Find miRNAs target using mRNA/miRNA expression

Description
This function creates a matrix with rows (genes) and columns (mirnas) with values indicating if miRNA-gene pair is target according putative targets and negative correlation of the expression of both molecules.

Usage
```r
find_targets(mirna_rse, gene_rse, target, summarize = "group", min_cor = -0.6)
```

Arguments
- `mirna_rse` SummarizedExperiment with miRNA information. See details.
- `gene_rse` SummarizedExperiment with gene information. See details.
- `target` matrix with miRNAs (columns) and genes (rows) target prediction values (1 if it is a target, 0 if not).
summarize character column name in colData(rse) to use to group samples and compare between miRNA/gene expression.

min_cor numeric cutoff for correlation value that will be used to consider a miRNA-gene pair as valid.

Examples

```r
def <- as.data.frame(data.frame(row.names=c("gene1", "gene2"),
mirna1=c(0,1), mirna2=c(1,0)))
mirna_matrix <- as.data.frame(data.frame(row.names=c("mirna1", "mirna2"),
time0_1=c(1,1),time0_2=c(1.2,0.9),
time1_1=c(8,8),time1_2=c(8.2,7.9)))
gene_matrix <- as.matrix(data.frame(row.names=c("gene1", "gene2"),
time0_1=c(8,8),time0_2=c(8.2,7.9),
time1_1=c(1,1),time1_2=c(1.2,0.9)))
mirna_col <- data.frame(row.names=c("time0_1","time0_2","time1_1","time1_2"),
group=c("t0","t0","t1","t1"))
gene_col <- data.frame(row.names=c("time0_1","time0_2","time1_1","time1_2"),
group=c("t0","t0","t1","t1"))
mirna <- SummarizedExperiment(assays=SimpleList(norm=as.matrix(mirna_matrix)),
colData=mirna_col)
gene <- SummarizedExperiment(assays=SimpleList(norm=as.matrix(gene_matrix)),
colData=gene_col)
find_targets(mirna, gene, def)
```

isoCounts

Create count matrix with different summarizing options

Description
This function collapses isomiRs into different groups. It is a similar concept than how to work with gene isoforms. With this function, different changes can be put together into a single miRNA variant. For instance all sequences with variants at 3' end can be considered as different elements in the table or analysis having the following naming hsa-miR-124a-5p.iso.t3:AAA.

Usage

```r
isoCounts(ids, ref = FALSE, iso5 = FALSE, iso3 = FALSE, add = FALSE, 
subs = FALSE, seed = FALSE, minc = 1, mins = 1)
```

Arguments

- **ids**: object of class `IsomirDataSeq`
- **ref**: differentiate reference miRNA from rest
- **iso5**: differentiate trimming at 5 miRNA from rest
- **iso3**: differentiate trimming at 3 miRNA from rest
- **add**: differentiate additions miRNA from rest
- **subs**: differentiate nt substitution miRNA from rest
- **seed**: differentiate changes in 2-7 nts from rest
isoDE

minc int minimum number of isomiR sequences to be included.
mins int minimum number of samples with number of sequences bigger than minc counts.

Details

You can merge all isomiRs into miRNAs by calling the function only with the first parameter isoCounts(ids). You can get a table with isomiRs altogether and the reference miRBase sequences by calling the function with ref=TRUE. You can get a table with 5’ trimming isomiRs, miRBase reference and the rest by calling with isoCounts(ids, ref=TRUE, iso5=TRUE). If you set up all parameters to TRUE, you will get a table for each different sequence mapping to a miRNA (i.e. all isomiRs).

Examples for the naming used for the isomiRs are at http://seqcluster.readthedocs.org/mirna_annotation.html#mirna-annotation.

Value

IsomirDataSeq object with new count table. The count matrix can be access with counts(ids).

Examples

data(mirData)
ids <- isoCounts(mirData, ref=TRUE)
head(counts(ids))
taking into account isomiRs and reference sequence.
ids <- isoCounts(mirData, ref=TRUE, minc=10, mins=6)
head(counts(ids))

isoDE

Differential expression analysis with DESeq2

Description

This function does differential expression analysis with DESeq2-package using the specific formula. It will return a DESeqDataSet object.

Usage

isoDE(ids, formula = NULL, ...)

Arguments

ids object of class IsomirDataSeq
formula used for DE analysis
... options to pass to isoCounts including ref, iso5, iso3, add, subs and seed parameters.
Details

First, this function collapses all isomiRs in different types. Read more at `isoCounts` to know the different options available to collapse isomiRs.

After that, `DESeq2-package` is used to do differential expression analysis. It uses the count matrix and design experiment stored at `(counts(ids) and colData(ids)) IsomirDataSeq` object to construct a `DESeqDataSet` object.

Value

`DESeqDataSet` object. To get the differential expression isomiRs, use `results` from DEseq2 package. This allows to ask for different contrast without calling again `isoDE`. Read `results` manual to know how to access all the information.

Examples

```r
data(mirData)
ids <- isoCounts(mirData, minc=10, mins=6)
dds <- isoDE(mirData, formula=~group)
```

IsomirDataSeq-class

Class that contains all isomiRs annotation for all samples

Description

The `IsomirDataSeq` is a subclass of `SummarizedExperiment` used to store the raw data, intermediate calculations and results of an miRNA/isomiR analysis. This class stores all raw isomiRs data for each sample, processed information, summary for each isomiR type, raw counts, normalized counts, and table with experimental information for each sample.

Details

`IsomirDataSeqFromFiles` creates this object using seqbuster output files.

Methods for this objects are `counts` to get count matrix and `isoSelect` for miRNA/isomiR selection. Functions available for this object are `isoCounts` for count matrix creation, `isoNorm` for normalization, `isoDE` for differential expression and `isoPLSDA` for clustering. `isoPlot` helps with basic expression plot.

`metadata` contains two lists: `rawList` is a list with same length than number of samples and stores the input files for each sample; `isoList` is a list with same length than number of samples and stores information for each isomiR type summarizing the different changes for the different isomiRs (trimming at 3', trimming a 5', addition and substitution). For instance, you can get the data stored in `isoList` for sample 1 and 5' changes with this code `metadata(ids)['isoList'][[1]]$t5sum`.

The naming of isomiRs follows these rules:

- miRNA name
- type:ref if the sequence is the same than the miRNA reference. iso if the sequence has variations.
• **t5** tag: indicates variations at 5 position. The naming contains two words: **direction** - nucleotides, where direction can be UPPER CASE NT (changes upstream of the 5 reference position) or LOWER CASE NT (changes downstream of the 5 reference position). 0 indicates no variation, meaning the 5 position is the same than the reference. After direction, it follows the nucleotide/s that are added (for upstream changes) or deleted (for downstream changes).

• **t3** tag: indicates variations at 3 position. The naming contains two words: **direction** - nucleotides, where direction can be LOWER CASE NT (upstream of the 3 reference position) or UPPER CASE NT (downstream of the 3 reference position). 0 indicates no variation, meaning the 3 position is the same than the reference. After direction, it follows the nucleotide/s that are added (for downstream changes) or deleted (for upstream changes).

• **ad** tag: indicates nucleotides additions at 3 position. The naming contains two words: **direction** - nucleotides, where direction is UPPER CASE NT (upstream of the 5 reference position). 0 indicates no variation, meaning the 3 position has no additions. After direction, it follows the nucleotide/s that are added.

• **mm** tag: indicates nucleotides substitutions along the sequences. The naming contains three words: **position-nucleotideATsequence-nucleotideATreference**.

• **seed** tag: same than **mm** tag, but only if the change happens between nucleotide 2 and 8.

In general nucleotides in UPPER case mean insertions respect to the reference sequence, and nucleotides in LOWER case mean deletions respect to the reference sequence.

Examples

```r
path <- system.file("extra", package="isomiRs")
fn_list <- list.files(path, full.names = TRUE)
de <- data.frame(row.names=c("f1", "f2"), condition = c("newborn", "newborn"))
ids <- IsomirDataSeqFromFiles(fn_list, coldata=de)

head(counts(ids))
```

Description

This function parses output of seqbuster tool to allow isomiRs/miRNAs analysis of samples in different groups such as characterization, differential expression and clustering. It creates an `IsomirDataSeq` object.

Usage

```r
IsomirDataSeqFromFiles(files, coldata, rate = 0.2, canonicalAdd = TRUE,
uniqueMism = TRUE, design = ~1, header = TRUE, skip = 0,
quiet = TRUE, ...)
```
isoNetwork

Arguments

files | files with the output of seqbuster tool
coldata | data frame containing groups for each sample
rate | minimum counts fraction to consider a mismatch a real mutation
canonicalAdd | boolean only keep A/T non-template addition. All non-template nucleotides at the 3' end will be removed if they contain C/G nts.
uniqueMism | boolean only keep mutations that have a unique hit to one miRNA molecule
design | a formula to pass to DESeqDataSet
header | boolean to indicate files contain headers
skip | skip first line when reading files
quiet | boolean indicating to print messages while reading files. Default FALSE.
... | arguments provided to SummarizedExperiment including rowData.

Details

This function parses the output of http://seqcluster.readthedocs.org/mirna_annotation.html for each sample to create a count matrix for isomiRs, miRNAs or isomiRs grouped in types (i.e all sequences with variations at 5’ but ignoring any other type). It creates IsomirDataSeq object (see link to example usage of this class) to allow visualization, queries, differential expression analysis and clustering. To create the IsomirDataSeq, it parses the isomiRs files, and generates an initial matrix having all isomiRs detected among samples. As well, it creates a summary for each isomiR type (trimming, addition and substitution) to visualize general isomiRs distribution.

Value

IsomirDataSeq class object.

Examples

```r
path <- system.file("extra", package="isomiRs")
fn_list <- list.files(path, full.names = TRUE)
de <- data.frame(row.names=c("f1", "f2"), condition = c("newborn", "newborn"))
ids <- IsomirDataSeqFromFiles(fn_list, coldata=de)

head(counts(ids))
```

isoNetwork | Clustering miRNAs-genes pairs in similar pattern expression

Description

Clustering miRNAs-genes pairs in similar pattern expression

Usage

```r
isoNetwork(mirna_rse, gene_rse, target, summarize = "group", org, 
genename = "ENSEMBL", min_cor = -0.6)
```
isoNorm

Arguments

- **mirna_rse**: SummarizedExperiment with miRNA information. See details.
- **gene_rse**: SummarizedExperiment with gene information. See details.
- **target**: matrix with miRNAs (columns) and genes (rows) target prediction (1 if it is a target, 0 if not).
- **summarize**: character column name in colData(rse) to use to group samples and compare between miRNA/gene expression.
- **org**: AnnotationDb. (org.Mm.eg.db)
- **genename**: character keytype of the gene names in gene_rse object.
- **min_cor**: numeric cutoff to consider a miRNA to regulate a target

Details

This function will correlate miRNA and gene expression data using a specific metadata variable to group samples and detect pattern of expression that will be annotated with GO terms. mirna_rse and gene_rse can be created using the following code:

```r
mi_rse = SummarizedExperiment(assays=SimpleList(norm=mirna_matrix), colData, metadata=list(sign=mirna_keep))
```

where, mirna_matrix is the normalized counts expression, colData is the metadata information and mirna_keep the list of miRNAs to be used by this function.

Examples

```r
library(org.Mm.eg.db)
library(clusterProfiler)
data(isoExample)
ego <- enrichGO(row.names(assay(gene_ex_rse, "norm")), org.Mm.eg.db, ont = "BP", keytype="ENSEMBL")
data = isoNetwork(mirna_ex_rse, gene_ex_rse, ma_ex, org=ego@result)
isoPlotNet(data)
```

isoNorm Normalize count matrix

Description

This function normalizes raw count matrix using rlog function from DESeq2-package.

Usage

```r
isoNorm(ids, formula = NULL)
```

Arguments

- **ids**: object of class IsomirDataSeq
- **formula**: formula that will be used for normalization

Value

IsomirDataSeq object with the normalized count matrix in a slot. The normalized matrix can be access with counts(ids, norm=TRUE).
Example

```r
data(mirData)
ids <- isoCounts(mirData, minc=10, mins=6)
ids <- isoNorm(mirData, formula=~group)
head(counts(ids, norm=TRUE))
```

isoPlot

Plot the amount of isomiRs in different samples

Description

This function plots different isomiRs proportion for each sample. It can show trimming events at both side, additions and nucleotides changes.

Usage

```r
isoPlot(ids, type = "iso5", column = "condition")
```

Arguments

- **ids**: object of class `IsomirDataSeq`
- **type**: string (iso5, iso3, add, subs) to indicate what isomiRs to use for the plot. See details for explanation.
- **column**: string indicating the column in `colData` to color samples.

Details

There are four different values for type parameter. To plot trimming at 5’ or 3’ end, use `type="iso5"` or `type="iso3"`. In this case, it will plot 3 positions at both side of the reference position described at miRBase site. Each position refers to the number of sequences that start/end before or after the miRBase reference. The color indicates the sample group. The size of the point is proportional to the number of total counts. The position at y is the number of different sequences.

Same logic applies to `type="add"` and `type="subs"`. However, when `type="add"`, the plot will refer to addition events from the 3’ end of the reference position. Note that this additions don’t match to the precursor sequence, they are non-template additions. In this case, only 3 positions after the 3’ end will appear in the plot. When `type="subs"`, it will appear one position for each nucleotide in the reference miRNA. Points will indicate isomiRs with nucleotide changes at the given position.

Value

- `ggplot` object showing different isomiRs changes at different positions.

Examples

```r
data(mirData)
isoPlot(mirData, column="group")
```
isoPlotNet

Functional miRNA / gene expression profile plot

Description

Functional miRNA / gene expression profile plot

Usage

isoPlotNet(obj)

Arguments

obj output from isoNetwork

isoPlotPosition

Plot nucleotides changes at a given position

Description

This function plot different isomiRs proportion for each sample at a given position focused on the nucleotide change that happens there.

Usage

isoPlotPosition(ids, position = 1, column = "condition")

Arguments

ids object of class IsomirDataSeq
position integer indicating the position to show
column string indicating the column in colData to color samples.

Details

It shows the nucleotides changes at the given position for each sample in each group. The color indicates the sample group. The size of the point is proportional to the number of total counts of isomiRs with changes. The position at y is the number of different sequences supporting the change.

Value

ggplot object showing nucleotide changes at a given position.

Examples

data(mirData)
isoPlotPosition(mirData, column="group")
isoPLSDA

Partial Least Squares Discriminant Analysis for IsomirDataSeq

Description

Use PLS-DA method with the normalized count data to detect the most important features (miRNAs/isomiRs) that explain better the group of samples given by the experimental design. It is a supervised clustering method with permutations to calculate the significance of the analysis.

Usage

```r
describePLSDA(ids, group, validation = NULL, learn = NULL, test = NULL, 
tol = 0.001, nperm = 400, refinement = FALSE, vip = 1.2)
```

Arguments

- `ids`: object of class `IsomirDataSeq`
- `group`: column name in `colData(ids)` to use as variable to explain.
- `validation`: type of validation, either NULL or "learntest". Default NULL
- `learn`: optional vector of indexes for a learn-set. Only used when validation="learntest". Default NULL
- `test`: optional vector of indices for a test-set. Only used when validation="learntest". Default NULL
- `tol`: tolerance value based on maximum change of cumulative R-squared coefficient for each additional PLS component. Default tol=0.001
- `nperm`: number of permutations to compute the PLD-DA p-value based on R2 magnitude. Default nperm=400
- `refinement`: logical indicating whether a refined model, based on filtering out variables with low VIP values
- `vip`: Variance Importance in Projection threshold value when a refinement process is considered. Default vip=1.2

Details

Partial Least Squares Discriminant Analysis (PLS-DA) is a technique specifically appropriate for analysis of high dimensionality data sets and multicollinearity (Perez-Enciso, 2013). PLS-DA is a supervised method (i.e. makes use of class labels) with the aim to provide a dimension reduction strategy in a situation where we want to relate a binary response variable (in our case young or old status) to a set of predictor variables. Dimensionality reduction procedure is based on orthogonal transformations of the original variables (miRNAs/isomiRs) into a set of linearly uncorrelated latent variables (usually termed as components) such that maximizes the separation between the different classes in the first few components (Xia, 2011). We used sum of squares captured by the model (R2) as a goodness of fit measure.

We implemented this method using the `DiscriMiner-package` into `isoPLSDA` function. The output p-value of this function will tell about the statistical significant of the group separation using miRNA/isomiR expression data.

Read more about the parameters related to the PLS-DA directly from `plsDA` function.
Value

A list with the following elements: R2Matrix (R-squared coefficients of the PLS model), components (of the PLS, similar to PCs in a PCA), vip (most important isomiRs/miRNAs), group (classification of the samples), p.value and R2PermutationVector obtained by the permutations.

If the option refinement is set to TRUE, then the following elements will appear: R2RefinedMatrix and componentsRefinedModel (R-squared coefficients of the PLS model only using the most important miRNAs/isomiRs). As well, p.valRefined and R2RefinedPermutationVector with p-value and R2 of the permutations where samples were randomized. And finally, p.valRefinedFixed and R2RefinedFixedPermutationVector with p-value and R2 of the permutations where miRNAs/isomiRs were randomized.

References

Examples

data(mirData)
Only miRNAs with > 10 reads in all samples.
ids <- isoCounts(mirData, minc=10, mins=6)
ids <- isoNorm(ids, formula=~group)
pls.ids = isoPLSDA(ids, "group", nperm = 2)
cat(paste0("pval:",pls.ids$p.val))
cat(paste0("components:",pls.ids$components))

isoPLSDAplot
Plot components from isoPLSDA analysis (pairs plot)

Description

Plot the most significant components that come from isoPLSDA analysis together with the density of the samples scores along those components.

Usage

isoPLSDAplot(pls, n = 2)

Arguments

pls output from isoPLSDA function.
n integer number of components to plot

Details

The function isoPLSDAplot helps to visualize the results from isoPLSDA. It will plot the samples using the significant components (t1, t2, t3 ...) from the PLS-DA analysis and the samples score distribution along the components. It uses ggpairs for the plot.
isoSelect

Value

ggpairs plot showing the scores for each sample using isomiRs miRNAs expression to explain variation.

data.frame object with a first column referring to the sample group, and the following columns referring to the score that each sample has for each component from the PLS-DA analysis.

Examples

```r
data(mirData)
# Only miRNAs with > 10 reads in all samples.
ids <- isoCounts(mirData, minc=10, mins=6)
ids <- isoNorm(ids, formula=~group)
pls.ids <- isoPLSDA(ids, "group", nperm = 2)
isoPLSDAplot(pls.ids)
```

isoSelect

Method to select specific miRNAs from an IsomirDataSeq object.

Description

This method allows to select a miRNA and all its isomiRs from the count matrix.

Usage

```r
isoSelect.IsomirDataSeq(object, mirna, minc = 10)
```

```r
## S4 method for signature 'IsomirDataSeq'
isoSelect(object, mirna, minc = 10)
```

Arguments

- `object` a IsomirDataSeq object.
- `mirna` string referring to the miRNA to show
- `minc` int minimum number of isomiR reads needed to be included in the table.

Value

DataFrame-class with count information. The row names show the isomiR names, and each of the columns shows the counts for this isomiR in that sample. Mainly, it will return the count matrix only for isomiRs belonging to the miRNA family given by the `mirna` parameter. IsomiRs need to have counts bigger than `minc` parameter at least in one sample to be included in the output.

Author(s)

Lorena Pantano

Examples

```r
data(mirData)
# To select isomiRs from let-7a-5p miRNA
# and with 10000 reads or more.
isoSelect(mirData, mirna="hsa-let-7a-5p", minc=10000)
```
isoTop

Heatmap of the top expressed isomiRs

Description

This function creates a heatmap with the top N isomiRs/miRNAs. It uses the matrix under `counts(ids)` to get the top expressed isomiRs/miRNAs using the average expression value and plot a heatmap with the raw counts for each sample.

Usage

```r
isoTop(ids, top = 20)
```

Arguments

- `ids`: object of class `IsomirDataSeq`
- `top`: number of isomiRs/miRNAs used

Examples

```r
data(mirData)
isoTop(mirData)
```

mirData

Example of IsomirDataSeq with human brain miRNA counts data

Description

This data set is the object return by `IsomirDataSeqFromFiles`. It contains miRNA count data from 6 samples: 3 newborns and 3 elderly human individuals (Somel et al, 2010). Use `colData` to see the experiment design.

Usage

```r
data("mirData")
```

Format

- a `IsomirDataSeq` class.

Author(s)

Lorena Pantano, 2016-04-07
Source

Data is available from GEO dataset under accession number GSE97285.

Every sample was analyzed with seqbuster tool, see http://seqcluster.readthedocs.org/mirna_annotation.html for more details. You can get same files running the small RNA-seq pipeline from https://github.com/chapmanb/bcbio-nextgen.

bcbio_nextgen was used for the full analysis.

```r
library(isomiRs) files = list.files(file.path(root_path), pattern = "mirbase-ready", recursive = T, full.names = T) metadata_fn = list.files(file.path(root_path), pattern = "summary.csv\$", recursive = T, full.names = T) metadata = read.csv(metadata_fn, row.names="sample_id") condition = names(metadata)[1] mirData <- IsomirDataSeqFromFiles(files[rownames(design)], metadata)
```

References

Index

AnnotationDb, 9
counts, 2, 6
counts, IsomirDataSeq-method (counts), 2
counts, IsomirDataSeq (counts), 2
counts<-, IsomirDataSeq, matrix-method (counts), 2
data.frame, 14
DESeqDataSet, 5, 6, 8
design, 3
design, IsomirDataSeq-method (design), 3
design<-, IsomirDataSeq, formula-method (design), 3
find_targets, 3
ggpairs, 13, 14
ggplot, 10, 11
isoCounts, 4, 5, 6
isoDE, 5, 6
IsomirDataSeq, 3–12, 15
IsomirDataSeq, IsomirDataSeq-class, 6
IsomirDataSeq-class, 6
IsomirDataSeqFromFile, 6, 7, 15
isoNetwork, 8, 11
isoNorm, 6, 9
isoPlot, 6, 10
isoPlotNet, 11
isoPlotPosition, 11
isoPLS, 6, 12, 12, 13
isoPLSDApplot, 13
isoSelect, 6, 14
isoSelect, IsomirDataSeq-method (isoSelect), 14
isoSelect, IsomirDataSeq (isoSelect), 14
isoTop, 15
list, 13
matrix, 2
mirData, 15
plsDA, 12
results, 6
rlog, 9
SummarizedExperiment, 3, 6, 8, 9

17