Package ‘lfa’

March 28, 2017

Title Logistic Factor Analysis for Categorical Data
Version 1.4.0
Date 2015-10-09
Author Wei Hao, Minsun Song, John D. Storey
Maintainer Wei Hao <whao@princeton.edu>, John D. Storey <jstorey@princeton.edu>
LazyData true
Description LFA is a method for a PCA analogue on Binomial data via estimation of latent structure in the natural parameter.
Imports corpcor
Depends R (>= 3.2)
Suggests knitr, ggplot2
VignetteBuilder knitr
License GPL-3
biocViews SNP, DimensionReduction, PrincipalComponent
BugReports https://github.com/StoreyLab/lfa/issues
URL https://github.com/StoreyLab/lfa
NeedsCompilation yes

R topics documented:

af ... 2
af.snp ... 2
center ... 3
centerscale 3
hgdp_subset 4
lfa .. 4
model.gof 5
pca_af .. 6
read.bed .. 6
read.tped.recode 7
trunc.svd 8

Index 9
af

Allele frequencies

Description

Compute matrix of individual-specific allele frequencies

Usage

af(X, LF, safety = FALSE)

Arguments

X a matrix of SNP genotypes, i.e. an integer matrix of 0’s, 1’s, and 2’s. Sparse matrices of class Matrix are not supported (yet).
LF Matrix of logistic factors, with intercept. Pass in the return value from lfa!
safety optional boolean to bypass checks on the genotype matrices, which require a non-trivial amount of computation.

Details

Computes the matrix of individual-specific allele frequencies, which has the same dimensions of the genotype matrix. Be warned that this function could use a ton of memory, as the return value is all doubles. It could be wise to pass only a selection of the SNPs in your genotype matrix to get an idea for memory usage. Use gc to check memory usage!

Value

Matrix of individual-specific allele frequencies.

Examples

LF = lfa(hgdp_subset, 4)
allele_freqs = af(hgdp_subset, LF)

af_snp

Allele frequencies for SNP

Description

Computes individual-specific allele frequencies for a single SNP.

Usage

af_snp(snp, LF)

Arguments

snp vector of 0’s, 1’s, and 2’s
LF Matrix of logistic factors, with intercept. Pass in the return value from lfa!
Value

vector of allele frequencies

center Matrix centering

Description

C routine to row-center a matrix

Usage

center(A)

Arguments

A matrix

Value

matrix same dimensions A but row centered

Examples

center(hgdp_subset)

centerscale Matrix centering and scaling

Description

C routine to row-center and scale a matrix

Usage

centerscale(A)

Arguments

A matrix

Value

matrix same dimensions A but row centered and scaled

Examples

centerscale(hgdp_subset)
hgdp_subset

HGDP subset

Description

Subset of the HGDP dataset.

Usage

`hgdp_subset`

Format

A matrix of 0’s, 1’s and 2’s.

Value

genotype matrix

Source

lfa

Logistic factor analysis.

Description

Logistic factor analysis.

Usage

`lfa(X, d, override = FALSE, safety = FALSE)`

Arguments

- **X**: A matrix of SNP genotypes, i.e. an integer matrix of 0’s, 1’s, and 2’s. Sparse matrices of class Matrix are not supported (yet).
- **d**: Number of logistic factors, including the intercept.
- **override**: Optional boolean to bypass Lanczos bidiagonalization SVD. Usually not advised unless encountering a bug in the SVD code.
- **safety**: Optional boolean to bypass checks on the genotype matrices, which require a non-trivial amount of computation.

Details

This function performs logistic factor analysis on SNP data. As it stands, we follow the convention where \(d = 1\) is intercept only, and for \(d > 1\) we compute \(d - 1\) singular vectors and postpend the intercept.
Value
matrix of logistic factors, with the intercept at the end.

Note
Genotype matrix is expected to be a matrix of integers with values 0, 1, and 2. Currently no support for missing values. Note that the coding of the SNPs does not affect the algorithm.

Examples
```
LF = lfa(hgdp_subset, 4)
dim(LF)
head(LF)
```

```
model.gof LFA model goodness of fit
```

Description
LFA model goodness of fit

Usage
```
model.gof(X, LF, B)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse matrices of class Matrix are not supported (yet).</td>
</tr>
<tr>
<td>LF</td>
<td>matrix of logistic factors</td>
</tr>
<tr>
<td>B</td>
<td>number of null datasets to generate - (B = 1) is usually sufficient. If computational time/power allows, a few extra (B) could be helpful</td>
</tr>
</tbody>
</table>

Details
This function returns p-values for LFA model goodness of fit based on a simulated null.

Value
vector of p-values for each SNP.

Note
Genotype matrix is expected to be a matrix of integers with values 0, 1, and 2. Currently no support for missing values. Note that the coding of the SNPs does not affect the algorithm.

Examples
```
LF = lfa(hgdp_subset, 4)
gof_4 = model.gof(hgdp_subset, LF, 3)
LF = lfa(hgdp_subset, 10)
gof_10 = model.gof(hgdp_subset, LF, 3)
hist(gof_4)
hist(gof_10)
```
pca_af

PCa Allele frequencies

Description
Compute matrix of individual-specific allele frequencies via PCA

Usage
pca_af(X, d, override = FALSE)

Arguments
X
a matrix of SNP genotypes, i.e. an integer matrix of 0’s, 1’s, and 2’s. Sparse matrices of class Matrix are not supported (yet).

d
number of logistic factors, including the intercept

override
onoptional boolean to bypass Lanczos bidiagonalization SVD. Usually not advised unless encountering a bug in the SVD code.

Details
This corresponds to algorithm 1 in the paper. Only used for comparison purposes.

Value
Matrix of individual-specific allele frequencies.

Examples
LF = lfa(hgdp_subset, 4)
allele_freqs_lfa = af(hgdp_subset, LF)
allele_freqs_pca = pca_af(hgdp_subset, 4, LF)
summary(abs(allele_freqs_lfa-allele_freqs_pca))

read.bed

File input: .bed

Description
Reads in genotypes in .bed format with corresponding bim and fam files

Usage
read.bed(bed.prefix)

Arguments
bed.prefix
Path leading to the bed, bim, and fam files.
Details

Use plink with –make-bed

Value

Genotype matrix

Examples

assuming you have PLINK format HapMap data from: http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml
run this in the unpacked folder
x = NULL
Not run: x = read.bed("hapmap_r23a")
Trunc.svd

Truncated singular value decomposition

Usage

```r
## S3 method for class 'svd'
trunc(A, d, adjust = 3, tol = 1e-10, V = NULL, 
      seed = NULL, ltrace = FALSE, override = FALSE)
```

Arguments

- **A**: matrix
- **d**: number of singular vectors
- **adjust**: extra singular vectors to calculate for accuracy
- **tol**: convergence criterion
- **V**: optional initial guess
- **seed**: seed
- **ltrace**: debugging output
- **override**: TRUE means we use fast.svd instead of the iterative algorithm (useful for small data or very high d).

Details

Performs singular value decomposition but only returns the first d singular vectors/values. The truncated SVD utilizes Lanczos bidiagonalization. See references.

This function was modified from the package irlba 1.0.1 (?) under GPL. The of the `crossprod()` calls with the C wrapper to `dgemv` is a dramatic difference in larger datasets. Since the wrapper is technically not a matrix multiplication function, it seemed wise to make a copy of the function.

Value

List with singular value decomposition.
Index

af, 2
af_snp, 2

center, 3
centerscale, 3

hgdp_subset, 4
lfa, 4, 7
model.gof, 5

pca_af, 6
read.bed, 6
read.tped.recode, 7

trunc.svd, 8