Package ‘limma’

December 21, 2016

Version 3.30.7
Date 2016-12-14
Title Linear Models for Microarray Data
Description Data analysis, linear models and differential expression for microarray data.
Author Gordon Smyth [cre,aut], Yifang Hu [ctb], Matthew Ritchie [ctb], Jeremy Silver [ctb], James Wittenhall [ctb], Davis McCarthy [ctb], Di Wu [ctb], Wei Shi [ctb], Belinda Phipson [ctb], Aaron Lun [ctb], Natalie Thorne [ctb], Alicia Oshlack [ctb], Carolyn de Graaf [ctb], Yunshun Chen [ctb], Mette Langaas [ctb], Egil Ferkingstad [ctb], Marcus Davy [ctb], Francois Pepin [ctb], Dongseok Choi [ctb]
Maintainer Gordon Smyth <smyth@wehi.edu.au>
License GPL (>=2)
Depends R (>= 2.3.0)
Imports grDevices, graphics, stats, utils, methods
Suggests affy, AnnotationDbi, BiasedUrn, Biobase, ellipse, GO.db, gplots, illuminaio, locfit, MASS, org.Hs.eg.db, splines, statmod (>= 1.2.2), vsn
URL http://bioinf.wehi.edu.au/limma
biocViews ExonArray, GeneExpression, Transcription, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneSetEnrichment, DataImport, Genetics, Bayesian, Clustering, Regression, TimeCourse, Microarray, microRNAArray, mRNAMicroarray, OneChannel, ProprietaryPlatforms, TwoChannel, RNASeq, BatchEffect, MultipleComparison, Normalization, Preprocessing, QualityControl
NeedsCompilation yes

R topics documented:

01.Introduction .. 5
02.Classes ... 6
03.ReadingData .. 7
04.Background .. 8
05.Normalization .. 9
06.LinearModels ... 10
R topics documented:

07.SingleChannel .. 12
08.Tests .. 12
09.Diagnostics ... 13
10.GeneSetTests ... 14
11.RNAseq ... 15
alias2Symbol .. 16
anova.MAList-method 17
arrayWeights .. 18
arrayWeightsQuick .. 20
as.data.frame ... 21
as.MAList ... 22
as.matrix .. 22
asMatrixWeights .. 23
auROC ... 24
aveduparrays ... 25
avedups .. 26
averagep .. 27
backgroundCorrect ... 28
barcodeplot .. 30
beadCountWeights .. 33
blockDiag .. 35
bwss ... 36
bwss.matrix .. 36
camera ... 37
cbind ... 40
changeLog .. 41
classifyTests ... 41
contrastAsCoef ... 43
contrasts.fit .. 44
controlStatus ... 46
coolmap .. 47
cumOverlap ... 48
decideTests .. 49
designI2M ... 51
detectionPValues .. 52
diffSplice ... 53
dim ... 54
dimnames ... 55
dupcor .. 56
ebayes ... 59
EList-class .. 62
exprs.MA ... 63
fitFDist .. 64
fitFMC ... 65
fitGammaIntercept .. 66
fitmixture ... 66
fitted.MArrayLM .. 68
genas ... 69
geneSetTest .. 71
getEAWP .. 73
getLayout .. 74
getSpacing .. 76
gls.series .. 77
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>goana</td>
</tr>
<tr>
<td>gridr</td>
</tr>
<tr>
<td>heatdiagram</td>
</tr>
<tr>
<td>helpMethods</td>
</tr>
<tr>
<td>ids2indices</td>
</tr>
<tr>
<td>imageplot</td>
</tr>
<tr>
<td>imageplot3by2</td>
</tr>
<tr>
<td>intraspotCorrelation</td>
</tr>
<tr>
<td>is.fullrank</td>
</tr>
<tr>
<td>isNumeric</td>
</tr>
<tr>
<td>kooperberg</td>
</tr>
<tr>
<td>LargeDataObject-class</td>
</tr>
<tr>
<td>limmaUsersGuide</td>
</tr>
<tr>
<td>lm.series</td>
</tr>
<tr>
<td>lmFit</td>
</tr>
<tr>
<td>lmscFit</td>
</tr>
<tr>
<td>loessFit</td>
</tr>
<tr>
<td>logcosh</td>
</tr>
<tr>
<td>ma3x3</td>
</tr>
<tr>
<td>makeContrasts</td>
</tr>
<tr>
<td>makeUnique</td>
</tr>
<tr>
<td>MAList-class</td>
</tr>
<tr>
<td>MArrayLM-class</td>
</tr>
<tr>
<td>mdplot</td>
</tr>
<tr>
<td>merge</td>
</tr>
<tr>
<td>mergeScans</td>
</tr>
<tr>
<td>modelMatrix</td>
</tr>
<tr>
<td>modifyWeights</td>
</tr>
<tr>
<td>mrlm</td>
</tr>
<tr>
<td>nec</td>
</tr>
<tr>
<td>normalizeBetweenArrays</td>
</tr>
<tr>
<td>normalizeCyclicLoess</td>
</tr>
<tr>
<td>normalizeForPrintorder</td>
</tr>
<tr>
<td>normalizeMedianAbsValues</td>
</tr>
<tr>
<td>normalizeQuantiles</td>
</tr>
<tr>
<td>normalizeRobustSpline</td>
</tr>
<tr>
<td>normalizeVSN</td>
</tr>
<tr>
<td>normalizeWithinArrays</td>
</tr>
<tr>
<td>normexp.fit</td>
</tr>
<tr>
<td>normexp.fit.control</td>
</tr>
<tr>
<td>normexp.fit.detection.p</td>
</tr>
<tr>
<td>normexp.signal</td>
</tr>
<tr>
<td>plotDensities</td>
</tr>
<tr>
<td>plotExons</td>
</tr>
<tr>
<td>plotFB</td>
</tr>
<tr>
<td>plotlines</td>
</tr>
<tr>
<td>plotMA</td>
</tr>
<tr>
<td>plotMA3by2</td>
</tr>
<tr>
<td>plotMD</td>
</tr>
<tr>
<td>plotMDS</td>
</tr>
<tr>
<td>plotPrintTipLoess</td>
</tr>
<tr>
<td>plotRLDF</td>
</tr>
</tbody>
</table>
R topics documented:

plotSA ... 151
plotSplice .. 152
plotWithHighlights .. 153
poolVar ... 154
predFCm ... 156
printHead ... 158
PrintLayout .. 158
printorder ... 159
printtipWeights ... 160
propexpr ... 162
propTrueNull ... 163
protectMetachar ... 165
qql ... 167
QualityWeights .. 167
rankSumTestWithCorrelation ... 168
read.columns .. 169
read.idat .. 171
read.ilmn ... 173
read.ilmn.targets ... 174
read.maimages .. 175
readGAL ... 179
readHeader ... 180
readImaGeneHeader .. 181
readSpotTypes .. 182
readTargets ... 183
removeBatchEffect .. 184
removeExt .. 185
residuals.MArrayLM .. 186
RGList-class ... 187
roast ... 188
romer ... 191
selectModel .. 194
squeezeVar ... 195
strsplit2 .. 197
subsetting ... 198
summary .. 199
targetsA2C ... 200
TestResults-class ... 201
tmixture ... 202
topGO ... 203
topRomer ... 204
topSplice ... 205
toptable .. 206
tricubeMovingAverage .. 209
trigammaInverse ... 210
trimWhiteSpace .. 211
uniquegenelist ... 211
unwrapdups ... 212
venn ... 213
volcanoplot .. 214
voom ... 216
vooma ... 217
01. Introduction

Introduction to the LIMMA Package

Description

LIMMA is a library for the analysis of gene expression microarray data, especially the use of linear models for analysing designed experiments and the assessment of differential expression. LIMMA provides the ability to analyse comparisons between many RNA targets simultaneously in arbitrary complicated designed experiments. Empirical Bayesian methods are used to provide stable results even when the number of arrays is small. The linear model and differential expression functions apply to all gene expression technologies, including microarrays, RNA-seq and quantitative PCR.

Details

There are three types of documentation available:

1. The LIMMA User’s Guide can be reached through the "User Guides and Package Vignettes" links at the top of the LIMMA contents page. The function `limmaUsersGuide` gives the file location of the User’s Guide.

2. An overview of limma functions grouped by purpose is contained in the numbered chapters at the foot of the LIMMA package index page, of which this page is the first.

3. The LIMMA contents page gives an alphabetical index of detailed help topics.

The function `changeLog` displays the record of changes to the package.

Author(s)

Gordon Smyth, with contributions from many colleagues

References

02. Classes

This package defines the following data classes.

RGList A class used to store raw intensities as they are read in from an image analysis output file, usually by `read.maimages`.

MAList Intensities converted to M-values and A-values, i.e., to with-spot and whole-spot contrasts on the log-scale. Usually created from an RGList using `MA.RG` or `normalizeWithinArrays`. Objects of this class contain one row for each spot. There may be more than one spot and therefore more than one row for each probe.

EListRaw A class to store raw intensities for one-channel microarray data. May or may not be background corrected. Usually created by `read.maimages`.

EList A class to store normalized log2 expression values for one-channel microarray data. Usually created by `normalizeBetweenArrays`.

MArrayLM Store the result of fitting gene-wise linear models to the normalized intensities or log-ratios. Usually created by `lmFit`. Objects of this class normally contain only one row for each unique probe.

TestResults Store the results of testing a set of contrasts equal to zero for each probe. Usually created by `decideTests`. Objects of this class normally contain one row for each unique probe.

All these data classes obey many analogies with matrices. In the case of RGList, MAList, EListRaw and EList, rows correspond to spots or probes and columns to arrays. In the case of MArrayLM, rows correspond to unique probes and the columns to parameters or contrasts. The functions `summary`, `dim`, `length`, `ncol`, `nrow`, `dimnames`, `rownames`, `colnames` have methods for these classes. Objects of any of these classes may be subbed. Multiple data objects may be combined by rows (to add extra probes) or by columns (to add extra arrays).

Furthermore all of these classes may be coerced to actually be of class `matrix` using `as.matrix`, although this entails loss of information. Fitted model objects of class `MArrayLM` can be coerced to class `data.frame` using `as.data.frame`.

The first three classes belong to the virtual class `LargeDataObject`. A show method is defined for `LargeDataObject` which uses the utility function `printHead`.

Author(s)

Gordon Smyth
03. Reading Data

See Also

Description

This help page gives an overview of LIMMA functions used to read data from files.

Reading Target Information

The function `readTargets` is designed to help with organizing information about which RNA sample is hybridized to each channel on each array and which files store information for each array.

Reading Intensity Data

The first step in a microarray data analysis is to read into R the intensity data for each array provided by an image analysis program. This is done using the function `read.maimages`. `read.maimages` optionally constructs quality weights for each spot using quality functions listed in `QualityWeights`.

If the data is two-color, then `read.maimages` produces an `RGList` object. If the data is one-color (single channel) then an `EListRaw` object is produced. In either case, `read.maimages` stores only the information required from each image analysis output file. `read.maimages` uses utility functions `removeExt`, `read.imagene` and `read.columns`. There are also a series of utility functions which read the header information from image output files including `readGPRHeader`, `readImaGeneHeader` and `readGenericHeader`.

`read.ilmn` reads probe or gene summary profile files from Illumina BeadChips, and produces an `ElistRaw` object.

`read.idat` reads Illumina files in IDAT format, and produces an `EListRaw` object. `detectionPValues` can be used to add detection p-values.

The function `as.MAList` can be used to convert a `marrayNorm` object to an `MAList` object if the data was read and normalized using the marray and marrayNorm packages.

Reading the Gene List

Most image analysis software programs provide gene IDs as part of the intensity output files, for example GenePix, Imagene and the Stanford Microarray Database do this. In other cases the probe ID and annotation information may be in a separate file. The most common format for the probe annotation file is the GenePix Array List (GAL) file format. The function `readGAL` reads information from a GAL file and produces a data frame with standard column names.

The function `getLayout` extracts from the GAL-file data frame the print layout information for a spotted array. The functions `gridr`, `gride`, `spotr` and `spotc` use the extracted layout to compute grid positions and spot positions within each grid for each spot. The function `printorder` calculates the printorder, plate number and plate row and column position for each spot given information about the printing process. The utility function `getSpacing` converts character strings specifying spacings of duplicate spots to numeric values.
The Australian Genome Research Facility in Australia often produces GAL files with composite probe IDs or names consisting of multiple strings separated by a delimiter. These can be separated into name and annotation information using `strsplit2`.

If each probe is printed more than once of the arrays in a regular pattern, then `uniquegenelist` will remove duplicate names from the gal-file or gene list.

Identifying Control Spots

The functions `readSpotTypes` and `controlStatus` assist with separating control spots from ordinary genes in the analysis and data exploration.

Manipulating Data Objects

`cbind`, `rbind`, `merge` allow different `RGList` or `MAList` objects to be combined. `cbind` combines data from different arrays assuming the layout of the arrays to be the same. `merge` can combine data even when the order of the probes on the arrays has changed. `merge` uses utility function `makeUnique`.

Author(s)

Gordon Smyth

See Also

04.Background

Topic: Background Correction

Description

This page deals with background correction methods provided by the `backgroundCorrect`, `kooperberg` or `neqc` functions. Microarray data is typically background corrected by one of these functions before normalization and other downstream analysis.

`backgroundCorrect` works on matrices, `EListRaw` or `RGList` objects, and calls `backgroundCorrect.matrix`.

The `movingmin` method of `backgroundCorrect` uses utility functions `ma3x3.matrix` and `ma3x3.spottedarray`.

The `normexp` method of `backgroundCorrect` uses utility functions `normexp.fit` and `normexp.signal`.

`kooperberg` is a Bayesian background correction tool designed specifically for two-color GenePix data. It is computationally intensive and requires several additional columns from the GenePix data files. These can be read in using `read.maimages` and specifying the `other.columns` argument.

`neqc` is for single-color data. It performs `normexp` background correction and quantile normalization using control probes. It uses utility functions `normexp.fit.control` and `normexp.signal`. If `robust=TRUE`, then `normexp.fit.control` uses the function `huber` in the MASS package.

Author(s)

Gordon Smyth
See Also

05.Normalization Topic: Normalization of Microarray Data

Description
This page gives an overview of the LIMMA functions available to normalize data from single-channel or two-colour microarrays. Smyth and Speed (2003) give an overview of the normalization techniques implemented in the functions for two-colour arrays.

Usually data from spotted microarrays will be normalized using normalizeWithinArrays. A minority of data will also be normalized using normalizeBetweenArrays if diagnostic plots suggest a difference in scale between the arrays.

In rare circumstances, data might be normalized using normalizeForPrintorder before using normalizeWithinArrays.

All the normalization routines take account of spot quality weights which might be set in the data objects. The weights can be temporarily modified using modifyWeights to, for example, remove ratio control spots from the normalization process.

If one is planning analysis of single-channel information from the microarrays rather than analysis of differential expression based on log-ratios, then the data should be normalized using a single channel-normalization technique. Single channel normalization uses further options of the normalizeBetweenArrays function. For more details see the LIMMA User's Guide which includes a section on single-channel normalization.

normalizeWithinArrays uses utility functions MA.RG, loessFit and normalizeRobustSpline.

normalizeBetweenArrays is the main normalization function for one-channel arrays, as well as an optional function for two-colour arrays. normalizeBetweenArrays uses utility functions normalizeMedianAbsValues, normalizeMedianAbsValues, normalizeQuantiles and normalizeCyclicLoess, none of which need to be called directly by users.

neqc is a between array normalization function customized for Illumina BeadChips.

The function normalizeVSN is also provided as an interface to the vsn package. It performs variance stabilizing normalization, an algorithm which includes background correction, within and between normalization together, and therefore doesn’t fit into the paradigm of the other methods.

removeBatchEffect can be used to remove a batch effect, associated with hybridization time or some other technical variable, prior to unsupervised analysis.

Author(s)
Gordon Smyth

References
See Also

06.LinearModels

Topic: Linear Models for Microarrays

Description

This page gives an overview of the LIMMA functions available to fit linear models and to interpret the results. This page covers models for two color arrays in terms of log-ratios or for single-channel arrays in terms of log-intensities. If you wish to fit models to the individual channel log-intensities from two colour arrays, see 07.SingleChannel.

The core of this package is the fitting of gene-wise linear models to microarray data. The basic idea is to estimate log-ratios between two or more target RNA samples simultaneously. See the LIMMA User’s Guide for several case studies.

Fitting Models

The main function for model fitting is \texttt{lmFit}. This is recommended interface for most users. \texttt{lmFit} produces a fitted model object of class \texttt{MArrayLM} containing coefficients, standard errors and residual standard errors for each gene. \texttt{lmFit} calls one of the following three functions to do the actual computations:

- \texttt{lm.series} Straightforward least squares fitting of a linear model for each gene.
- \texttt{mrlm} An alternative to \texttt{lm.series} using robust regression as implemented by the \texttt{rlm} function in the MASS package.
- \texttt{gls.series} Generalized least squares taking into account correlations between duplicate spots (i.e., replicate spots on the same array) or related arrays. The function \texttt{duplicateCorrelation} is used to estimate the inter-duplicate or inter-block correlation before using \texttt{gls.series}.

All the functions which fit linear models use \texttt{getEAW} to extract data from microarray data objects, and \texttt{unwrapdups} which provides an unified method for handling duplicate spots.

Forming the Design Matrix

\texttt{lmFit} has two main arguments, the expression data and the design matrix. The design matrix is essentially an indicator matrix which specifies which target RNA samples were applied to each channel on each array. There is considerable freedom in choosing the design matrix - there is always more than one choice which is correct provided it is interpreted correctly.

Design matrices for Affymetrix or single-color arrays can be created using the function \texttt{model.matrix} which is part of the R base package. The function \texttt{modelMatrix} is provided to assist with creation of an appropriate design matrix for two-color microarray experiments. For direct two-color designs, without a common reference, the design matrix often needs to be created by hand.

Making Comparisons of Interest

Once a linear model has been fit using an appropriate design matrix, the command \texttt{makeContrasts} may be used to form a contrast matrix to make comparisons of interest. The fit and the contrast matrix are used by \texttt{contrasts.fit} to compute fold changes and t-statistics for the contrasts of interest. This is a way to compute all possible pairwise comparisons between treatments for example in an experiment which compares many treatments to a common reference.
Assessing Differential Expression

After fitting a linear model, the standard errors are moderated using a simple empirical Bayes model using eBayes or treat.ebayes is an older version of eBayes. A moderated t-statistic and a log-odds of differential expression is computed for each contrast for each gene. treat tests whether log-fold-changes are greater than a threshold rather than merely different to zero.

eBayes and eBayes use internal functions squeezeVar, fitFDist, tmixture.matrix and tmixture.vector.

The function zscoreT is sometimes used for computing z-score equivalents for t-statistics so as to place t-statistics with different degrees of freedom on the same scale. zscoreGamma is used the same way with standard deviations instead of t-statistics. These functions are for research purposes rather than for routine use.

Summarizing Model Fits

After the above steps the results may be displayed or further processed using:

toptable or topTable Presents a list of the genes most likely to be differentially expressed for a given contrast.
topTableF Presents a list of the genes most likely to be differentially expressed for a given set of contrasts.
volcanoplot Volcano plot of fold change versus the B-statistic for any fitted coefficient.
plotlines Plots fitted coefficients or log-intensity values for time-course data.
genas Estimates and plots biological correlation between two coefficients.
write.fit Writes an MarrayLM object to a file. Note that if fit is an MarrayLM object, either write.fit or write.table can be used to write the results to a delimited text file.

For multiple testing functions which operate on linear model fits, see 08.Tests.

Model Selection

selectModel provides a means to choose between alternative linear models using AIC or BIC information criteria.

Author(s)

Gordon Smyth

References

See Also

07. SingleChannel

Topic: Individual Channel Analysis of Two-Color Microarrays

Description

This page gives an overview of the LIMMA functions fit linear models to two-color microarray data in terms of the log-intensities rather than log-ratios.

The function `intraspotCorrelation` estimates the intra-spot correlation between the two channels. The regression function `lmscFit` takes the correlation as an argument and fits linear models to the two-color data in terms of the individual log-intensities. The output of `lmscFit` is an `MArrayLM` object just the same as from `lmFit`, so inference proceeds in the same way as for log-ratios once the linear model is fitted. See [06.LinearModels](#).

The function `targetsA2C` converts two-color format target data frames to single channel format, i.e., converts from array-per-line to channel-per-line, to facilitate the formulation of the design matrix.

Author(s)

Gordon Smyth

See Also

08. Tests

Topic: Hypothesis Testing for Linear Models

Description

LIMMA provides a number of functions for multiple testing across both contrasts and genes. The starting point is an `MArrayLM` object, called `fit`, say, resulting from fitting a linear model and running eBayes and, optionally, `contrasts.fit`. See [06.LinearModels](#) or [07.SingleChannel](#) for details.

Multiple testing across genes and contrasts

The key function is `decideTests`. This function writes an object of class `TestResults`, which is basically a matrix of -1, 0 or 1 elements, of the same dimension as `fit$coefficients`, indicating whether each coefficient is significantly different from zero. A number of different multiple testing strategies are provided. The function calls other functions `classifyTestsF`, `classifyTestsP` and `classifyTestsT` which implement particular strategies. The function `FStat` provides an alternative interface to `classifyTestsF` to extract only the overall moderated F-statistic.

`selectModel` chooses between linear models for each probe using AIC or BIC criteria. This is an alternative to hypothesis testing and can choose between non-nested models.

A number of other functions are provided to display the results of `decideTests`. The functions `heatDiagram` (or the older version `heatdiagram`) displays the results in a heat-map style display. This allows visual comparison of the results across many different conditions in the linear model.

The functions `vennCounts` and `vennDiagram` provide Venn diagram style summaries of the results. Summary and show method exists for objects of class `TestResults`.

The results from `decideTests` can also be included when the results of a linear model fit are written to a file using `write.fit`.
Gene Set Tests

Competitive gene set testing for an individual gene set is provided by `wilcoxGST` or `geneSetTest`, which permute genes. The gene set can be displayed using `barcodeplot`.

Self-contained gene set testing for an individual set is provided by `roast`, which uses rotation technology, analogous to permuting arrays.

Gene set enrichment analysis for a large database of gene sets is provided by `romer`. `topRomer` is used to rank results from `romer`.

The functions `alias2Symbol` and `alias2SymbolTable` are provided to help match gene sets with microarray probes by way of official gene symbols.

Global Tests

The function `genas` can test for associations between two contrasts in a linear model.

Given a set of p-values, the function `convest` can be used to estimate the proportion of true null hypotheses.

When evaluating test procedures with simulated or known results, the utility function `auROC` can be used to compute the area under the Receiver Operating Curve for the test results for a given probe.

Author(s)

Gordon Smyth

See Also

Description

This page gives an overview of the LIMMA functions available for microarray quality assessment and diagnostic plots.

This package provides an anova method which is designed for assessing the quality of an array series or of a normalization method. It is not designed to assess differential expression of individual genes. `anova` uses utility functions `bwss` and `bwss.matrix`.

The function `arrayWeights` estimates the empirical reliability of each array following a linear model fit.

Diagnostic plots can be produced by

- `imageplot` Produces a spatial picture of any spot-specific measure from an array image. If the log-ratios are plotted, then this produces an in-silico representation of the well known false-color TIFF image of an array. `imageplot3by2` will write imageplots to files, six plots to a page.

- `plotFB` Plots foreground versus background log-intensities.
Mean-difference plots. Very versatile plot. For two color arrays, this plots the M-values vs A-values. For single channel technologies, this plots one column of log-expression values vs the average of the other columns. For fitted model objects, this plots a log-fold-change versus average log-expression. mdplot can also be useful for comparing two one-channel microarrays.

MA-plots, essentially the same as mean-difference plots. plotMA3by2 will write MA-plots to files, six plots to a page.

Scatterplots with highlights. This is the underlying engine for plotMD and plotMA.

Produces a grid of MA-plots, one for each print-tip group on an array, together with the corresponding lowess curve. Intended to help visualize print-tip loess normalization.

For an array, produces a scatter plot of log-ratios or log-intensities by print order.

Individual channel densities for one or more arrays. An essential plot to accompany between array normalization, especially quantile normalization.

Multidimensional scaling plot for a set of arrays. Useful for visualizing the relationship between the set of samples.

Sigma vs A plot. After a linear model is fitted, this checks constancy of the variance with respect to intensity level.

plotPrintTipLoess uses utility functions gridr and gridc. plotDensities uses utility function RG.MA.

Gordon Smyth

Self-contained gene set testing for one set.

Self-contained gene set testing for many sets.

Fast approximation to mroast, especially useful when heteroscedasticity of genes can be ignored.

Competitive gene set testing.

Gene set enrichment analysis.

Convert gene sets consisting of vectors of gene identifiers into a list of indices suitable for use in the above functions.

This page gives an overview of the LIMMA functions for gene set testing and pathway analysis.

Self-contained gene set testing for one set.

Self-contained gene set testing for many sets.

Fast approximation to mroast, especially useful when heteroscedasticity of genes can be ignored.

Competitive gene set testing.

Gene set enrichment analysis.

Convert gene sets consisting of vectors of gene identifiers into a list of indices suitable for use in the above functions.
This page gives an overview of LIMMA functions to analyze RNA-seq data.

voom Transform RNA-seq or ChIP-seq counts to log counts per million (log-cpm) with associated precision weights. After this transformation, RNA-seq or ChIP-seq data can be analyzed using the same functions as would be used for microarray data.

voomWithQualityWeights Combines the functionality of voom and arrayWeights.

diffSplice Test for differential exon usage between experimental conditions.

topSplice Show a data.frame of top results from diffSplice.

plotSplice Plot results from diffSplice.

plotExons Plot logFC for individual exons for a given gene.

References

See Also

See also the edgeR package for normalization and data summaries of RNA-seq data, as well as for alternative differential expression methods based on the negative binomial distribution. voom accepts DGEList objects and normalization factors from edgeR.

Convert Gene Aliases to Official Gene Symbols

Description
Maps gene alias names to official gene symbols.

Usage

```r
alias2Symbol(alias, species = "Hs", expand.symbols = FALSE)
alias2SymbolTable(alias, species = "Hs")
```

Arguments

- `alias`: character vector of gene aliases
- `species`: character string specifying the species. Possible values include "Hs" (human), "Mm" (mouse), "Rn" (rat), "Dm" (fly) or "Pt" (chimpanzee), but other values are possible if the corresponding organism package is available.
- `expand.symbols`: logical. This affects those elements of `alias` that are the official gene symbol for one gene and also an alias for another gene. If FALSE, then these elements will just return themselves. If TRUE, then all the genes for which they are aliases will be returned.

Details
Aliases are mapped via NCBI Entrez Gene identity numbers using Bioconductor organism packages.

`alias2Symbol` maps a set of aliases to a set of symbols, without necessarily preserving order. The output vector may be longer or shorter than the original vector, because some aliases might not be found and some aliases may map to more than one symbol. `alias2SymbolTable` maps each alias to a gene symbol and returns a table with one row for each alias. If an alias maps to more than one symbol, then the first one found is returned.

`species` can be any character string XX for which an organism package org.XX.eg.db exists and is installed. The only requirement of the organism package is that it contains objects org.XX.egALIAS2EG and org.XX.egSYMBOL linking the aliases and symbols to Entrez Gene_ids. At the time of writing (June 2016), the following organism packages are available from Bioconductor:

<table>
<thead>
<tr>
<th>Package</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>org.Ag.eG.db</td>
<td>Anopheles</td>
</tr>
<tr>
<td>org.Bt.eG.db</td>
<td>Bovine</td>
</tr>
<tr>
<td>org.Ce.eG.db</td>
<td>Worm</td>
</tr>
<tr>
<td>org.Cf.eG.db</td>
<td>Canine</td>
</tr>
<tr>
<td>org.Dm.eG.db</td>
<td>Fly</td>
</tr>
<tr>
<td>org.Dr.eG.db</td>
<td>Zebrafish</td>
</tr>
<tr>
<td>org.EcK12.eG.db</td>
<td>E coli strain K12</td>
</tr>
<tr>
<td>org.EcSakai.eG.db</td>
<td>E coli strain Sakai</td>
</tr>
<tr>
<td>org.Gg.eG.db</td>
<td>Chicken</td>
</tr>
<tr>
<td>org.Hs.eG.db</td>
<td>Human</td>
</tr>
<tr>
<td>org.Mm.eG.db</td>
<td>Mouse</td>
</tr>
<tr>
<td>org.Mmu.eG.db</td>
<td>Rhesus</td>
</tr>
</tbody>
</table>
anova.MAList-method

Value

Character vector of gene symbols. alias2SymbolTable returns a vector of the same length and order as alias, including NA values where no gene symbol was found. alias2Symbol returns an unordered vector that may be longer or shorter than alias.

Author(s)

Gordon Smyth and Yifang Hu

See Also

This function is often used to assist gene set testing, see 10.GeneSetTests.

Examples

alias2Symbol(c("PUMA","NOXA","BIM"), species="Hs")
alias2Symbol("RS1", expand=TRUE)

Description

Analysis of variance method for objects of class MAList. Produces an ANOVA table useful for quality assessment by decomposing between and within gene sums of squares for a series of replicate arrays. This method produces a single ANOVA Table rather than one for each gene and is not used to identify differentially expressed genes.

Usage

anova(object, design=NULL, ndups=2,...)

Arguments

object object of class MAList. Missing values in the M-values are not allowed.
design numeric vector or single-column matrix containing the design matrix for linear model. The length of the vector or the number of rows of the matrix should agree with the number of columns of M.
ndups number of duplicate spots. Each gene is printed ndups times in adjacent spots on each array.
... other arguments are not used
Details

This function aids in quality assessment of microarray data and in the comparison of normalization methodologies. It applies only to replicated two-color experiments in which all the arrays are hybridized with the same RNA targets, possibly with dye-swaps, so the design matrix should have only one column. The function has not been heavily used and is somewhat experimental.

Value

An object of class anova containing rows for between genes, between arrays, gene x array interaction, and between duplicate with array sums of squares. Variance components are estimated for each source of variation.

Note

This function does not give valid results in the presence of missing M-values.

Author(s)

Gordon Smyth

See Also

MAList-class, bwss.matrix, anova.

An overview of quality assessment and diagnostic functions in LIMMA is given by 09.Diagnostics.

arrayWeights

Array Quality Weights

Description

Estimates relative quality weights for each array in a multi-array experiment.

Usage

arrayWeights(object, design = NULL, weights = NULL, var.design = NULL, method = "genebygene", maxiter = 50, tol = 1e-10, trace=FALSE)
arrayWeightsSimple(object, design = NULL, maxiter = 100, tol = 1e-6, maxratio = 100, trace=FALSE)

Arguments

object object of class numeric, matrix, MAList, marrayNorm, ExpressionSet or PLMset containing log-ratios or log-values of expression for a series of microarrays.

design the design matrix of the microarray experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates.

weights optional numeric matrix containing prior weights for each spot.

var.design design matrix for the variance model. Defaults to the sample-specific model (i.e. each sample has a distinct variance) when NULL.
arrayWeights

method character string specifying the estimating algorithm to be used. Choices are "genebygene" and "reml".
maxiter maximum number of iterations allowed.
tol convergence tolerance.
maxratio maximum ratio between largest and smallest weights before iteration stops
trace logical variable. If true then output diagnostic information at each iteration of the "reml" algorithm, or at every 1000th iteration of the "genebygene" algorithm.

Details

The relative reliability of each array is estimated by measuring how well the expression values for that array follow the linear model.

The method is described in Ritchie et al (2006). A heteroscedastic model is fitted to the expression values for each gene by calling the function lm.wfit. The dispersion model is fitted to the squared residuals from the mean fit, and is set up to have array specific coefficients, which are updated in either full REML scoring iterations, or using an efficient gene-by-gene update algorithm. The final estimates of these array variances are converted to weights.

The data object object is interpreted as for lmFit. In particular, the arguments design and weights will be extracted from the data object if available and do not normally need to be set explicitly in the call; if any of these are set in the call then they will over-ride the slots or components in the data object.

arrayWeightsSimple is a fast version of arrayWeights with method="reml", no prior weights and no missing values.

Value

A vector of array weights.

Author(s)

Matthew Ritchie and Gordon Smyth

References

See Also

voomWithQualityWeights

An overview of linear model functions in limma is given by 06.LinearModels.

Examples

Not run:
Subset of data from ApoAI case study in Limma User's Guide
RG <- backgroundCorrect(RG, method="normexp")
MA <- normalizeWithinArrays(RG)
targets <- data.frame(Cy3=rep("Pool",6),Cy5=I(c("WT","WT","WT","KO","KO","KO")))
design <- modelMatrix(targets, ref="Pool")
arrayw <- arrayWeightsSimple(MA, design)
fit <- lmFit(MA, design, weights=arrayw)
fit2 <- contrasts.fit(fit, contrasts=c(-1,1))
fit2 <- eBayes(fit2)
Use of array weights increases the significance of the top genes
topTable(fit2)

End(Not run)

arrayWeightsQuick
Array Quality Weights

Description

Estimates relative quality weights for each array in a multi-array experiment with replication.

Usage

arrayWeightsQuick(y, fit)

Arguments

- `y` the data object used to estimate fit. Can be of any class which can be coerced to matrix, including matrix, MAList, marrayNorm or ExpressionSet.
- `fit` MArrayLM fitted model object

Details

Estimates the relative reliability of each array by measuring how well the expression values for that array follow the linear model.

This is a quick and dirty version of `arrayWeights`.

Value

Numeric vector of weights of length `ncol(fit)`.

Author(s)

Gordon Smyth

References

See Also

See `arrayWeights`. An overview of LIMMA functions for reading data is given in 03.ReadingData.
Examples

```r
## Not run:
fit <- lmFit(y, design)
arrayWeightsQuick(y, fit)
## End(Not run)
```

as.data.frame

Turn a Microarray Linear Model Object into a Dataframe

Description

Turn a MArrayLM object into a data.frame.

Usage

```r
## S3 method for class 'MArrayLM'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x`: an object of class MArrayLM
- `row.names`: NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
- `optional`: logical. If TRUE, setting row names and converting column names (to syntactic names) is optional.
- `...`: additional arguments to be passed to or from methods.

Details

This method combines all the components of `x` which have a row for each probe on the array into a data.frame.

Value

A data.frame.

Author(s)

Gordon Smyth

See Also

- `as.data.frame` in the base package.
- `02.Classes` gives an overview of data classes used in LIMMA. `06.LinearModels` gives an overview of linear model functions in LIMMA.
as.MAList

Convert `marrayNorm` Object to an `MAList` Object

Description

Convert `marrayNorm` Object to an `MAList` Object

Usage

```r
as.MAList(object)
```

Arguments

- `object` an `marrayNorm` object

Details

The `marrayNorm` class is defined in the `marray` package. This function converts a normalized two color microarray data object created by the `marray` package into the corresponding `limma` data object.

Note that such conversion is not necessary to access the `limma` linear modelling functions, because `lmFit` will operate on a `marrayNorm` data object directly.

Value

Object of class `MAList`

Author(s)

Gordon Smyth

See Also

- `02.Classes` gives an overview of all the classes defined by this package.
- The `marrayNorm` class is defined in the `marray` package.

as.matrix

Turn a Microarray Data Object into a Matrix

Description

Turn a microarray data object into a numeric matrix by extracting the expression values.

Usage

```r
## S3 method for class 'MAList'
as.matrix(x,...)
```
asMatrixWeights

Arguments

x an object of class RGList, MAList, EList, MArrayLM, marrayNorm, PLMset, ExpressionSet, LumiBatch or vsn.
... additional arguments, not used for these methods.

Details

These methods extract the matrix of log-ratios, for MAList or marrayNorm objects, or the matrix of expression values for other expression objects such as EList or ExpressionSet. For MArrayLM objects, the matrix of fitted coefficients is extracted.

These methods involve loss of information, so the original data object is not recoverable.

Value

A numeric matrix.

Author(s)

Gordon Smyth

See Also

as.matrix in the base package or exprs in the Biobase package.

02.Classes gives an overview of data classes used in LIMMA.

Description

Convert probe-weights or array-weights to a matrix of weights.

Usage

asMatrixWeights(weights, dim)

Arguments

weights numeric matrix of weights, rows corresponding to probes and columns to arrays. Or vector of probe weights. Or vector of array weights.
dim numeric dimension vector of length 2, i.e., the number of probes and the number of arrays.

Details

This function converts a vector or probe-weights or a vector of array-weights to a matrix of the correct size. Probe-weights are repeated across rows while array-weights are repeated down the columns. If weights has length equal to the number of probes, it is assumed to contain probe-weights. If it has length equal to the number of arrays, it is assumed to contain array-weights. If the number of probes is equal to the number of arrays, then weights is assumed to contain array-weights if it is a row-vector of the correct size, i.e., if it is a matrix with one row.

This function is used internally by the linear model fitting functions in limma.
Value

Numeric matrix of dimension dim.

Author(s)

Gordon Smyth

See Also

modifyWeights.

An overview of functions in LIMMA used for fitting linear models is given in 06.LinearModels.

Examples

asMatrixWeights(1:3,c(4,3))
asMatrixWeights(1:4,c(4,3))

auROC

Area Under Receiver Operating Curve

Description

Compute exact area under the ROC for empirical data.

Usage

auROC(truth, stat=NULL)

Arguments

truth logical vector, or numeric vector of 0s and 1s, indicating whether each case is a true positive.
stat numeric vector containing test statistics used to rank cases, from largest to smallest. If NULL, then truth is assumed to be already sorted in decreasing test statistic order.

Details

A receiver operating curve (ROC) is a plot of sensitivity (true positive rate) versus 1-specificity (false positive rate) for a statistical test or binary classifier. The area under the ROC is a well accepted measure of test performance. It is equivalent to the probability that a randomly chosen pair of cases is correctly ranked.

Here we consider a test statistic stat, with larger values being more significant, and a vector truth indicating whether the alternative hypothesis is in fact true. truth==TRUE or truth==1 indicates a true discovery and truth==FALSE or truth==0 indicates a false discovery. Correct ranking here means that truth[i] is greater than or equal to truth[j] when stat[i] is greater than stat[j]. The function computes the exact area under the empirical ROC curve defined by truth when ordered by stat.

If stat contains ties, then auROC returns the average area under the ROC for all possible orderings of truth for tied stat values.

The area under the curve is undefined if truth is all TRUE or all FALSE or if truth or stat contain missing values.

Value

Numeric value between 0 and 1 giving area under the curve, 1 being perfect and 0 being the minimum.

Author(s)

Gordon Smyth

Examples

```r
auROC(c(1,1,0,0,0))
truth <- rbinom(30,size=1,prob=0.2)
stat <- rchisq(30,df=2)
auROC(truth,stat)
```
Author(s)
Gordon Smyth

See Also
avereps.
02.Classes gives an overview of data classes used in LIMMA.

Examples

```r
x <- matrix(rnorm(8*3),8,3)
colnames(x) <- c("a","a","b")
avearrays(x)
```

Description
Condense a microarray data object so that values for within-array replicate spots are replaced with their average.

Usage

```r
## Default S3 method:
avedups(x, ndups=2, spacing=1, weights=NULL)
## S3 method for class 'MAList'
avedups(x, ndups=x$printer$ndups, spacing=x$printer$spacing, weights=x$weights)
## S3 method for class 'EList'
avedups(x, ndups=x$printer$ndups, spacing=x$printer$spacing, weights=x$weights)
```

Arguments

- `x`: a matrix-like object, usually a matrix, MAList or EList object.
- `ndups`: number of within-array replicates for each probe.
- `spacing`: number of spots to step from a probe to its duplicate.
- `weights`: numeric matrix of spot weights.

Details
A new data object is computed in which each probe is represented by the (weighted) average of its duplicate spots. For an MAList object, the components M and A are both averaged in this way. For an EList object, the component E is averaged in this way.

If `x` is of mode "character", then the duplicate values are assumed to be equal and the first is taken as the average.

Value
A data object of the same class as `x` with 1/ndups as many rows.
avereps

Author(s)

Gordon Smyth

See Also

avereps.

02.Classes gives an overview of data classes used in LIMMA.

avereps

Average Over Irregular Replicate Probes

Description

Condense a microarray data object so that values for within-array replicate probes are replaced with their average.

Usage

```r
## Default S3 method:
avereps(x, ID=rownames(x), ...)
## S3 method for class 'MAList'
avereps(x, ID=NULL, ...)
## S3 method for class 'EList'
avereps(x, ID=NULL, ...)
```

Arguments

- `x` a matrix-like object, usually a matrix, MAList or EList object.
- `ID` probe identifier.
- `...` other arguments are not currently used.

Details

A new data object is computed in which each probe ID is represented by the average of its replicate spots or features.

For an MAList object, the components `M` and `A` are both averaged in this way, as are weights and any matrices found in `object$other`. For an MAList object, ID defaults to `MA$genes$ID` if that exists, otherwise to `rownames(MA$M)`.

EList objects are similar, except that the `E` component is averaged instead of `M` and `A`.

If `x` is of mode "character", then the replicate values are assumed to be equal and the first is taken as the average.

Value

A data object of the same class as `x` with a row for each unique value of `ID`.

Note

This function should only be applied to normalized log-expression values, and not to raw unlogged expression values. It will generate an error message if applied to RGList or EListRaw objects.
Author(s)
Gordon Smyth

See Also
avedups, averearrays. Also rowsum in the base package.

02.Classes gives an overview of data classes used in LIMMA.

Examples

```r
x <- matrix(rnorm(8*3),8,3)
colnames(x) <- c("S1","S2","S3")
rownames(x) <- c("b","a","a","c","c","b","b","b")
ave reps(x)
```

backgroundCorrect

Correct Intensities for Background

Description

Background correct microarray expression intensities.

Usage

```r
backgroundCorrect(RG, method="auto", offset=0, printer=RG$printer,
normexp.method="saddle", verbose=TRUE)
backgroundCorrect.matrix(E, Eb=NULL, method="auto", offset=0, printer=NULL,
normexp.method="saddle", verbose=TRUE)
```

Arguments

- **RG**
a numeric matrix, EListRaw or RGList object.
- **E**
umeric matrix containing foreground intensities.
- **Eb**
umeric matrix containing background intensities.
- **method**
character string specifying correction method. Possible values are "auto", "none", "subtract", "half", "minimum", "movingmin", "edwards" or "normexp". If RG is a matrix, possible values are restricted to "none" or "normexp". The default "auto" is interpreted as "subtract" if background intensities are available or "normexp" if they are not.
- **offset**
umERIC value to add to intensities
- **printer**
a list containing printer layout information, see PrintLayout-class. Ignored if RG is a matrix.
- **normexp.method**
character string specifying parameter estimation strategy used by normexp, ignored for other methods. Possible values are "saddle", "mle", "rma" or "rma75".
- **verbose**
logical. If TRUE, progress messages are sent to standard output
This function implements the background correction methods reviewed or developed in Ritchie et al (2007) and Silver at al (2009). Ritchie et al (2007) recommend method="normexp" whenever RG contains local background estimates. Silver et al (2009) shows that either normexp.method="mle" or normexp.method="saddle" are excellent options for normexp. If RG contains morphological background estimates instead (available from SPOT or GenePix image analysis software), then method="subtract" performs well.

If method="none" then no correction is done, i.e., the background intensities are treated as zero. If method="subtract" then the background intensities are subtracted from the foreground intensities. This is the traditional background correction method, but is not necessarily recommended. If method="movingmin" then the background estimates are replaced with the minimums of the backgrounds of the spot and its eight neighbors, i.e., the background is replaced by a moving minimum of 3x3 grids of spots.

The remaining methods are all designed to produce positive corrected intensities. If method="half" then any intensity which is less than 0.5 after background subtraction is reset to be equal to 0.5. If method="minimum" then any intensity which is zero or negative after background subtraction is set equal to half the minimum of the positive corrected intensities for that array. If method="edwards" a log-linear interpolation method is used to adjust lower intensities as in Edwards (2003). If method="normexp" a convolution of normal and exponential distributions is fitted to the foreground intensities using the background intensities as a covariate, and the expected signal given the observed foreground becomes the corrected intensity. This results in a smooth monotonic transformation of the background subtracted intensities such that all the corrected intensities are positive.

The normexp method is available in a number of variants depending on how the model parameters are estimated, and these are selected by normexp.method. Here "saddle" gives the saddle-point approximation to maximum likelihood from Ritchie et al (2007) and improved by Silver et al (2009), "mle" gives exact maximum likelihood from Silver et al (2009), "rma" gives the background correction algorithm from the RMA-algorithm for Affymetrix microarray data as implemented in the affy package, and "rma75" gives the RMA-75 method from McGee and Chen (2006). In practice "mle" performs well and is nearly as fast as "saddle", but "saddle" is the default for backward compatibility. See normexp.fit for more details.

The offset can be used to add a constant to the intensities before log-transforming, so that the log-ratios are shrunk towards zero at the lower intensities. This may eliminate or reverse the usual 'fanning' of log-ratios at low intensities associated with local background subtraction.

Background correction (background subtraction) is also performed by the normalizeWithinArrays method for RGLIST objects, so it is not necessary to call backgroundCorrect directly unless one wants to use a method other than simple subtraction. Calling backgroundCorrect before normalizeWithinArrays will over-ride the default background correction.

Value

A matrix, EListRaw or RGLIST object in which foreground intensities have been background corrected and any components containing background intensities have been removed.

Author(s)

Gordon Smyth

References

See Also

kooperberg, neqc.

An overview of background correction functions is given in \texttt{04.Background}.

Examples

```r
RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
backgroundCorrect(RG)
backgroundCorrect(RG, method="half")
backgroundCorrect(RG, method="minimum")
backgroundCorrect(RG, offset=5)
```

\texttt{barcodeplot} \hspace{1cm} \textit{Barcode Enrichment Plot}

Description

Display the enrichment of one or two gene sets in a ranked gene list.

Usage

\texttt{barcodeplot(statistics, index = NULL, index2 = NULL, gene.weights = NULL, weights.label = "Weight", labels = c("Up","Down"), quantiles = c(-1,1)*sqrt(2), col.bars = NULL, alpha = 0.4, worm = TRUE, span.worm=0.45, ...)}

Arguments

- \texttt{statistics} numeric vector giving the values of statistics to rank genes by.
- \texttt{index} index vector for the gene set. This can be a vector of indices, or a logical vector of the same length as \texttt{statistics} or, in general, any vector such that \texttt{statistic[index]} gives a subset of the statistic values. Can be omitted if \texttt{gene.weights} has same length as \texttt{statistics}, in which case positive values of \texttt{gene.weights} indicate to members of the positive set and negative weights correspond to members of the negative set.
- \texttt{index2} optional index vector for a second (negative) gene set. If specified, then \texttt{index} and \texttt{index2} specify positive and negative genes respectively. Usually used to distinguish down-regulated genes from up-regulated genes.
gene.weights numeric vector giving directional weights for the genes in the (first) set. Positive and negative weights correspond to positive and negative genes. Ignored if index2 is non-null.

weights.label label describing the entries in gene.weights.

labels character vector of labels for high and low statistics. First label is associated with high statistics and is displayed at the left end of the plot. Second label is associated with low or negative statistics and is displayed at the right end of the plot.

quantiles numeric vector of length 2, giving cutoff values for statistics considered small or large respectively. Used to color the rectangle of the barcodeplot.

col.bars character vector of colors for the vertical bars of the barcodeplot showing the ranks of the gene set members. Defaults to "black" for one set or c("red","blue") for two sets.

alpha transparency for vertical bars. When gene.weights are not NULL, values 0<alpha<1 give semitransparent colors for the vertical bars inside the rectangle. This helps distinguish position bars from the weighted bars and also helps to show the density of the bars when there are many bars. Ignored if gene.weights=NULL.

worm logical, should enrichment worms be plotted?

span.worm loess span for enrichment worms. Larger spans give smoother worms.

... other arguments are passed to plot.

Details

This function plots the positions of one or two gene sets in a ranked list of statistics. If there are two sets, then one is considered to be the positive set and the other the down set. For example, the first set and second sets often correspond to genes that are expected to be up- or down-regulated respectively. The function can optionally display varying weights for different genes, for example log-fold-changes from a previous experiment.

The statistics are ranked left to right from largest to smallest. The ranked statistics are represented by a shaded bar or bed, and the positions of the specified subsets are marked by vertical bars, forming a pattern like a barcode. An enrichment worm optionally shows the relative enrichment of the vertical bars in each part of the plot.

Barcode plots are often used in conjunction with gene set tests, and show the enrichment of gene sets amongst high or low ranked genes. They were inspired by the set location plot of Subramanian et al (2005), with a number of enhancements, especially the ability to plot positive and negative sets simultaneously. Barcode plots first appeared in the literature in Lim et al (2009). More recent examples can be seen in Liu et al (2014), Sheikh et al (2015), Witkowski et al (2015) and Ng et al (2015).

The function can be used with any of four different calling sequences:

- index is specified, but not index2 or gene.weights. Single direction plot.
- index and index2 are specified. Two directional plot.
- index and gene.weights are specified. gene.weights must have same length as statistics[index]. Plot will be two-directional if gene.weights contains positive and negative values.
- gene.weights is specified by not index or index2. gene.weights must have same length as statistics. Plot will be two-directional if gene.weights contains positive and negative values.
Value

No value is returned but a plot is produced as a side effect.

Author(s)

Gordon Smyth, Di Wu and Yifang Hu

References

See Also

tricubeMovingAverage, *roast*, *camera*, *romer*, *geneSetTest*

There is a topic page on 10.GeneSetTests.

Examples

```r
stat <- rnorm(100)
sel1 <- 1:10
sel2 <- 11:20
stat[sel1] <- stat[sel1]+1
stat[sel2] <- stat[sel2]-1

# One directional
barcodeplot(stat, index = sel)

# Two directional
```

```r```
```r
barcodeplot(stat, index = sel, index2 = sel2)

Second set can be indicated by negative weights
barcodeplot(stat, index = c(sel, sel2), gene.weights = c(rep(1, 10), rep(-1, 10)))

Two directional with unequal weights
w <- rep(0, 100)
w[sel] <- runif(10)
w[sel2] <- -runif(10)
barcodeplot(stat, gene.weights = w, weights.label = "logFC")

One directional with unequal weights
w <- rep(0, 100)
w[sel2] <- -runif(10)
barcodeplot(stat, gene.weights = w, weights.label = "logFC", col.bars = "dodgerblue")
```

### beadCountWeights

**Bead Count Weights for Illumina BeadChips**

#### Description

Estimates weights which account for biological variation and technical variation resulting from varying bead numbers.

#### Usage

```r
beadCountWeights(y, x, design = NULL, bead.stdev = NULL, bead.stderr = NULL, nbeads = NULL, array.cv = TRUE, scale = FALSE)
```

#### Arguments

- `y`: normalized log2-expression values.
- `x`: raw expression values, with the same dimensions as `y`.
- `design`: the design matrix of the microarray experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates.
- `bead.stdev`: numeric matrix containing bead-level standard deviations.
- `bead.stderr`: numeric matrix containing bead-level standard errors.
- `nbeads`: numeric matrix containing number of beads.
- `array.cv`: logical, should technical variation for each observation be calculated from a constant or array-specific coefficient of variation? The default is to use array-specific coefficients of variation.
- `scale`: logical, should weights be scaled so that the average weight size is the mean of the inverse technical variance along a probe? By default, weights are scaled so that the average weight size along a probe is 1.
Details

This function estimates optimum weights using the bead statistics for each probe for an Illumina expression BeadChip. It can be used with any Illumina expression BeadChip, but is most likely to be useful with HumanHT-12 BeadChips.

Arguments \( x \) and \( y \) are both required. \( x \) contains the raw expression values and \( y \) contains the corresponding log2 values for the same probes and the same arrays after background correction and normalization. \( x \) and \( y \) be any type of object that can be coerced to a matrix, with rows corresponding to probes and columns to arrays. \( x \) and \( y \) must contain the same rows and columns in the same order.

The reliability of the normalized expression value for each probe on each array is measured by estimating its technical and biological variability. The bead number weights are the inverse sum of the technical and biological variances.

The technical variance for each probe on each array is inversely proportional to the number of beads and is estimated using array-specific bead-level coefficients of variation.

Coefficients of variation are calculated using raw expression values.

The biological variance for each probe across the arrays are estimated using a Newton iteration, with the assumption that the total residual deviance for each probe from \( \text{lmFit} \) is inversely proportional to the sum of the technical variance and biological variance.

If any of the arguments \( \text{design} \), \( \text{bead.stdev} \), \( \text{bead.stderr} \) or \( \text{nbeads} \) are set explicitly in the call they will over-ride the slots or components in the data object. The argument \( \text{design} \) does not normally need to be set in the call but will be extracted from the data object if available. If arguments \( \text{bead.stdev} \), \( \text{bead.stderr} \) and \( \text{nbeads} \) are not set explicitly in the call, it is necessary that they are available for extraction from the data object. Only one of \( \text{bead.stdev} \) or \( \text{bead.stderr} \) is required, whether it is set explicitly or extracted from the data object. If both \( \text{bead.stdev} \) and \( \text{bead.stderr} \) are set explicitly then \( \text{bead.stdev} \) is used in preference to \( \text{bead.stderr} \) for the calculation of variances.

Value

A list object with the following components:

- \( \text{weights} \): numeric matrix of bead number weights
- \( \text{cv.constant} \): numeric value of constant bead-level coefficient of variation
- \( \text{cv.array} \): numeric vector of array-specific bead-level coefficient of variation
- \( \text{var.technical} \): numeric matrix of technical variance
- \( \text{var.biological} \): numeric vector of biological variance

Author(s)

Charity Law and Gordon Smyth

References


See Also

An overview of linear model functions in limma is given by \texttt{06.LinearModels}. 
Examples

```r
Not run:
ps <- read.ilmn(file="probesummaryprofile.txt",
ctrfiles="controlprobesummary.txt",
other.columns=c("BEAD_STDEV","Avg_NBEADS"))
y <- neqc(ps)
x <- ps[ps$genes$status=="regular",]
bcw <- beadCountWeights(y,x,design)
fit <- lmFit(y,design,weights=bcw$weights)
fit <- eBayes(fit)

End(Not run)
```

---

blockDiag  

**Block Diagonal Matrix**

Description

Form a block diagonal matrix from the given blocks.

Usage

```r
blockDiag(...)
```

Arguments

```r
...
```

numeric matrices

Details

This function is sometimes useful for constructing a design matrix for a disconnected two-color microarray experiment in conjunction with `modelMatrix`.

Value

A block diagonal matrix with dimensions equal to the sum of the input dimensions

Author(s)

Gordon Smyth

See Also

`modelMatrix`

Examples

```r
a <- matrix(1,3,2)
b <- matrix(2,2,2)
blockDiag(a,b)
```
bwss.matrix

Description

Sums of squares between and within the columns of a matrix. Allows for missing values. This function is called by the anova method for MAList objects.

Usage

bwss.matrix(x)

Arguments

x
a numeric vector giving the responses.

group
a vector or factor giving the grouping variable.

Value

A list with components

bss
sums of squares between the group means.
wss
sums of squares within the groups.
bdf
degrees of freedom corresponding to bss.
wdf
degrees of freedom corresponding to wss.

Author(s)

Gordon Smyth

See Also

bwss.matrix

bwss.matrix

Between and within sums of squares for matrix

Description

Sums of squares between and within groups. Allows for missing values.

Usage

bwss(x, group)

Arguments

x
a numeric vector giving the responses.

group
a vector or factor giving the grouping variable.

Details

This is equivalent to one-way analysis of variance.

Value

A list with components

bss
sums of squares between the group means.
wss
sums of squares within the groups.
bdf
degrees of freedom corresponding to bss.
wdf
degrees of freedom corresponding to wss.

Author(s)

Gordon Smyth

See Also

bwss.matrix

bwss.matrix

Between and within sums of squares
Arguments

x  a numeric matrix.

Details

This is equivalent to a one-way analysis of variance where the columns of the matrix are the groups. If x is a matrix then bwss.matrix(x) is the same as bwss(x, col(x)) except for speed of execution.

Value

A list with components

bss  sums of squares between the column means.
wss  sums of squares within the column means.
bdf  degrees of freedom corresponding to bss.
wdf  degrees of freedom corresponding to wss.

Author(s)

Gordon Smyth

See Also

bwss, anova.MAList

camera

Competitive Gene Set Test Accounting for Inter-gene Correlation

Description

Test whether a set of genes is highly ranked relative to other genes in terms of differential expression, accounting for inter-gene correlation.

Usage

## Default S3 method:
camera(y, index, design, contrast = ncol(design), weights = NULL,
       use.ranks = FALSE, allow.neg.cor=FALSE, inter.gene.cor=0.01, trend.var = FALSE,
       sort = TRUE, ...) interGeneCorrelation(y, design)

Arguments

y  a numeric matrix of log-expression values or log-ratios of expression values, or any data object containing such a matrix. Rows correspond to probes and columns to samples. Any type of object that can be processed by getEAWP is acceptable.

index  an index vector or a list of index vectors. Can be any vector such that y[index,] selects the rows corresponding to the test set. The list can be made using ids2indices.
**design**

design matrix.

**contrast**

contrast of the linear model coefficients for which the test is required. Can be an integer specifying a column of design, or else a numeric vector of same length as the number of columns of design.

**weights**

numeric matrix of observation weights of same size as y, or a numeric vector of array weights with length equal to ncol(y), or a numeric vector of gene weights with length equal to nrow(y).

**use.ranks**

do a rank-based test (TRUE) or a parametric test (FALSE)?

**allow.neg.cor**

should reduced variance inflation factors be allowed for negative correlations?

**inter.gene.cor**

numeric, optional preset value for the inter-gene correlation within tested sets. If NA or NULL, then an inter-gene correlation will be estimated for each tested set.

**trend.var**

logical, should an empirical Bayes trend be estimated? See eBayes for details.

**sort**

logical, should the results be sorted by p-value?

... other arguments are not currently used

---

**Details**

camera and interGeneCorrelation implement methods proposed by Wu and Smyth (2012). camera performs a competitive test in the sense defined by Goeman and Buhlmann (2007). It tests whether the genes in the set are highly ranked in terms of differential expression relative to genes not in the set. It has similar aims to geneSetTest but accounts for inter-gene correlation. See roast for an analogous self-contained gene set test.

The function can be used for any microarray experiment which can be represented by a linear model. The design matrix for the experiment is specified as for the lmFit function, and the contrast of interest is specified as for the contrasts.fit function. This allows users to focus on differential expression for any coefficient or contrast in a linear model by giving the vector of test statistic values.

camera estimates p-values after adjusting the variance of test statistics by an estimated variance inflation factor. The inflation factor depends on estimated genewise correlation and the number of genes in the gene set.

By default, camera uses interGeneCorrelation to estimate the mean pair-wise correlation within each set of genes. camera can alternatively be used with a preset correlation specified by inter.gene.cor that is shared by all sets. This usually works best with a small value, say inter.gene.cor=0.01.

If interGeneCorrelation=NA, then camera will estimate the inter-gene correlation for each set. In this mode, camera gives rigorous error rate control for all sample sizes and all gene sets. However, in this mode, highly co-regulated gene sets that are biological interpretable may not always be ranked at the top of the list.

With interGeneCorrelation=0.01, camera will rank biologically interpretable sets more highly. This gives a useful compromise between strict error rate control and interpretable gene set rankings.

**Value**

camera returns a data.frame with a row for each set and the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGenes</td>
<td>number of genes in set.</td>
</tr>
<tr>
<td>Correlation</td>
<td>inter-gene correlation (only included if the inter.gene.cor was not preset).</td>
</tr>
<tr>
<td>Direction</td>
<td>direction of change (&quot;Up&quot; or &quot;Down&quot;).</td>
</tr>
</tbody>
</table>
PValue  two-tailed p-value.
FDR  Benjamini and Hochberg FDR adjusted p-value.
interGeneCorrelation returns a list with components:

vif  variance inflation factor.
correlation  inter-gene correlation.

Note
The default settings for inter.gene.cor and allow.neg.cor were changed to the current values in limma 3.29.6. Previously, the default was to estimate an inter-gene correlation for each set. To reproduce the earlier default, use allow.neg.cor=TRUE and inter.gene.cor=NA.

Author(s)
Di Wu and Gordon Smyth

References


See Also
getEAWP
rankSumTestWithCorrelation, geneSetTest, roast, fry, romer, ids2indices.

There is a topic page on [10.GeneSetTests](#).

Examples
```r
y <- matrix(rnorm(1000*6),1000,6)
design <- cbind(Intercept=1,Group=c(0,0,0,1,1,1))

First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
y[index1,4:6] <- y[index1,4:6]+1

Second set of 20 genes are not DE
index2 <- 21:40

camera(y, index1, design)
camera(y, index2, design)

camera(y, list(set1=index1,set2=index2), design, inter.gene.cor=NA)
camera(y, list(set1=index1,set2=index2), design, inter.gene.cor=0.01)
```
cbind

Combine RGList, MAList, EList or EListRaw Objects

Description

Combine a set of RGList, MAList, EList or EListRaw objects.

Usage

## S3 method for class 'RGList'
cbind(..., deparse.level=1)
## S3 method for class 'RGList'
rbind(..., deparse.level=1)

Arguments

... RGList, MAList, EList or EListRaw objects.

deparse.level not currently used, see cbind in the base package

Details

cbind combines data objects assuming the same probes in the same order but different arrays.
rbind combines data objects assuming equivalent arrays, i.e., the same RNA targets, but different probes.

For cbind, the matrices of expression data from the individual objects are cbinded. The data.frames of target information, if they exist, are rbinded. The combined data object will preserve any additional components or attributes found in the first object to be combined. For rbind, the matrices of expression data are rbinded while the target information, in any, is unchanged.

Value

An RGList, MAList, EList or EListRaw object holding data from all the arrays and all genes from the individual objects.

Author(s)

Gordon Smyth

See Also

cbind in the base package.

03.ReadingData gives an overview of data input and manipulation functions in LIMMA.

Examples

```r
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA1 <- new("MAList",list(M=M,A=A))

M <- A <- matrix(21:24,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
```
changeLog

```R
 colnames(M) <- colnames(A) <- c("B1","B2")
 MA2 <- new("MAList",list(M=M,A=A))
 cbind(MA1,MA2)
```

---

### changelog

**Limma Change Log**

**Description**

Write as text the most recent changes from the limma package changelog.

**Usage**

```R
changeLog(n=20)
```

**Arguments**

- `n` integer, number of lines to write of changelog.

**Value**

No value is produced, but a number of lines of text are written to standard output.

**Author(s)**

Gordon Smyth

**See Also**

- 01.Introduction

**Examples**

```R
changeLog()
```

---

### classifyTests

**Multiple Testing Genewise Across Contrasts**

**Description**

For each gene, classify a series of related t-statistics as up, down or not significant.

**Usage**

```R
classifyTestsF(object, cor.matrix=NULL, df=Inf, p.value=0.01, fstat.only=FALSE)
classifyTestsT(object, t1=4, t2=3)
classifyTestsP(object, df=Inf, p.value=0.05, method="holm")
FStat(object, cor.matrix=NULL)
```
classifyTests

Arguments

object numeric matrix of t-statistics or an MArrayLM object from which the t-statistics may be extracted.
cor.matrix covariance matrix of each row of t-statistics. Defaults to the identity matrix.
df numeric vector giving the degrees of freedom for the t-statistics. May have length 1 or length equal to the number of rows of tstat.
p.value numeric value between 0 and 1 giving the desired size of the test
fstat.only logical, if TRUE then return the overall F-statistic as for FStat instead of classifying the test results
t1 first critical value for absolute t-statistics
t2 second critical value for absolute t-statistics
method character string specifying p-value adjustment method. See p.adjust for possible values.

details

Note that these functions do not adjust for multiple testing across genes. The adjustment for multiple testing is across the contrasts rather than the more usual control across genes. The functions described here are called by decideTests. Most users should use decideTests rather than using these functions directly.

These functions implement multiple testing procedures for determining whether each statistic in a matrix of t-statistics should be considered significantly different from zero. Rows of tstat correspond to genes and columns to coefficients or contrasts.

FStat computes the gene-wise F-statistics for testing all the contrasts equal to zero. It is equivalent to classifyTestsF with fstat.only=TRUE.

classifyTestsF uses a nested F-test approach giving particular attention to correctly classifying genes which have two or more significant t-statistics, i.e., are differential expressed under two or more conditions. For each row of tstat, the overall F-statistics is constructed from the t-statistics as for FStat. At least one contrast will be classified as significant if and only if the overall F-statistic is significant. If the overall F-statistic is significant, then the function makes a best choice as to which t-statistics contributed to this result. The methodology is based on the principle that any t-statistic should be called significant if the F-test is still significant for that row when all the larger t-statistics are set to the same absolute size as the t-statistic in question.

classifyTestsT and classifyTestsP implement simpler classification schemes based on threshold or critical values for the individual t-statistics in the case of classifyTestsT or p-values obtained from the t-statistics in the case of classifyTestsP. For classifyTestsT, classifies any t-statistic with absolute greater than t2 as significant provided that at least one t-statistic for that gene is at least t1 in absolute value. classifyTestsP applied p-value adjustment from p.adjust to the p-values for each gene.

If tstat is an MArrayLM object, then all arguments except for p.value are extracted from it.

cor.matrix is the same as the correlation matrix of the coefficients from which the t-statistics are calculated. If cor.matrix is not specified, then it is calculated from design and contrasts if at least design is specified or else defaults to the identity matrix. In terms of design and contrasts, cor.matrix is obtained by standardizing the matrix
t(contrasts) %*% solve(t(design) %*% design) %*% contrasts to a correlation matrix.
Value

An object of class TestResults. This is essentially a numeric matrix with elements -1, 0 or 1 depending on whether each t-statistic is classified as significantly negative, not significant or significantly positive respectively.

FStat produces a numeric vector of F-statistics with attributes df1 and df2 giving the corresponding degrees of freedom.

Author(s)

Gordon Smyth

See Also

An overview of multiple testing functions is given in 08.Tests.

Examples

tstat <- matrix(c(0, 5, 0, 0, 2.5, 0, -2, -2, 2, 1, 1, 1), 4, 3, byrow=TRUE)
classifyTestsF(tstat)
# See also the examples for contrasts.fit and vennDiagram

---

**contrastAsCoef**

Reform a Design Matrix to that Contrasts Become Coefficients

**Description**

Reform a design matrix so that one or more coefficients from the new matrix correspond to specified contrasts of coefficients from the old matrix.

**Usage**

contrastAsCoef(design, contrast=NULL, first=TRUE)

**Arguments**

- **design**: numeric design matrix.
- **contrast**: numeric matrix with rows corresponding to columns of the design matrix (coefficients) and columns containing contrasts. May be a vector if there is only one contrast.
- **first**: logical, should coefficients corresponding to contrasts be the first columns (TRUE) or last columns (FALSE) of the output design matrix.

**Details**

If contrast doesn’t have full column rank, then superfluous columns are dropped.
Value

A list with components

- `design`: reformed design matrix
- `coef`: columns of design matrix which hold the meaningful coefficients
- `qr`: QR-decomposition of contrast matrix

Author(s)

Gordon Smyth

See Also

`model.matrix` in the stats package.

An overview of linear model functions in limma is given by 06.LinearModels.

Examples

```r
design <- cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))
cont <- c(0,-1,1)
design2 <- contrastAsCoef(design, cont)$design

y <- rnorm(6)
fit1 <- lm(y~0+design)
fit2 <- lm(y~0+design2)
coef(fit1)
coef(fit2)
```

contrasts.fit  Compute Contrasts from Linear Model Fit

Description

Given a linear model fit to microarray data, compute estimated coefficients and standard errors for a given set of contrasts.

Usage

```r
contrasts.fit(fit, contrasts=NULL, coefficients=NULL)
```

Arguments

- `fit`: an `MArrayLM` object or a list object produced by the function `lm.series` or equivalent. Must contain components `coefficients` and `stdev.unscaled`.
- `contrasts`: numeric matrix with rows corresponding to coefficients in `fit` and columns containing contrasts. May be a vector if there is only one contrast.
- `coefficients`: vector indicating which coefficients are to be kept in the revised `fit` object. An alternative way to specify the contrasts.
Details

This function accepts input from any of the functions \texttt{lmFit}, \texttt{lm.series}, \texttt{mrlm}, \texttt{gls.series} or \texttt{lmscFit}. The function re-orientates the fitted model object from the coefficients of the original design matrix to any set of contrasts of the original coefficients. The coefficients, unscaled standard deviations and correlation matrix are re-calculated in terms of the contrasts.

The idea of this function is to fit a full-rank model using \texttt{lmFit} or equivalent, then use \texttt{contrasts.fit} to obtain coefficients and standard errors for any number of contrasts of the coefficients of the original model. Unlike the design matrix input to \texttt{lmFit}, which normally has one column for each treatment in the experiment, the matrix \texttt{contrasts} may have any number of columns and these are not required to be linearly independent. Methods of assessing differential expression, such as \texttt{eBayes} or \texttt{classifyTestsF}, can then be applied to fitted model object.

The \texttt{coefficients} argument provides a simpler way to specify the \texttt{contrasts} matrix when the desired contrasts are just a subset of the original coefficients.

Warning. For efficiency reasons, this function does not re-factorize the design matrix for each probe. A consequence is that, if the design matrix is non-orthogonal and the original fit included quality weights or missing values, then the unscaled standard deviations produced by this function are approximate rather than exact. The approximation is usually acceptable. The results are always exact if the original fit was a oneway model.

Value

An list object of the same class as \texttt{fit}, usually \texttt{MArrayLM}. This is a list with components

- **coefficients**: numeric matrix containing the estimated coefficients for each contrast for each probe.
- **stdev.unscaled**: numeric matrix conformal with \texttt{coeff} containing the unscaled standard deviations for the coefficient estimators.
- **cov.coefficients**: numeric matrix giving the unscaled covariance matrix of the estimable coefficients.
- ... any other components found in \texttt{fit} are passed through unchanged.

Author(s)

Gordon Smyth

See Also

An overview of linear model functions in limma is given by \texttt{06.LinearModels}.

Examples

```r
Simulate gene expression data: 6 microarrays and 100 genes # with one gene differentially expressed in first 3 arrays M <- matrix(rnorm(100*6, sd=0.3), 100, 6) M[1, 1:3] <- M[1, 1:3] + 2 # Design matrix corresponds to oneway layout, columns are orthogonal design <- cbind(First3Arrays=c(1,1,1,0,0,0), Last3Arrays=c(0,0,0,1,1,1)) fit <- lmFit(M, design=design) # Would like to consider original two estimates plus difference between first 3 and last 3 arrays contrast.matrix <- cbind(First3=c(1,0), Last3=c(0,1), "Last3-First3"=c(-1,1)) fit2 <- contrasts.fit(fit, contrast.matrix)
```
controlStatus

fit2 <- eBayes(fit2)
# Large values of eb$t indicate differential expression
results <- classifyTestsF(fit2)
vennCounts(results)

controlStatus

Set Status of each Spot from List of Spot Types

Description
Determine the type (or status) of each spot in the gene list.

Usage
controlStatus(types, genes, spottypecol="SpotType", regexpcol, verbose=TRUE)

Arguments
- **types**: dataframe containing spot type specifiers, usually input using readSpotTypes.
- **genes**: dataframe containing gene annotation, or an object of class RGList, MAList, ELListRaw, EList or MArrayLM from which the gene annotation can be extracted.
- **spottypecol**: integer or name specifying column of types containing spot type names.
- **regexpcol**: vector of integers or column names specifying columns of types containing regular expressions. Defaults to any column names in common between types and genes.
- **verbose**: logical, if TRUE then progress on pattern matching is reported to the standard output channel.

Details
This function constructs a vector of status codes by searching for patterns in the gene list. The data frame genes contains gene IDs and should have as many rows as there are spots on the microarrays. Such a data frame is often read using readGAL. The data frame types has as many rows as you want to distinguish types of spots in the gene list. This data frame should contain a column or columns, the regexpcol columns, which have the same names as columns in genes and which contain patterns to match in the gene list. Another column, the spottypecol, contains the names of the spot types. Any other columns are assumed to contain plotting parameters, such as colors or symbols, to be associated with the spot types.

The patterns in the regexpcol columns are simplified regular expressions. For example, AA* means any string starting with AA, *AA means any code ending with AA, AA means exactly these two letters, *AA* means any string containing AA, AA. means AA followed by exactly one other character and AA\. means exactly AA followed by a period and no other characters. Any other regular expressions are allowed but the codes ^ for beginning of string and $ for end of string should not be included.

Note that the patterns are matched sequentially from first to last, so more general patterns should be included first. For example, it is often a good idea to include a default spot-type as the first line in types with pattern * for all regexpcol columns and default plotting parameters.

Value
Character vector specifying the type (or status) of each spot on the array. Attributes contain plotting parameters associated with each spot type.
Author(s)
Gordon Smyth

See Also
An overview of LIMMA functions for reading data is given in 03.ReadingData.

Examples

genes <- data.frame(
  ID=c("Control","Control","Control","Control","AA1","AA2","AA3","AA4"),
  Name=c("Ratio 1","Ratio 2","House keeping 1","House keeping 2",
         "Gene 1","Gene 2","Gene 3","Gene 4"))
types <- data.frame(
  SpotType=c("Gene","Ratio","Housekeeping"),
  ID=c("*","Control","Control"),
  Name=c("*","Ratio*","House keeping*"),
  col=c("black","red","blue"))
status <- controlStatus(types,genes)

coolmap

Heatmap of gene expression values

Description
Create a heatmap of a matrix of log-expression values.

Usage
coolmap(x, cluster.by="de pattern", col=NULL,
        linkage.row="complete", linkage.col="complete", show.dendrogram="both", ...)

Arguments

x any data object that can be coerced to a matrix of log-expression values, for example an ExpressionSet or EList. Rows represent genes and columns represent RNA samples.

cluster.by choices are "de pattern" or "expression level". In the former case, the intention is to cluster by relative changes in expression, so genes are clustered by Pearson correlation and log-expression values are mean-corrected by rows for the plot. In the latter case, the intention is to cluster by absolute expression, so genes are clustered by Euclidean and log-expression values are not mean-corrected.

col choices are "redblue", "redgreen" or "yellowblue". The default is "redblue" for cluster.by="de pattern" and "yellowblue" if cluster.by="expression level".

linkage.row linkage criterion used to cluster the rows. Choices are "none", "ward.D", "single", "complete", "average", "mcquitty", "median", "centroid" or "ward.D2", with "ward" is treated as "ward.D2".

linkage.col linkage criterion used to cluster the columns. Choices are the same as for linkage.row.
show.dendrogram
choices are "row", "column", "both" or "none".
...
any other arguments are passed to heatmap.2.

Details
This function is essentially a wrapper for the heatmap.2 function in the ggplots package, with sensible settings for genomic log-expression data. Unfortunately, the default settings for heatmap.2 are often not ideal for expression data, and overriding the defaults requires explicit calls to hclust and as.dendrogram as well as prior standardization of the data values. The coolmap function implements our preferred defaults for the two most common types of heatmaps. When clustering by relative expression (cluster.by="de pattern"), it implements a row standardization that takes account of NA values and standard deviations that might be zero.

Value
A plot is created on the current graphics device. A list is also invisibly returned, see heatmap.2 for details.

Author(s)
Gordon Smyth

See Also
heatmap.2, hclust, dist.
An overview of diagnostic functions available in LIMMA is given in 09.Diagnostics.

Examples
# Simulate gene expression data for 50 genes and 6 microarrays.
# Samples are in two groups
# First 50 probes are differentially expressed in second group
ngenes <- 50
sd <- 0.3*sqrt(4/rchisq(ngenes,df=4))
x <- matrix(rnorm(ngenes*6,sd=sd),ngenes,6)
ownames(x) <- paste("Gene",1:ngenes)
x <- x + seq(from=0, to=16, length=ngenes)
coolmap(x)

---

cumOverlap  

Cumulative Overlap Analysis of Ordered Lists

Description
Test whether the leading members of ordered lists significantly overlap.

Usage
cumOverlap(ol1, ol2)
**decideTests**

**Arguments**

- `ol1` vector containing first ordered list.
- `ol2` vector containing second ordered list.

**Details**

The function compares the top $n$ members of each list, for every possible $n$, and conducts an hypergeometric test for overlap. The function returns the value of $n$ giving the smallest Bonferroni adjusted p-value.

This method was described in Chapter 4 of Wu (2011).

**Value**

List containing the following components:

- `n.min` integer, top table length leading to smallest adjusted p-value.
- `p.min` smallest adjusted p-value.
- `n.overlap` integer, number of overlapping IDs in first `n.min`.
- `id.overlap` vector giving the overlapping IDs in first `n.min`.
- `p.value` numeric, vector of p-values for each possible top table length.
- `adj.p.value` numeric, vector of Bonferroni adjusted p-values for each possible top table length.

**Author(s)**

Gordon Smyth and Di Wu

**References**


**Examples**

```r
ol1 <- letters[1:26]
ol2 <- letters[sample(26)]
coa <- cumOverlap(ol1, ol2)
coa$p.min
```

---

**describeTests**

**Multiple Testing Across Genes and Contrasts**

**Description**

Classify a series of related t-statistics as up, down or not significant. A number of different multiple testing schemes are offered which adjust for multiple testing down the genes as well as across contrasts for each gene.
Usage

```
decideTests(object, method="separate", adjust.method="BH", p.value=0.05, lfc=0)
```

Arguments

- **object**: MArrayLM object output from eBayes or treat from which the t-statistics may be extracted.
- **method**: character string specifying how probes and contrasts are to be combined in the multiple testing strategy. Choices are "separate", "global", "hierarchical", "nestedF" or any partial string.
- **adjust.method**: character string specifying p-value adjustment method. Possible values are "none", "BH", "fdr" (equivalent to "BH"), "BY" and "holm". See `p.adjust` for details.
- **p.value**: numeric value between 0 and 1 giving the desired size of the test
- **lfc**: minimum log2-fold-change required

Details

These functions implement multiple testing procedures for determining whether each statistic in a matrix of t-statistics should be considered significantly different from zero. Rows of `tstat` correspond to genes and columns to coefficients or contrasts.

The setting `method="separate"` is equivalent to using `topTable` separately for each coefficient in the linear model fit, and will give the same lists of probes if `adjust.method` is the same. `method="global"` will treat the entire matrix of t-statistics as a single vector of unrelated tests. `method="hierarchical"` adjusts down genes and then across contrasts. `method="nestedF"` adjusts down genes and then uses `classifyTestsF` to classify contrasts as significant or not for the selected genes. Please see the limma User's Guide for a discussion of the statistical properties of these methods.

Value

An object of class `TestResults`. This is essentially a numeric matrix with elements -1, 0 or 1 depending on whether each t-statistic is classified as significantly negative, not significant or significantly positive respectively.

If `lfc>0` then contrasts are judged significant only when the log2-fold change is at least this large in absolute value. For example, one might choose `lfc=log2(1.5)` to restrict to 50% changes or `lfc=1` for 2-fold changes. In this case, contrasts must satisfy both the p-value and the fold-change cutoff to be judged significant.

Note

Although this function enables users to set p-value and lfc cutoffs simultaneously, this is not generally recommended. If the fold changes and p-values are not highly correlated, then the use of a fold change cutoff can increase the false discovery rate above the nominal level. Users wanting to use fold change thresholding are recommended to use `treat` instead of eBayes, and to leave `lfc` at the default value when using `decideTests`.

Author(s)

Gordon Smyth
designI2M

See Also
An overview of multiple testing functions is given in 08.Tests.

---

**designI2M**  
*Convert Individual Channel Design Matrix to M-A Format*

**Description**
Convert a design matrix in terms of individual channels to ones in terms of M-values or A-values for two-color microarray data.

**Usage**
```
designI2M(design)
designI2A(design)
```

**Arguments**
- `design`  
  numeric model matrix with one row for each channel observation, i.e., twice as many rows as arrays

**Details**
If `design` is a model matrix suitable for modelling individual log-intensities for two color microarray data, then `designI2M` computes the corresponding model matrix for modelling M-values (log-ratios) and `designI2A` computes the model matrix for modelling A-values (average log-intensities).

Note that the matrices `designI2M(design)` or `designI2A(design)` may be singular if not all of the coefficients are estimable from the M or A-values. In that case there will be columns containing entirely zeros.

**Value**
numeric model matrix with half as many rows as `design`

**Author(s)**
Gordon Smyth

**See Also**
- `model.matrix` in the stats package.

An overview of individual channel linear model functions in limma is given by 07.SingleChannel.

**Examples**
```
X <- cbind(1,c(1,1,1,1,0,0,0,0),c(0,0,0,0,1,1,1,1))
designI2M(X)
designI2A(X)
```
**detectionPValues**  

**Detection P-Values from Negative Controls**

**Description**

Compute the proportion of negative controls greater than each observed expression value. Particularly useful for Illumina BeadChips.

**Usage**

```r
S3 method for class 'EListRaw'
detectionPValues(x, status = NULL, ...)
Default S3 method:
detectionPValues(x, status, negctrl = "negative", ...)
```

**Arguments**

- `x` object of class `EListRaw` or a numeric matrix containing raw intensities for regular and control probes from a series of microarrays.
- `status` character vector giving probe types. Defaults to `x$genes>Status` if `x` is an `EListRaw` object.
- `negctrl` character string identifier for negative control probes.
- `...` other arguments are not currently used.

**Details**

The rows of `x` for which `status == negctrl` are assumed to correspond to negative control probes.

For each column of `x`, the detection p-values are defined as \((N.\text{eq}/2 + N.\text{gt}) / N.\text{neg}\), where `N.\text{gt}` is the number of negative controls with expression greater than the observed value, `N.\text{eq}` is the number of negative controls with expression equal to the observed value, and `N.\text{neg}` is the total number of negative controls.

When used on Illumina BeadChip data, this function produces essentially the same detection p-values as returned by Illumina’s GenomeStudio software.

**Value**

numeric matrix of same dimensions as `x` containing detection p-values.

**Author(s)**

Gordon Smyth

**References**

See Also

An overview of LIMMA functions to read expression data is given in 03.ReadingData.

read.idat reads Illumina BeadChip expression data from binary IDAT files.

neqc performs normexp background correction and quantile normalization aided by control probes.

Examples

```r
Not run:
Read Illumina binary IDAT files
x <- read.idat(idat, bgx)
x$genes$DectionPValue <- detectionPValues(x)
y <- neqc(x)
End(Not run)
```

diffSplice  

Test for Differential Splicing

Description

Given a linear model fit at the exon level, test for differences in exon retention between experimental conditions.

Usage

diffSplice(fit, geneid, exonid=NULL, robust=FALSE, verbose=TRUE)

Arguments

- `fit`: an `MArrayLM` fitted model object produced by `lmFit` or `contrasts.fit`. Rows should correspond to exons.
- `geneid`: gene identifiers. Either a vector of length `nrow(fit)` or the name of the column of `fit$genes` containing the gene identifiers. Rows with the same ID are assumed to belong to the same gene.
- `exonid`: exon identifiers. Either a vector of length `nrow(fit)` or the name of the column of `fit$genes` containing the exon identifiers.
- `robust`: logical, should the estimation of the empirical Bayes prior parameters be robustified against outlier sample variances?
- `verbose`: logical, if TRUE some diagnostic information about the number of genes and exons is output.

Details

This function tests for differential exon usage for each gene and for each column of fit.

Testing for differential exon usage is equivalent to testing whether the log-fold-changes in the fit differ between exons for the same gene. Two different tests are provided. The first is an F-test for differences between the log-fold-changes. The other is a series of t-tests in which each exon is compared to the average of all other exons for the same gene. The exon-level t-tests are converted into a genewise test by adjusting the p-values for the same gene by Simes method. The minimum adjusted p-value is then used for each gene.
This function can be used on data from an exon microarray or can be used in conjunction with voom for exon-level RNA-seq counts.

**Value**

An object of class `MArrayLM` containing both exon level and gene level tests. Results are sorted by geneid and by exonid within gene.

- **coefficients**
  numeric matrix of coefficients of same dimensions as `fit`. Each coefficient is the difference between the log-fold-change for that exon versus the average log-fold-change for all other exons for the same gene.

- **t**
  numeric matrix of moderated t-statistics, of same dimensions as `fit`.

- **p.value**
  numeric vector of p-values corresponding to the t-statistics

- **genes**
  data.frame of exon annotation

- **genecolname**
  character string giving the name of the column of genes containing gene IDs

- **gene.F**
  numeric matrix of moderated F-statistics, one row for each gene.

- **gene.F.p.value**
  numeric matrix of p-values corresponding to `gene.F`

- **gene.simes.p.value**
  numeric matrix of Simes adjusted p-values, one row for each gene.

- **gene.genes**
  data.frame of gene annotation.

**Author(s)**

Gordon Smyth and Charity Law

**See Also**

- `topSplice`, `plotSplice`

A summary of functions available in LIMMA for RNA-seq analysis is given in `11.RNAseq`.

**Examples**

```r
Not run:
v <- voom(dge, design)
fit <- lmFit(v, design)
ex <- diffSplice(fit, geneid="EntrezID")
topSplice(ex)
plotSplice(ex)
End(Not run)
```

---

**dim**

*Retrieve the Dimensions of an RGList, MAList or MArrayLM Object*

**Description**

Retrieve the number of rows (genes) and columns (arrays) for an RGList, MAList or MArrayLM object.
dimnames

### Usage

```r
S3 method for class 'RGList'
dim(x)
S3 method for class 'RGList'
length(x)
```

### Arguments

- `x` an object of class `RGList`, `MAList` or `MArrayLM`

### Details

Microarray data objects share many analogies with ordinary matrices in which the rows correspond to spots or genes and the columns to arrays. These methods allow one to extract the size of microarray data objects in the same way that one would do for ordinary matrices. A consequence is that row and column commands `nrow(x)`, `ncol(x)` and so on also work.

### Value

Numeric vector of length 2. The first element is the number of rows (genes) and the second is the number of columns (arrays).

### Author(s)

Gordon Smyth

### See Also

- `dim` in the base package.
- 02.Classes gives an overview of data classes used in LIMMA.

### Examples

```r
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA <- new("MAList",list(M=M,A=A))
dim(M)
ncol(M)
nrow(M)
length(M)
```

---

**dimnames**

Retrieve the Dimension Names of an RGList, MAList, EList, EListRaw or MArrayLM Object

### Description

Retrieve the dimension names of a microarray data object.
dupcor

Usage

## S3 method for class 'RGList'
dimnames(x)
## S3 replacement method for class 'RGList'
dimnames(x) <- value

Arguments

- `x` an object of class RGList, MAList, EList, EListRaw or (not for assignment) MArrayLM
- `value` a possible value for dimnames(x): see dimnames

Details

The dimension names of a microarray object are the same as those of the most important matrix component of that object.

A consequence is that rownames and colnames will work as expected.

Value

Either NULL or a list of length 2. If a list, its components are either NULL or a character vector the length of the appropriate dimension of x.

Author(s)

Gordon Smyth

See Also

dimnames in the base package.

02.Classes gives an overview of data classes used in LIMMA.

---

dupcor Correlation Between Duplicates

Description

Estimate the correlation between duplicate spots (regularly spaced replicate spots on the same array) or between technical replicates from a series of arrays.

Usage

duplicateCorrelation(object, design=NULL, ndups=2, spacing=1, block=NULL, trim=0.15, weights=NULL)
**Arguments**

- **object**: a numeric matrix of expression values, or any data object from which `as.matrix` will extract a suitable matrix such as an `MAList`, `marrayNorm` or `ExpressionSet` object. If `object` is an `MAList` object then the arguments `design`, `ndups`, `spacing` and `weights` will be extracted from it if available and do not have to be specified as arguments. Specifying these arguments explicitly will over-rule any components found in the data object.

- **design**: the design matrix of the microarray experiment, with rows corresponding to arrays and columns to comparisons to be estimated. The number of rows must match the number of columns of `object`. Defaults to the unit vector meaning that the arrays are treated as replicates.

- **ndups**: a positive integer giving the number of times each gene is printed on an array. `nrow(object)` must be divisible by `ndups`. Will be ignored if `block` is specified.

- **spacing**: the spacing between the rows of `object` corresponding to duplicate spots, `spacing=1` for consecutive spots

- **block**: vector or factor specifying a blocking variable

- **trim**: the fraction of observations to be trimmed from each end of `tanh(all.correlations)` when computing the trimmed mean.

- **weights**: an optional numeric matrix of the same dimension as `object` containing weights for each spot. If smaller than `object` then it will be filled out the same size.

**Details**

When `block=NULL`, this function estimates the correlation between duplicate spots (regularly spaced within-array replicate spots). If `block` is not null, this function estimates the correlation between repeated observations on the blocking variable. Typically the blocks are biological replicates and the repeated observations are technical replicates. In either case, the correlation is estimated by fitting a mixed linear model by REML individually for each gene. The function also returns a consensus correlation, which is a robust average of the individual correlations, which can be used as input for functions `lmFit` or `gls.series`.

At this time it is not possible to estimate correlations between duplicate spots and between technical replicates simultaneously. If `block` is not null, then the function will set `ndups=1`, which is equivalent to ignoring duplicate spots.

For this function to return statistically useful results, there must be at least two more arrays than the number of coefficients to be estimated, i.e., two more than the column rank of `design`.

The function may take long time to execute as it fits a mixed linear model for each gene for an iterative algorithm. It is not uncommon for the function to return a small number of warning messages that correlation estimates cannot be computed for some individual genes. This is not a serious concern providing that there are only a few such warnings and the total number of genes is large. The consensus estimator computed by this function will not be materially affected by a small number of genes.

**Value**

A list with components

- **consensus.correlation**: the average estimated inter-duplicate correlation. The average is the trimmed mean of the individual correlations on the atanh-transformed scale.
dupcor

cor same as consensus.correlation, for compatibility with earlier versions of the software
atanh.correlations numeric vector of length nrow(object)/ndups giving the individual genewise atanh-transformed correlations.

Author(s)

Gordon Smyth

References


See Also

These functions use mixedModel2Fit from the statmod package. An overview of linear model functions in limma is given by 06.LinearModels.

Examples

```r
Simulate gene expression data for 100 probes and 6 microarrays
Microarray are in two groups
First two probes are more highly expressed in second group
Std deviations vary between genes with prior df=4
sd <- 0.3*sqrt(4/rchisq(100,df=4))
y <- matrix(rnorm(100*6,sd=sd),100,6)
rownames(y) <- paste("Gene",1:100)
design <- cbind(Grp1=1,Grp2vs1=c(0,0,0,1,1,1))
options(digits=3)
Fit with correlated arrays
Suppose each pair of arrays is a block
block <- c(1,1,2,2,3,3)
dupcor <- duplicateCorrelation(y,design,block=block)
dupcor$consensus.correlation
fit1 <- lmFit(y,design,block=block,correlation=dupcor$consensus)
fit1 <- eBayes(fit1)
topTable(fit1,coef=2)
Fit with duplicate probes
Suppose two side-by-side duplicates of each gene
rownames(y) <- paste("Gene",rep(1:50,each=2))
dupcor <- duplicateCorrelation(y,design,ndups=2)
dupcor$consensus.correlation
fit2 <- lmFit(y,design,ndups=2,correlation=dupcor$consensus)
dim(fit2)
fit2 <- eBayes(fit2)
topTable(fit2,coef=2)
```
**Description**

Given a microarray linear model fit, compute moderated t-statistics, moderated F-statistic, and log-odds of differential expression by empirical Bayes moderation of the standard errors towards a common value.

**Usage**

```r
ebayes(fit, proportion=0.01, stdev.coef.lim=c(0.1,4),
 trend=FALSE, robust=FALSE, winsor.tail.p=c(0.05,0.1))
eBayes(fit, proportion=0.01, stdev.coef.lim=c(0.1,4),
 trend=FALSE, robust=FALSE, winsor.tail.p=c(0.05,0.1))
treat(fit, lfc=0, trend=FALSE, robust=FALSE, winsor.tail.p=c(0.05,0.1))
```

**Arguments**

- **fit**
  - an `MArrayLM` fitted model object produced by `lmFit` or `contrasts.fit`. For `ebayes` only, `fit` can alternatively be an unclassed list produced by `lm.series`, `gls.series` or `mrlm` containing components `coefficients`, `stdev.unscaled`, `sigma` and `df.residual`.
- **proportion**
  - numeric value between 0 and 1, assumed proportion of genes which are differentially expressed
- **stdev.coef.lim**
  - numeric vector of length 2, assumed lower and upper limits for the standard deviation of log2-fold-changes for differentially expressed genes
- **trend**
  - logical, should an intensity-trend be allowed for the prior variance? Default is that the prior variance is constant.
- **robust**
  - logical, should the estimation of `df.prior` and `var.prior` be robustified against outlier sample variances?
- **winsor.tail.p**
  - numeric vector of length 1 or 2, giving left and right tail proportions of `x` to Winsorize. Used only when `robust=TRUE`.
- **lfc**
  - the minimum log2-fold-change that is considered scientifically meaningful

**Details**

These functions are used to rank genes in order of evidence for differential expression. They use an empirical Bayes method to shrink the probe-wise sample variances towards a common value and to augmenting the degrees of freedom for the individual variances (Smyth, 2004). The functions accept as input argument `fit` a fitted model object from the functions `lmFit`, `lm.series`, `mrlm` or `gls.series`. The fitted model object may have been processed by `contrasts.fit` before being passed to `ebayes` to convert the coefficients of the design matrix into an arbitrary number of contrasts which are to be tested equal to zero. The columns of `fit` define a set of contrasts which are to be tested equal to zero.

The empirical Bayes moderated t-statistics test each individual contrast equal to zero. For each probe (row), the moderated F-statistic tests whether all the contrasts are zero. The F-statistic is an overall test computed from the set of t-statistics for that probe. This is exactly analogous the
relationship between t-tests and F-statistics in conventional ANOVA, except that the residual mean squares and residual degrees of freedom have been moderated between probes.

The estimates $s^2_{.prior}$ and $df_{.prior}$ are computed by fitFDist. $s^2_{.post}$ is the weighted average of $s^2_{.prior}$ and $\sigma^2$ with weights proportional to $df_{.prior}$ and $df_{.residual}$ respectively. The $lods$ is sometimes known as the B-statistic. The F-statistics $F$ are computed by classifyTestsF with fstat.only=TRUE.

eBayes doesn’t compute ordinary (unmoderated) t-statistics by default, but these can be easily extracted from the linear model output, see the example below.

**Value**

eBayes produces an object of class MArrayLM (see MArrayLM-class) containing everything found in fit plus the following added components:

- **t** numeric vector or matrix of moderated t-statistics
- **p.value** numeric vector of p-values corresponding to the t-statistics
- **$s^2_{.prior}$** estimated prior value for $\sigma^2$. A vector if covariate is non-NULL, otherwise a scalar.
- **df.prior** degrees of freedom associated with $s^2_{.prior}$
- **df.total** numeric vector of total degrees of freedom associated with t-statistics and p-values. Equal to $df_{.prior}+df_{.residual}$ or $\sum(df_{.residual})$, whichever is smaller.
- **$s^2_{.post}$** numeric vector giving the posterior values for $\sigma^2$
- **lods** numeric vector or matrix giving the log-odds of differential expression
- **var.prior** estimated prior value for the variance of the log2-fold-change for differentially expressed gene
- **$F$** numeric vector of moderated F-statistics for testing all contrasts defined by the columns of fit simultaneously equal to zero
- **$F.p.value$** numeric vector giving p-values corresponding to $F$

treat produces an MArrayLM object similar to eBayes but without lods, var.prior, $F$ or $F.p.value$. ebayes produces an ordinary list containing the above components except for $F$ and $F.p.value$. 
Note

The algorithm used by eBayes and treat with robust=TRUE was revised slightly in limma 3.27.6. The minimum df.prior returned may be slightly smaller than previously.

Author(s)

Gordon Smyth and Davis McCarthy

References


See Also

squeezeVar, fitFDist, tmixture.matrix.

An overview of linear model functions in limma is given by 06.LinearModels.

Examples

# See also lmFit examples

# Simulate gene expression data,
# 6 microarrays and 100 genes with one gene differentially expressed
set.seed(2004); invisible(runif(100))
M <- matrix(rnorm(100*6, sd=0.3),100,6)
M[1,] <- M[1,] + 1
fit <- lmFit(M)

# Moderated t-statistic
fit <- eBayes(fit)
topTable(fit)

# Ordinary t-statistic
ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma

# Q-Q plots of t statistics
# Points off the line may be differentially expressed
par(mfrow=c(1,2))
qqt(ordinary.t, df=fit$df.residual, main="Ordinary t")
abline(0,1)
qqt(fit$t, df=fit$df.total, main="Moderated t")
abline(0,1)
par(mfrow=c(1,1))
EList-class

Expression List - class

Description

A list-based S4 classes for storing expression values (E-values), for example for a set of one-channel microarrays or a set of RNA-seq samples. EListRaw holds expression values on the raw scale. EList holds expression values on the log scale, usually after background correction and normalization.

EListRaw objects are often created by read.maimages, while EList objects are often created by normalizeBetweenArrays or by voom. Alternatively, an EList object can be created directly by new("EList",x), where x is a list.

Required Components

These classes contains no slots (other than .Data), but objects should contain a list component E:

E numeric matrix containing expression values. In an EListRaw object, the expression values are unlogged, while in an EList object, they are log2 values. Rows correspond to probes and columns to samples.

Optional Components

Optional components include:

Eb numeric matrix containing unlogged background expression values, of same dimensions as E. For an EListRaw object only.
weights numeric matrix of same dimensions as E containing relative spot quality weights. Elements should be non-negative.
other list containing other matrices, all of the same dimensions as E.
genes data.frame containing probe information. Should have one row for each probe. May have any number of columns.
targets data.frame containing information on the target RNA samples. Rows correspond to samples. May have any number of columns.

Valid EList or EListRaw objects may contain other optional components, but all probe or sample information should be contained in the above components.

Methods

These classes inherit directly from class list so any operation appropriate for lists will work on objects of this class. In addition, EList objects can be subsetted and combined. EList objects will return dimensions and hence functions such as dim, nrow and ncol are defined. ELists also inherit a show method from the virtual class LargeDataObject, which means that ELists will print in a compact way.

Author(s)

Gordon Smyth
exprs.MA

See Also

02.Classes gives an overview of all the classes defined by this package.
ExpressionSet is a more formal class in the Biobase package used for the same purpose.

exprs.MA: Extract Log-Expression Matrix from MAList

Description

Extract the matrix of log-expression values from an MAList object.

Usage

exprs.MA(MA)

Arguments

MA an MAList object.

Details

Converts M and A-values to log-expression values. The output matrix will have two columns for each array, in the order green, red for each array.

This contrasts with as.matrix.MAList which extracts the M-values only, or RG.MA which converts to expression values in RGList form.

Value

A numeric matrix with twice the columns of the input.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of data classes used in LIMMA.
Moment Estimation of Scaled F-Distribution

Description

Moment estimation of the parameters of a scaled F-distribution given one of the degrees of freedom. This function is called internally by eBayes and squeezeVar and is not usually called directly by a user.

Usage

```r
fitFDist(x, df1, covariate=NULL)
fitFDistRobustly(x, df1, covariate=NULL, winsor.tail.p=c(0.05,0.1), trace=FALSE)
```

Arguments

- `x` numeric vector or array of positive values representing a sample from a scaled F-distribution.
- `df1` the first degrees of freedom of the F-distribution. Can be a single value, or else a vector of the same length as `x`.
- `covariate` if non-NULL, the estimated scale value will depend on this numeric covariate.
- `winsor.tail.p` numeric vector of length 1 or 2, giving left and right tail proportions of `x` to Winsorize.
- `trace` logical value indicating whether a trace of the iteration progress should be printed.

Details

`fitFDist` implements an algorithm proposed by Smyth (2004). It estimates scale and df2 under the assumption that `x` is distributed as scale times an F-distributed random variable on df1 and df2 degrees of freedom. The parameters are estimated using the method of moments, specifically from the mean and variance of the `x` values on the log-scale.

`fitFDistRobustly` is similar to `fitFDist` except that it computes the moments of the Winsorized values of `x`, making it robust against left and right outliers. Larger values for `winsor.tail.p` produce more robustness but less efficiency. The robust method is described by Phipson et al (2016).

As well as estimating the F-distribution for the bulk of the cases, i.e., with outliers discounted, `fitFDistRobustly` also returns an estimated F-distribution with reduced df2 that might be appropriate for each outlier case.

Value

`fitFDist` produces a list with the following components:

- `scale` scale factor for F-distribution. A vector if `covariate` is non-NULL, otherwise a scalar.
- `df2` the second degrees of freedom of the fitted F-distribution.

`fitFDistRobustly` returns the following components as well:

- `tail.p.value` right tail probability of the scaled F-distribution for each `x` value.
prob.outlier posterior probability that each case is an outlier relative to the scaled F-distribution with degrees of freedom df1 and df2.
df2.outlier the second degrees of freedom associated with extreme outlier cases.
df2.shrunk numeric vector of values for the second degrees of freedom, with shrunk values for outliers. Most values are equal to df2, but outliers have reduced values depending on how extreme each case is. All values lie between df2.outlier and df2.

Note
The algorithm used by fitFDistRobustly was revised slightly in limma 3.27.6. The prob.outlier value, which is the lower bound for df2.shrunk, may be slightly smaller than previously.

Author(s)
Gordon Smyth and Belinda Phipson

References


See Also
This function is called by squeezeVar, which in turn is called by ebayes, eBayes and treat.
This function calls trigammaInverse.

Examples
x <- rf(100,df1=8,df2=16)
fitFDist(x,df1=8)
Arguments

- **y**: numeric vector of positive response values.
- **offset**: numeric vector giving known part of the expected value of y. Can be a single value, or else a vector of the same length as y.
- **maxit**: maximum number of Newton iterations to be done.

Details

The values y are assumed to follow a gamma distribution with common shape parameter and with expected values given by x+offset. The function implements a globally convergent Newton iteration to estimate x.

Value

Numeric value giving intercept.

Author(s)

Gordon Smyth and Belinda Phipson

References


See Also

This function is called by `genas`.

Examples

```r
offset <- runif(10)
x <- 9
mu <- x+offset
y <- rgamma(10, shape=20, scale=mu/20)
fitGammaIntercept(y, offset=offset)
```

Description

Fit Mixture Model by Non-Linear Least Squares

Usage

```r
fitmixture(log2e, mixprop, niter = 4, trace = FALSE)
```
Arguments

log2e  a numeric matrix containing log2 expression values. Rows correspond to probes for genes and columns to RNA samples.

mixprop  a vector of length ncol(log2e) giving the mixing proportion (between 0 and 1) for each sample.

niter  integer number of iterations.

trace  logical. If TRUE, summary working estimates are output from each iteration.

Details

A mixture experiment is one in which two reference RNA sources are mixed in different proportions to create experimental samples. Mixture experiments have been used to evaluate genomic technologies and analysis methods (Holloway et al, 2006). This function uses all the data for each gene to estimate the expression level of the gene in each of two pure samples.

The function fits a nonlinear mixture model to the log2 expression values for each gene. The expected values of log2e for each gene are assumed to be of the form \( \log2( \text{mixprop} \times Y_1 + (1-\text{mixprop}) \times Y_2 ) \) where \( Y_1 \) and \( Y_2 \) are the expression levels of the gene in the two reference samples being mixed. The \( \text{mixprop} \) values are the same for each gene but \( Y_1 \) and \( Y_2 \) are specific to the gene. The function returns the estimated values \( A=0.5 \times \log2(Y_1 \times Y_2) \) and \( M=\log2(Y_2/Y_1) \) for each gene.

The nonlinear estimation algorithm implemented in \texttt{fitmixture} uses a nested Gauss-Newton iteration (Smyth, 1996). It is fully vectorized so that the estimation is done for all genes simultaneously.

Value

List with three components:

\( A \)  numeric vector giving the estimated average log2 expression of the two reference samples for each gene

\( M \)  numeric vector giving estimated log-ratio of expression between the two reference samples for each gene

\( \text{stdev} \)  standard deviation of the residual term in the mixture model for each gene

Author(s)

Gordon K Smyth

References


Examples

```r
ngenes <- 100
TrueY1 <- rexp(ngenes)
TrueY2 <- rexp(ngenes)
mixprop <- matrix(c(0, 0.25, 0.75, 1), 1, 4)
TrueExpr <- TrueY1
log2e <- log2(TrueExpr) + matrix(rnorm(ngenes * 4), ngenes, 4) * 0.1
out <- fitmixture(log2e, mixprop)

Plot true vs estimated log-ratios
plot(log2(TrueY1/TrueY2), out$M)
```

fitted.MArrayLM

Fitted Values Method for MArrayLM Fits

Description

Obtains fitted values from a fitted microarray linear model object.

Usage

```r
S3 method for class 'MArrayLM'
fit(object, ...)
```

Arguments

- **object**: a fitted object of class inheriting from "MArrayLM".
- **...**: other arguments are not currently used.

Value

A numeric matrix of fitted values.

Author(s)

Gordon Smyth

See Also

fitted
## genas

### Genuine Association of Gene Expression Profiles

#### Description

Calculates biological correlation between two gene expression profiles.

#### Usage

```r
genas(fit, coef=c(1,2), subset="all", plot=FALSE, alpha=0.4)
```

#### Arguments

- `fit`: an MArrayLM fitted model object produced by `lmFit` or `contrasts.fit` and followed by `eBayes`.
- `coef`: numeric vector of length 2 indicating which columns in the fit object are to be correlated.
- `subset`: character string indicating which subset of genes to include in the correlation analysis. Choices are "all", "Fpval", "p.union", "p.int", "logFC" or "predFC".
- `plot`: logical, should a scatterplot be produced summarizing the correlation analysis?
- `alpha`: numeric value between 0 and 1 determining the transparency of the technical and biological ellipses if a plot is produced. `alpha=0` indicates fully transparent and `alpha=1` indicates fully opaque.

#### Details

The function estimates the biological correlation between two different contrasts in a linear model. By biological correlation, we mean the correlation that would exist between the log2-fold changes (logFC) for the two contrasts, if measurement error could be eliminated and the true log-fold-changes were known. This function is motivated by the fact that different contrasts for a linear model are often strongly correlated in a technical sense. For example, the estimated logFC for multiple treatment conditions compared back to the same control group will be positively correlated even in the absence of any biological effect. This function aims to separate the biological from the technical components of the correlation. The method is explained briefly in Majewski et al (2010) and in full detail in Phipson (2013).

The `subset` argument specifies whether and how the fit object should be subsetted. Ideally, only genes that are truly differentially expressed for one or both of the contrasts should be used estimate the biological correlation. The default is "all", which uses all genes in the fit object to estimate the biological correlation. The option "Fpval" chooses genes based on how many F-test p-values are estimated to be truly significant using the function `propTrueNull`. This should capture genes that display any evidence of differential expression in either of the two contrasts. The options "p.union" and "p.int" are based on the moderated t p-values from both contrasts. From the `propTrueNull` function an estimate of the number of p-values truly significant in either of the two contrasts can be obtained. "p.union" takes the union of these genes and "p.int" takes the intersection of these genes. The other options, "logFC" and "predFC" subsets on genes that attain a logFC or predFC at least as large as the 90th percentile of the log fold changes or predictive log fold changes on the absolute scale.

The `plot` option is a logical argument that specifies whether or not to plot a scatter plot of log-fold-changes for the two contrasts. The biological and technical correlations are overlaid on the scatterplot using semi-transparent ellipses. `library(ellipse)` is required to enable the plotting of ellipses.
Value

genas produces a list with the following components:

- \texttt{technical.correlation}
  \quad estimate of the technical correlation

- \texttt{biological.correlation}
  \quad estimate of the biological correlation

- \texttt{covariance.matrix}
  \quad estimate of the covariance matrix from which the biological correlation is obtained

- \texttt{deviance}
  \quad the likelihood ratio test statistic used to test whether the biological correlation is equal to 0

- \texttt{p.value}
  \quad the p.value associated with \texttt{deviance}

- \texttt{n}
  \quad the number of genes used to estimate the biological correlation

Note

As present, genas assumes that technical correlations between coefficients are the same for all genes, and hence it only works with fit objects that were created without observation weights or missing values. It does not work with voom pipelines, because these involve observation weights.

Author(s)

Belinda Phipson and Gordon Smyth

References


See Also

- \texttt{lmFit, eBayes, contrasts.fit}

Examples

```r
Simulate gene expression data

Three conditions (Control, A and B) and 1000 genes
ngene <- 1000
mu.A <- mu.B <- mu.ctrl <- rep(5,ngene)

200 genes are differentially expressed.
All are up in condition A and down in B
```
# so the biological correlation is negative.

# Two microarrays for each condition
y <- matrix(rnorm(6000,mean=mu,sd=1),ngene,6)

data <- data.frame(group = c("Ctrl","Ctrl","A","A","B","B"),
levels = c("Ctrl","A","B"))
design <- model.matrix(~group)

# fit a linear model
fit <- lmFit(y,design)
fit <- eBayes(fit)

data <- data.frame(group = c("Ctrl","Ctrl","A","A","B","B"),
levels = c("Ctrl","A","B"))
design <- model.matrix(~group)

# Estimate biological correlation between the logFC profiles
# for A-vs-Ctrl and B-vs-Ctrl
genas(fit, coef=c(2,3), plot=TRUE, subset="F")

geneSetTest

**Mean-rank Gene Set Test**

**Description**
Test whether a set of genes is highly ranked relative to other genes in terms of a given statistic. Genes are assumed to be independent.

**Usage**

geneSetTest(index, statistics, alternative = "mixed", type = "auto",
ranks.only = TRUE, nsim=9999)
wilcoxGST(index, statistics, ...)

**Arguments**

- **index**: index vector for the gene set. This can be a vector of indices, or a logical vector of the same length as statistics or, in general, any vector such that statistics[index] gives the statistic values for the gene set to be tested.
- **statistics**: vector, any genewise statistic by which genes can be ranked.
- **alternative**: character string specifying the alternative hypothesis, must be one of "mixed", "either", "up" or "down". "two.sided", "greater" and "less" are also permitted as synonyms for "either", "up" and "down" respectively.
- **type**: character string specifying whether the statistics are signed (t-like, "t") or unsigned (F-like, "f") or whether the function should make an educated guess ("auto"). If the statistic is unsigned, then it assume that larger statistics are more significant.
- **ranks.only**: logical, if TRUE only the ranks of the statistics are used.
- **nsim**: number of random samples to take in computing the p-value. Not used if ranks.only=TRUE.
- **...**: other arguments are passed to geneSetTest.
These functions compute a p-value to test the hypothesis that the indexed test set of genes tends to be more highly ranked in terms of some test statistic compared to randomly chosen genes. The statistic might be any statistic of interest, for example a t-statistic or F-statistic for differential expression. Like all gene set tests, these functions can be used to detect differential expression for a group of genes, even when the effects are too small or there is too little data to detect the genes individually.

wilcoxGST is a synonym for geneSetTest with ranks.only=TRUE. This version of the test procedure was developed by Michaud et al (2008), who called it mean-rank gene-set enrichment.

geneSetTest performs a competitive test in the sense that genes in the test set are compared to other genes (Goeman and Buhlmann, 2007). If the statistic is a genewise test statistic for differential expression, then geneSetTest tests whether genes in the set are more differentially expressed than genes not in the set. By contrast, a self-contained gene set test such as roast tests whether genes in the test set are differentially expressed, in an absolute sense, without regard to any other genes on the array.

Because it is based on permuting genes, geneSetTest assumes that the different genes (or probes) are statistically independent. (Strictly speaking, it assumes that the genes in the set are no more correlated on average than randomly chosen genes.) If inter-gene correlations are present, then a statistically significant result from geneSetTest indicates either that the set is highly ranked or that the genes in the set are positively correlated on average (Wu and Smyth, 2012). Unless gene sets with positive correlations are particularly of interest, it may be advisable to use camera instead to adjust the test for inter-gene correlations. Inter-gene correlations are likely to be present in differential expression experiments with biologically heterogeneous experimental units. On the other hand, the assumption of independence between genes should hold when the replicates are purely technical, i.e., when there is no biological variability between the replicate arrays in each experimental condition.

The statistics are usually a set of probe-wise statistics arising for some comparison from a microarray experiment. They may be t-statistics, meaning that the genewise null hypotheses would be rejected for large positive or negative values, or they may be F-statistics, meaning that only large values are significant. Any set of signed statistics, such as log-ratios, M-values or moderated t-statistics, are treated as t-like. Any set of unsigned statistics, such as F-statistics, posterior probabilities or chi-square tests are treated as F-like. If type="auto" then the statistics will be taken to be t-like if they take both positive and negative values and will be taken to be F-like if they are all of the same sign.

There are four possible alternatives to test for. alternative="up" means the genes in the set tend to be up-regulated, with positive t-statistics. alternative="down" means the genes in the set tend to be down-regulated, with negative t-statistics. alternative="either" means the set is either up or down-regulated as a whole. alternative="mixed" test whether the genes in the set tend to be differentially expressed, without regard for direction. In this case, the test will be significant if the set contains mostly large test statistics, even if some are positive and some are negative.

The latter three alternatives are appropriate if you have a prior expectation that all the genes in the set will react in the same direction. The "mixed" alternative is appropriate if you know only that the genes are involved in the relevant pathways, possibly in different directions. The "mixed" is the only meaningful alternative with F-like statistics.

The test statistic used for the gene-set-test is the mean of the statistics in the set. If ranks.only is TRUE the only the ranks of the statistics are used. In this case the p-value is obtained from a Wilcoxon test. If ranks.only is FALSE, then the p-value is obtained by simulation using nsim random sets of genes.
Value

numeric value giving the estimated p-value.

Note

This function does not correct for inter-gene correlation, so it is more likely to assign small p-values to sets containing positive correlated genes. For this reason, the alternative camera is now recommended over geneSetTest in those contexts for which camera is applicable.

Author(s)

Gordon Smyth and Di Wu

References


See Also

camera, roast, romer, wilcox.test, barcodeplot

There is a topic page on 10.GeneSetTests.

Examples

```r
stat <- rnorm(100)
sel <- 1:10; stat[sel] <- stat[sel]+1
wilcoxGST(sel,stat)
```

getEAWP

Extract Basic Data from Expression Data Objects

Description

Given an expression data object of any known class, get the expression values, weights, probe annotation and A-values that are needed for linear modelling. This function is called by the linear modelling functions in LIMMA.

Usage

g&EAWP(object)
getLayout

Arguments

object any matrix-like object containing log-expression values. Can be an object of class MAList, EList, marrayNorm, PLMset, vsn, or any class inheriting from ExpressionSet, or any object that can be coerced to a numeric matrix.

Details

Rows correspond to probes and columns to RNA samples.

In the case of two-color microarray data objects (MAList or marrayNorm), Amean is the vector of row means of the matrix of A-values. For other data objects, Amean is the vector of row means of the matrix of expression values.

From April 2013, the rownames of the output exprs matrix are required to be unique. If object has no row names, then the output rownames of exprs are 1:nrow(object). If object has row names but with duplicated names, then the rownames of exprs are set to 1:nrow(object) and the original row names are preserved in the ID column of probes.

object should be a normalized data object. getEAWP will return an error if object is a non-normalized data object such as RGList or EListRaw, because these do not contain log-expression values.

Value

A list with components

- exprs numeric matrix of log-ratios, log-intensities or log-expression values
- weights numeric matrix of weights
- probes data.frame of probe-annotation
- Amean numeric vector of average log-expression for each probe

exprs is the only required component. The other components will be NULL if not found in the input object.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of data classes used in LIMMA.

getLayout Extract the Print Layout of an Array from the GAL File

Description

From the Block, Row and Column information in a genelist, determine the number of grid rows and columns on the array and the number of spot rows and columns within each grid.
**Usage**

getLayout(gal, guessdups=FALSE)
getLayout2(galfile)
getDupSpacing(ID)

**Arguments**

gal      data.frame containing the GAL, i.e., giving the position and gene identifier of each spot
galfile  name or path of GAL file
guessdups logical, if TRUE then try to determine number and spacing of duplicate spots, i.e., within-array replicates
ID       vector or factor of gene IDs

**Details**

A GenePix Array List (GAL) file is a list of genes and associated information produced by an Axon microarray scanner. The function getLayout determines the print layout from a data frame created from a GAL file or gene list. The data.frame must contain columns Block, Column and Row. (The number of tip columns is assumed to be either one or four.)

On some arrays, each probe may be duplicated a number of times (ndups) at regular intervals (spacing) in the GAL file. getDupSpacing determines valid values for ndups and spacing from a vector of IDs. If guessdups=TRUE, then getLayout calls getDupSpacing.

The function getLayout2 attempts to determine the print layout from the header information of an actual GAL file.

**Value**

A printlayout object, which is a list with the following components. The last two components are present only if guessdups=TRUE.

- ngrid.r   integer, number of grid rows on the arrays
- ngrid.c   integer, number of grid columns on the arrays
- nspot.r   integer, number of rows of spots in each grid
- nspot.c   integer, number of columns of spots in each grid
- ndups     integer, number of times each probe is printed on the array
- spacing   integer, spacing between multiple printings of each probe

**Author(s)**

Gordon Smyth and James Wettenhall

**See Also**

An overview of LIMMA functions for reading data is given in 03.ReadingData.

**Examples**

# gal <- readGAL()
# layout <- getLayout(gal)
getSpacing

Get Numerical Spacing

Description

Convert character to numerical spacing measure for within-array replicate spots.

Usage

getSpacing(spacing, layout)

Arguments

spacing character string or integer. Acceptable character strings are "columns", "rows", "subarrays" or "topbottom". Integer values are simply passed through.

layout list containing printer layout information

Details

"rows" means that duplicate spots are printed side-by-side by rows. These will be recorded in consecutive rows in the data object.

"columns" means that duplicate spots are printed side-by-side by columns. These will be separated in the data object by layout$nspot.r rows.

"subarrays" means that a number of sub-arrays, with identical probes in the same arrangement, are printed on each array. The spacing therefore will be the size of a sub-array.

"topbottom" is the same as "subarrays" when there are two sub-arrays.

Value

Integer giving spacing between replicate spots in the gene list.

Author(s)

Gordon Smyth

See Also

An overview of LIMMA functions for reading data is given in 03.ReadingData.

Examples

getSpacing("columns",list(ngrid.r=2,ngrid.c=2,nspot.r=20,nspot.c=19))
getSpacing("rows",list(ngrid.r=2,ngrid.c=2,nspot.r=20,nspot.c=19))
getSpacing("topbottom",list(ngrid.r=2,ngrid.c=2,nspot.r=20,nspot.c=19))
gls.series

Fit Linear Model to Microarray Data by Generalized Least Squares

Description

Fit a linear model genewise to expression data from a series of microarrays. The fit is by generalized least squares allowing for correlation between duplicate spots or related arrays. This is a utility function for lmFit.

Usage

gls.series(M, design = NULL, ndups = 2, spacing = 1, block = NULL, correlation = NULL, weights = NULL, ...)

Arguments

M
numeric matrix containing log-ratio or log-expression values for a series of microarrays, rows correspond to genes and columns to arrays.

design
numeric design matrix defining the linear model, with rows corresponding to arrays and columns to comparisons to be estimated. The number of rows must match the number of columns of M. Defaults to the unit vector meaning that the arrays are treated as replicates.

ndups
positive integer giving the number of times each gene is printed on an array. nrow(M) must be divisible by ndups. Ignored if block is not NULL.

spacing
the spacing between the rows of M corresponding to duplicate spots, spacing=1 for consecutive spots. Ignored if block is not NULL.

block
vector or factor specifying a blocking variable on the arrays. Same length as ncol(M).

correlation
numeric value specifying the inter-duplicate or inter-block correlation.

weights
an optional numeric matrix of the same dimension as M containing weights for each spot. If it is of different dimension to M, it will be filled out to the same size.

...
other optional arguments to be passed to dupcor.series.

Details

This is a utility function used by the higher level function lmFit. Most users should not use this function directly but should use lmFit instead.

This function is for fitting gene-wise linear models when some of the expression values are correlated. The correlated groups may arise from replicate spots on the same array (duplicate spots) or from a biological or technical replicate grouping of the arrays. This function is normally called by lmFit and is not normally called directly by users.

Note that the correlation is assumed to be constant across genes. If correlation=NULL then a call is made to duplicateCorrelation to estimated the correlation.
Value

A list with components

- **coefficients**: numeric matrix containing the estimated coefficients for each linear model. Same number of rows as \(M\), same number of columns as design.
- **stdev.unscaled**: numeric matrix conformal with \(\text{coef}\) containing the unscaled standard deviations for the coefficient estimators. The standard errors are given by \(\text{stdev.unscaled} \times \text{sigma}\).
- **sigma**: numeric vector containing the residual standard deviation for each gene.
- **df.residual**: numeric vector giving the degrees of freedom corresponding to \(\text{sigma}\).
- **correlation**: inter-duplicate or inter-block correlation
- **qr**: QR decomposition of the generalized linear squares problem, i.e., the decomposition of \(\text{design}\) standardized by the Choleski-root of the correlation matrix defined by \(\text{correlation}\).

Author(s)

Gordon Smyth

See Also

duplicateCorrelation.

An overview of linear model functions in limma is given by 06.LinearModels.

Description

Test for over-representation of gene ontology (GO) terms or KEGG pathways in one or more sets of genes, optionally adjusting for abundance or gene length bias.

Usage

```r
S3 method for class 'MArrayLM'
goana(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, ...)
Default S3 method:
goana(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL, plot=FALSE, ...)
S3 method for class 'MArrayLM'
kegga(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, ...)
Default S3 method:
kegga(de, universe = NULL, species = "Hs", species.KEGG = NULL, convert = FALSE,
gene.pathway = NULL, pathway.names = NULL, prior.prob = NULL, covariate=NULL, plot=FALSE, ...)
getGeneKEGGLinks(species.KEGG = "hsa", convert = FALSE)
geKEGGPathwayNames(species.KEGG = NULL, remove.qualifier = FALSE)
```
Arguments

de: a character vector of Entrez Gene IDs, or a list of such vectors, or an MArrayLM fit object.

coeff: column number or column name specifying for which coefficient or contrast differential expression should be assessed.

geneid: Entrez Gene identifiers. Either a vector of length nrow(de) or the name of the column of de$genes containing the Entrez Gene IDs.

FDR: false discovery rate cutoff for differentially expressed genes. Numeric value between 0 and 1.

species: character string specifying the species. Possible values include "Hs" (human), "Mm" (mouse), "Rn" (rat), "Dm" (fly) or "Pt" (chimpanzee), but other values are possible if the corresponding organism package is available. See alias2Symbol for other possible values. Ignored if species.KEGG or is not NULL or if gene.pathway and pathway.names are not NULL.

species.KEGG: three-letter KEGG species identifier. See http://www.kegg.jp/kegg/catalog/org_list.html or http://rest.kegg.jp/list/organism for possible values. Ignored if gene.pathway and pathway.names are not NULL.

convert: if TRUE then KEGG gene identifiers will be converted to NCBI Entrez Gene identifiers. Note that KEGG IDs are the same as Entrez Gene IDs for most species anyway.

gene.pathway: data.frame linking genes to pathways. First column gives gene IDs, second column gives pathway IDs. By default this is obtained automatically by getGeneKEGGLinks(species.KEGG).

remove.qualifier: if TRUE, the species qualifier will be removed from the pathway names.

pathway.names: data.frame giving full names of pathways. First column gives pathway IDs, second column gives pathway names. By default this is obtained automatically using getKEGGPathwayNames(species.KEGG, remove=TRUE).

trend: adjust analysis for gene length or abundance? Can be logical, or a numeric vector of covariate values, or the name of the column of de$genes containing the covariate values. If TRUE, then de$Amean is used as the covariate.

universe: vector specifying the set of Entrez Gene identifiers to be the background universe. If NULL then all Entrez Gene IDs associated with any gene ontology term will be used as the universe.

prior.prob: optional numeric vector of the same length as universe giving the prior probability that each gene in the universe appears in a gene set. Will be computed from covariate if the latter is provided. Ignored if universe is NULL.

covariate: optional numeric vector of the same length as universe giving a covariate against which prior.prob should be computed. Ignored if universe is NULL.

plot: logical, should the prior.prob vs covariate trend be plotted?

...: any other arguments in a call to the MArrayLM method are passed to the default method.

Details

These functions perform over-representation analyses for Gene Ontology terms or KEGG pathways in one or more vectors of Entrez Gene IDs. The default method accepts a gene set as a vector of gene IDs or multiple gene sets as a list of vectors. An over-representation analysis is then done for each set. The MArrayLM method extracts the gene sets automatically from a linear model fit object.
goana uses annotation from the appropriate Bioconductor organism package. The species can be any character string XX for which an organism package org.XX.eg.db is installed. Examples are "Hs" for human for "Mm" for mouse. See `alias2Symbol` for other possible values for species.

kegga reads KEGG pathway annotation from the KEGG website. For kegga, the species name can be provided in either Bioconductor or KEGG format. Examples of KEGG format are "hsa" for human or "mmu" for mouse. kegga can be used for any species supported by KEGG, of which there are more than 14,000 possibilities. By default, kegga obtains the KEGG annotation for the specified species from the [http://rest.kegg.jp](http://rest.kegg.jp) website. Alternatively one can supply the required pathway annotation to kegga in the form of two data.frames. If this is done, then an internet connection is not required.

The ability to supply data.frame annotation to kegga means that kegga can in principle be used in conjunction with any user-supplied set of annotation terms.

The default goana and kegga methods accept a vector `prior.prob` giving the prior probability that each gene in the universe appears in a gene set. This vector can be used to correct for unwanted trends in the differential expression analysis associated with gene length, gene abundance or any other covariate (Young et al, 2010). The `MArrayLM` object computes the `prior.prob` vector automatically when `trend` is non-NULL.

If `prior.prob=NULL`, the function computes one-sided hypergeometric tests equivalent to Fisher’s exact test. If prior probabilities are specified, then a test based on the Wallenius’ noncentral hypergeometric distribution is used to adjust for the relative probability that each gene will appear in a gene set, following the approach of Young et al (2010).

The `MArrayLM` methods performs over-representation analyses for the up and down differentially expressed genes from a linear model analysis. In this case, the universe is all the genes found in the fit object.

trend=FALSE is equivalent to prior.prob=NULL. If trend=TRUE or a covariate is supplied, then a trend is fitted to the differential expression results and this is used to set prior.prob.

The statistical approach provided here is the same as that provided by the gooseq package, with one methodological difference and a few restrictions. Unlike the gooseq package, the gene identifiers here must be Entrez Gene IDs and the user is assumed to be able to supply gene lengths if necessary. The gooseq package has additional functionality to convert gene identifiers and to provide gene lengths. The only methodological difference is that goana and kegga computes gene length or abundance bias using `tricubeMovingAverage` instead of monotonic regression. While `tricubeMovingAverage` does not enforce monotonicity, it has the advantage of numerical stability when `de` contains only a small number of genes.

**Value**

The goana default method produces a data frame with a row for each GO term and the following columns:

- **Term**: GO term.
- **Ont**: ontology that the GO term belongs to. Possible values are "BP", "CC" and "MF".
- **N**: number of genes in the GO term.
- **DE**: number of genes in the DE set.
- **P.DE**: p-value for over-representation of the GO term in the set.

The last two column names above assume one gene set with the name DE. In general, there will be a pair of such columns for each gene set and the name of the set will appear in place of "DE".

The goana method for `MArrayLM` objects produces a data frame with a row for each GO term and the following columns:
goana

Term
GO term.

Ont
ontology that the GO term belongs to. Possible values are "BP", "CC" and "MF".

N
number of genes in the GO term.

Up
number of up-regulated differentially expressed genes.

Down
number of down-regulated differentially expressed genes.

P.Up
p-value for over-representation of GO term in up-regulated genes. Not adjusted for multiple testing.

P.Down
p-value for over-representation of GO term in down-regulated genes. Not adjusted for multiple testing.

The row names of the data frame give the GO term IDs.
The output from kegga is the same except that row names become KEGG pathway IDs, Term becomes Pathway and there is no Ont column.

Note
kegga requires an internet connection unless gene.pathway and pathway.names are both supplied.
The default for kegga with species="Dm" changed from convert=TRUE to convert=FALSE in limma 3.27.8. Users wanting to use Entrez Gene IDs for Drosophila should set convert=TRUE, otherwise fly-base IDs are assumed.

Author(s)
Gordon Smyth and Yifang Hu

References

See Also
topGO, topKEGG
The goseq package provides an alternative implementation of methods from Young et al (2010). Unlike the limma functions documented here, goseq will work with a variety of gene identifiers and includes a database of gene length information for various species.
The gostats package also does GO analyses without adjustment for bias but with some other options. See 10.GeneSetTests for a description of other functions used for gene set testing.

Examples
```r
Not run:
Linear model usage:

fit <- lmFit(y, design)
fit <- eBayes(fit)
Standard GO analysis

go.fisher <- goana(fit, species="Hs")
```
Grid and spot row and column positions.

Usage

gridr(layout)
gridc(layout)
spotr(layout)
spotec(layout)

Arguments

layout list with the components ngrid.r, ngrid.c, nspot.r and nspot.c
Value

Vector of length prod(unlist(layout)) giving the grid rows (gridr), grid columns (gridc), spot rows (spotr) or spot columns (spotc).

Author(s)

Gordon Smyth

---

**heatdiagram**

*Stemmed Heat Diagram*

**Description**

Creates a heat diagram showing the co-regulation of genes under one condition with a range of other conditions.

**Usage**

heatDiagram(results, coef, primary=1, names=NULL, treatments=colnames(coef), limit=NULL, orientation="landscape", low="green", high="red", cex=1, mar=NULL, ncolors=123, ...)

heatdiagram(stat, coef, primary=1, names=NULL, treatments=colnames(stat), critical.primary=4, critical.other=3, limit=NULL, orientation="landscape", low="green", high="red", cex=1, mar=NULL, ncolors=123, ...)

**Arguments**

- **results**
  TestResults matrix, containing elements -1, 0 or 1, from `decideTests`

- **stat**
  numeric matrix of test statistics. Rows correspond to genes and columns to treatments or contrasts between treatments.

- **coef**
  numeric matrix of the same size as stat. Holds the coefficients to be displayed in the plot.

- **primary**
  number or name of the column to be compared to the others. Genes are included in the diagram according to this column of stat and are sorted according to this column of coef. If primary is a name, then stat and coef must have the same column names.

- **names**
  optional character vector of gene names

- **treatments**
  optional character vector of treatment names

- **critical.primary**
  critical value above which the test statistics for the primary column are considered significant and included in the plot

- **critical.other**
  critical value above which the other test statistics are considered significant. Should usually be no larger than critical.primary although larger values are permitted.

- **limit**
  optional value for coef above which values will be plotted in extreme color. Defaults to `max(abs(coef))`.

- **orientation**
  "portrait" for upright plot or "landscape" for plot orientated to be wider than high. "portrait" is likely to be appropriate for inclusion in printed document while "landscape" may be appropriate for a presentation on a computer screen.
**heatdiagram**

low color associated with repressed gene regulation

high color associated with induced gene regulation

ncolors number of distinct colors used for each of up and down regulation

cex factor to increase or decrease size of column and row text

mar numeric vector of length four giving the size of the margin widths. Default is \( \text{cex} \times \text{c}(5,6,1,1) \) for landscape and \( \text{cex} \times \text{c}(1,1,4,3) \) for portrait.

... any other arguments will be passed to the `image` function

**Details**

Users are encouraged to use `heatDiagram` rather than `heatdiagram` as the later function may be removed in future versions of limma.

This function plots an image of gene expression profiles in which rows (or columns for portrait orientation) correspond to treatment conditions and columns (or rows) correspond to genes. Only genes which are significantly differentially expressed in the primary condition are included. Genes are sorted by differential expression under the primary condition.

Note: the plot produced by this function is unique to the limma package. It should not be confused with "heatmaps" often used to display results from cluster analyses.

**Value**

An image is created on the current graphics device. A matrix with named rows containing the coefficients used in the plot is also invisibly returned.

**Author(s)**

Gordon Smyth

**See Also**

`image`.

**Examples**

```r
Not run:
MA <- normalizeWithinArrays(RG)
design <- cbind(c(1,1,1,0,0,0),c(0,0,0,1,1,1))
fit <- lmFit(MA, design=design)
contrasts.mouse <- cbind(Control=c(1,0), Mutant=c(0,1), Difference=c(-1,1))
fit <- eBayes(contrasts.fit(fit, contrasts=contrasts.mouse))
results <- decideTests(fit, method="global", p=0.1)
heatDiagram(results, fit$coef, primary="Difference")

End(Not run)
```
helpMethods

Prompt for Method Help Topics

Description
For any S4 generic function, find all methods defined in currently loaded packages. Prompt the user to choose one of these to display the help document.

Usage
helpMethods(genericFunction)

Arguments

genericFunction
a generic function or a character string giving the name of a generic function

Author(s)
Gordon Smyth

See Also

showMethods

Examples

## Not run: helpMethods(show)

ids2indices

Convert Gene Identifiers to Indices for Gene Sets

Description
Make a list of gene identifiers into a list of indices for gene sets.

Usage

ids2indices(gene.sets, identifiers, remove.empty=TRUE)

Arguments

gene.sets
list of character vectors, each vector containing the gene identifiers for a set of genes.

identifiers
character vector of gene identifiers.

remove.empty
logical, should sets of size zero be removed from the output?
imageplot

Description

Creates an image of colors or shades of gray that represent the values of a statistic for each spot on a spotted microarray. This function can be used to explore any spatial effects across the microarray.

Usage

imageplot(z, layout, low = NULL, high = NULL, ncolors = 123, zerocenter = NULL, zlim = NULL, mar=c(2,1,1,1), legend=TRUE, ...)

Details

This function used to create input for romer, mroast and camera function. Typically, identifiers is the vector of Entrez Gene IDs, and gene.sets is obtained constructed from a database of gene sets, for example a representation of the Molecular Signatures Database (MSigDB) downloaded from http://bioinf.wehi.edu.au/software/MSigDB.

Value

list of integer vectors, each vector containing the indices of a gene set in the vector identifiers.

Author(s)

Gordon Smyth and Yifang Hu

See Also

romer, mroast, camera

There is a topic page on 10.GeneSetTests.

Examples

```r
Not run:

download.file("http://bioinf.wehi.edu.au/software/MSigDB/human_c2_v5p2.rdata",
 "human_c2_v5p2.rdata", mode = "wb")

load("human_c2_v5p2.rdata")
c2.indices <- ids2indices(Hs.c2, y$genes$GeneID)
camera(y, c2.indices, design)

End(Not run)
```
Arguments

- **z**: numeric vector or array. This vector can contain any spot statistics, such as log intensity ratios, spot sizes or shapes, or t-statistics. Missing values are allowed and will result in blank spots on the image. Infinite values are not allowed.

- **layout**: a list specifying the dimensions of the spot matrix and the grid matrix.

- **low**: color associated with low values of z. May be specified as a character string such as "green", "white" etc, or as a rgb vector in which c(1, 0, 0) is red, c(0, 1, 0) is green and c(0, 0, 1) is blue. The default value is "green" if zerocenter=T or "white" if zerocenter=F.

- **high**: color associated with high values of z. The default value is "red" if zerocenter=T or "blue" if zerocenter=F.

- **ncolors**: number of color shades used in the image including low and high.

- **zerocenter**: should zero values of z correspond to a shade exactly halfway between the colors low and high? The default is TRUE if z takes positive and negative values, otherwise FALSE.

- **zlim**: numerical vector of length 2 giving the extreme values of z to associate with colors low and high. By default zlim is the range of z. Any values of z outside the interval zlim will be truncated to the relevant limit.

- **mar**: numeric vector of length 4 specifying the width of the margin around the plot. This argument is passed to par.

- **legend**: logical, if TRUE the range of z and zlim is shown in the bottom margin... any other arguments will be passed to the function image

Details

This function may be used to plot the values of any spot-specific statistic, such as the log intensity ratio, background intensity or a quality measure such as spot size or shape. The image follows the layout of an actual microarray slide with the bottom left corner representing the spot (1,1,1,1). The color range is used to represent the range of values for the statistic. When this function is used to plot the red/green log-ratios, it is intended to be an in silico version of the classic false-colored red-yellow-green image of a scanned two-color microarray.

This function is related to the earlier plot.spatial function in the sma package and to the later maImage function in the marray package. It differs from plot.spatial most noticeably in that all the spots are plotted and the image is plotted from bottom left rather than from top left. It is intended to display spatial patterns and artefacts rather than to highlight only the extreme values as does plot.spatial. It differs from maImage in that any statistic may be plotted and in its use of a red-yellow-green color scheme for log-ratios, similar to the classic false-colored jpeg image, rather than the red-black-green color scheme associated with heat maps.

Value

An plot is created on the current graphics device.

Author(s)

Gordon Smyth

See Also

maImage in the marray package, image in the graphics package.

An overview of diagnostic functions available in LIMMA is given in 09.Diagnostics.
Examples

```r
M <- rnorm(8*4*16*16)
imageplot(M, layout=list(ngrid.r=8, ngrid.c=4, nspot.r=16, nspot.c=16))
```

### Description

Write imageplots to files in PNG format, six plots to a file in a 3 by 2 grid arrangement.

### Usage

```r
imageplot3by2(RG, z="Gb", prefix=paste("image", z, sep="-"), path=NULL, zlim=NULL, common.lim=TRUE, ...)
```

### Arguments

- `RG`: an `RGList` or `MAList` object, or any list with component named by `z`
- `z`: character string giving name of component of `RG` to plot
- `prefix`: character string giving prefix to attach to file names
- `path`: character string specifying directory for output files
- `zlim`: numeric vector of length 2, giving limits of response vector to be associated with saturated colors
- `common.lim`: logical, should all plots on a page use the same axis limits
- `...`: any other arguments are passed to `imageplot`

### Details

At the time of writing, this function writes plots in PNG format in an arrangement optimized for A4-sized paper.

### Value

No value is returned, but one or more files are written to the working directory. The number of files is determined by the number of columns of `RG`.

### Author(s)

Gordon Smyth

### See Also

An overview of diagnostic functions available in LIMMA is given in `09.Diagnostics`.
**intraspotCorrelation**  
*Intra-Spot Correlation for Two Color Data*

**Description**
Estimate the within-block correlation associated with spots for spotted two color microarray data.

**Usage**

```r
intraspotCorrelation(object, design, trim=0.15)
```

**Arguments**

- `object` an `MAList` object or a list from which `M` and `A` values may be extracted
- `design` a numeric matrix containing the design matrix for linear model in terms of the individual channels. The number of rows should be twice the number of arrays. The number of columns will determine the number of coefficients estimated for each gene.
- `trim` the fraction of observations to be trimmed from each end of the atanh-correlations when computing the consensus correlation. See `mean`.

**Details**
This function estimates the correlation between two channels observed on each spot. The correlation is estimated by fitting a heteroscedastic regression model to the `M` and `A`-values of each gene. The function also returns a consensus correlation, which is a robust average of the individual correlations, which can be used as input for functions `lmscFit`.

The function may take long time to execute.

**Value**
A list with components

- `consensus.correlation` robust average of the estimated inter-duplicate correlations. The average is the trimmed mean of the correlations for individual genes on the atanh-transformed scale.
- `atanh.correlations` a numeric vector giving the individual genewise correlations on the atanh scale
- `df` numeric matrix of degrees of freedom associated with the correlations. The first column gives the degrees of freedom for estimating the within-spot or `M`-value mean square while the second gives the degrees of freedom for estimating the between spot or `A`-value mean square.

**Author(s)**
Gordon Smyth
is.fullrank

Check for Full Column Rank

Description

Test whether a numeric matrix has full column rank.

Usage

is.fullrank(x)
nonEstimable(x)

Arguments

x

a numeric matrix or vector

Details

is.fullrank is used to check the integrity of design matrices in limma, for example after subsetting operations.

nonEstimable is used by lmFit to report which coefficients in a linear model cannot be estimated.

Value

is.fullrank returns TRUE or FALSE.

nonEstimable returns a character vector of names for the columns of x which are linearly dependent on previous columns. If x has full column rank, then the value is NULL.

Author(s)

Gordon Smyth

References


See Also

This function uses remlscore from the statmod package.

An overview of methods for single channel analysis in limma is given by 07.SingleChannel.

Examples

# See lmscFit
## Not run:
corfit <- intraspotCorrelation(MA, design)
all.correlations <- tanh(corfit$atanh.correlations)
boxplot(all.correlations)
## End(Not run)
isNumeric

Examples

# TRUE
is.fullrank(1)
is.fullrank(cbind(1,0:1))

# FALSE
is.fullrank(0)
is.fullrank(matrix(1,2,2))
nonEstimable(matrix(1,2,2))

isNumeric  Test for Numeric Argument

Description

Test whether argument is numeric or a data.frame with numeric columns.

Usage

isNumeric(x)

Arguments

x any object

Details

This function is used to check the validity of arguments for numeric functions. It is an attempt to emulate the behavior of internal generic math functions.

isNumeric differs from is.numeric in that data.frames with all columns numeric are accepted as numeric.

Value

TRUE or FALSE

Author(s)

Gordon Smyth

See Also

is.numeric.Math

Examples

isNumeric(3)
isNumeric("a")
x <- data.frame(a=c(1,1),b=c(0,1))
isNumeric(x)  # TRUE
is.numeric(x)  # FALSE
kooperberg

kooperberg Model-Based Background Correction for GenePix data

Description
This function uses a Bayesian model to background correct GenePix microarray data.

Usage
kooperberg(RG, a=TRUE, layout=RG$printer, verbose=TRUE)

Arguments
- RG: an RGList of GenePix data, read in using read.maimages, with other.columns=c("F635 SD","B635 SD","F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels").
- a: logical. If TRUE, the 'a' parameters in the model (equation 3 and 4) are estimated for each slide. If FALSE the 'a' parameters are set to unity.
- layout: list containing print layout with components ngrid.r, ngrid.c, nspot.r and nspot.c. Defaults to RG$printer.
- verbose: logical. If TRUE, progress is reported to standard output.

Details
This function is for use with GenePix data and is designed to cope with the problem of large numbers of negative intensities and hence missing values on the log-intensity scale. It avoids missing values in most cases and at the same time dampens down the variability of log-ratios for low intensity spots. See Kooperberg et al (2002) for more details.

kooperberg uses the foreground and background intensities, standard deviations and number of pixels to compute empirical estimates of the model parameters as described in equation 2 of Kooperberg et al (2002).

Value
An RGList containing the components
- R: matrix containing the background adjusted intensities for the red channel for each spot for each array
- G: matrix containing the background adjusted intensities for the green channel for each spot for each array
- printer: list containing print layout

Author(s)
Matthew Ritchie

References
See Also

04.Background gives an overview of background correction functions defined in the LIMMA package.

Examples

# This is example code for reading and background correcting GenePix data
# given GenePix Results (gpr) files in the working directory (data not
# provided).
## Not run:
# get the names of the GenePix image analysis output files in the current directory
genepixFiles <- dir(pattern="*\.gpr$")
RG <- read.maimages(genepixFiles, source="genepix", other.columns=c("F635 SD","B635 SD",
"F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))
RGmodel <- kooperberg(RG)
MA <- normalizeWithinArrays(RGmodel)
## End(Not run)
limmaUsersGuide View Limma User’s Guide

Description

Finds the location of the Limma User’s Guide and optionally opens it.

Usage

limmaUsersGuide(view=TRUE)

Arguments

view logical, should the document be opened using the default PDF document reader?

Details

The function vignette("limma") will find the short limma Vignette which describes how to obtain the Limma User’s Guide. The User’s Guide is not itself a true vignette because it is not automatically generated using Sweave during the package build process. This means that it cannot be found using vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by Sys.getenv("R_PDFVIEWER"). The PDF viewer can be changed using Sys.putenv(R_PDFVIEWER=).

This function is used by drop-down Vignettes menu when the Rgui interface for Windows is used.

Value

Character string giving the file location.

Author(s)

Gordon Smyth

See Also

vignette, openPDF, openVignette, Sys.getenv, Sys.putenv

Examples

limmaUsersGuide(view=FALSE)
lm.series

Fit Linear Model to Microarray Data by Ordinary Least Squares

Description

Fit a linear model gene-wise to expression data from a series of arrays. This function uses ordinary least squares and is a utility function for lmFit.

Usage

lm.series(M, design=NULL, ndups=1, spacing=1, weights=NULL)

Arguments

M
numeric matrix containing log-ratio or log-expression values for a series of microarrays, rows correspond to genes and columns to arrays

design
numeric design matrix defining the linear model. The number of rows should agree with the number of columns of M. The number of columns will determine the number of coefficients estimated for each gene.

ndups
number of duplicate spots. Each gene is printed ndups times in adjacent spots on each array.

spacing
the spacing between the rows of M corresponding to duplicate spots, spacing=1 for consecutive spots

weights
an optional numeric matrix of the same dimension as M containing weights for each spot. If it is of different dimension to M, it will be filled out to the same size.

Details

This is a utility function used by the higher level function lmFit. Most users should not use this function directly but should use lmFit instead.

The linear model is fit for each gene by calling the function lm.fit or lm.wfit from the base library.

Value

A list with components

coefficients numeric matrix containing the estimated coefficients for each linear model. Same number of rows as M, same number of columns as design.

stdev.unscaled numeric matrix conformal with coef containing the unscaled standard deviations for the coefficient estimators. The standard errors are given by stdev.unscaled * sigma.

sigma numeric vector containing the residual standard deviation for each gene.

df.residual numeric vector giving the degrees of freedom corresponding to sigma.

qr QR-decomposition of design

Author(s)

Gordon Smyth
See Also

lm.fit.

An overview of linear model functions in limma is given by 06.LinearModels.

Examples

# See lmFit for examples

---

```r
lmFit
```

**Linear Model for Series of Arrays**

**Description**

Fit linear model for each gene given a series of arrays

**Usage**

`lmFit(object, design=NULL, ndups=1, spacing=1, block=NULL, correlation, weights=NULL, method="ls", ...)`

**Arguments**

- **object**: A matrix-like data object containing log-ratios or log-expression values for a series of arrays, with rows corresponding to genes and columns to samples. Any type of data object that can be processed by `getEAWP` is acceptable.
- **design**: the design matrix of the microarray experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates.
- **ndups**: positive integer giving the number of times each distinct probe is printed on each array.
- **spacing**: positive integer giving the spacing between duplicate occurrences of the same probe, `spacing=1` for consecutive rows.
- **block**: vector or factor specifying a blocking variable on the arrays. Has length equal to the number of arrays. Must be `NULL` if `ndups>2`.
- **correlation**: the inter-duplicate or inter-technical replicate correlation
- **weights**: non-negative observation weights. Can be a numeric matrix of individual weights, of same size as the object expression matrix, or a numeric vector of array weights with length equal to `ncol` of the expression matrix, or a numeric vector of gene weights with length equal to `nrow` of the expression matrix.
- **method**: fitting method: "ls" for least squares or "robust" for robust regression
- **...**: other optional arguments to be passed to `lm.series`, `gls.series` or `mrlm`
Details

This function fits multiple linear models by weighted or generalized least squares. It accepts data from an experiment involving a series of microarrays with the same set of probes. A linear model is fitted to the expression data for each probe. The expression data should be log-ratios for two-color array platforms or log-expression values for one-channel platforms. (To fit linear models to the individual channels of two-color array data, see \texttt{lmscFit}.) The coefficients of the fitted models describe the differences between the RNA sources hybridized to the arrays. The probe-wise fitted model results are stored in a compact form suitable for further processing by other functions in the limma package.

The function allows for missing values and accepts quantitative weights through the \texttt{weights} argument. It also supports two different correlation structures. If \texttt{block} is not \texttt{NULL} then different arrays are assumed to be correlated. If \texttt{block} is \texttt{NULL} and \texttt{ndups} is greater than one then replicate spots on the same array are assumed to be correlated. It is not possible at this time to fit models with both a block structure and a duplicate-spot correlation structure simultaneously.

If \texttt{object} is a matrix then it should contain log-ratios or log-expression data with rows corresponding to probes and columns to arrays. (A numeric vector is treated the same as a matrix with one column.) For objects of other classes, a matrix of expression values is taken from the appropriate component or slot of the object. If \texttt{object} is of class \texttt{MAList} or \texttt{marrayNorm}, then the matrix of log-ratios (M-values) is extracted. If \texttt{object} is of class \texttt{ExpressionSet}, then the expression matrix is extracted. (This may contain log-expression or log-ratio values, depending on the platform.) If \texttt{object} is of class \texttt{PLMset} then the matrix of chip coefficients \texttt{chip.coefs} is extracted.

The arguments \texttt{design}, \texttt{ndups}, \texttt{spacing} and \texttt{weights} will be extracted from the data object if available and do not normally need to be set explicitly in the call. On the other hand, if any of these are set in the function call then they will over-ride the slots or components in the data object. If \texttt{object} is an \texttt{PLMset}, then weights are computed as $1/pmax(object@se.chip.coefs, 1e-05)^2$. If \texttt{object} is an \texttt{ExpressionSet} object, then weights are not computed.

If the argument \texttt{block} is used, then it is assumed that \texttt{ndups}=1.

The correlation argument has a default value of 0.75, but in normal use this default value should not be relied on and the correlation value should be estimated using the function \texttt{duplicateCorrelation}. The default value is likely to be too high in particular if used with the \texttt{block} argument.

The actual linear model computations are done by passing the data to one the lower-level functions \texttt{lm.series}, \texttt{gls.series} or \texttt{mrlm}. The function \texttt{mrlm} is used if \texttt{method}="robust". If \texttt{method}="ls", then \texttt{gls.series} is used if a correlation structure has been specified, i.e., if \texttt{ndups}>1 or \texttt{block} is non-null and correlation is different from zero. If \texttt{method}="ls" and there is no correlation structure, \texttt{lm.series} is used.

Value

An \texttt{MArrayLM} object containing the result of the fits.

The rownames of \texttt{object} are preserved in the fit object and can be retrieved by \texttt{rownames(fit)} where \texttt{fit} is output from \texttt{lmFit}. The column names of \texttt{design} are preserved as column names and can be retrieved by \texttt{colnames(fit)}.

Author(s)

Gordon Smyth

See Also

\texttt{lmFit} uses \texttt{getEAWP} to extract expression values, gene annotation and so from the data object. An overview of linear model functions in limma is given by 06.LinearModels.
Examples

# Simulate gene expression data for 100 probes and 6 microarrays
# Microarray are in two groups
# First two probes are differentially expressed in second group
# Std deviations vary between genes with prior df=4
sd <- 0.3*sqrt(4/rchisq(100,df=4))
y <- matrix(rnorm(100*6,sd=sd),100,6)
rownames(y) <- paste("Gene",1:100)
design <- cbind(Grp1=1,Grp2vs1=c(0,0,0,1,1,1))
options(digits=3)

# Ordinary fit
fit <- lmFit(y,design)
fit <- eBayes(fit)
topTable(fit,coef=2)
dim(fit)
colnames(fit)
rownames(fit)[1:10]
names(fit)

# Fold-change thresholding
fit2 <- treat(fit,lfc=0.1)
topTreat(fit2,coef=2)

# Volcano plot
volcanoplot(fit,coef=2,highlight=2)

# Mean-difference plot
plotMD(fit,column=2)

# Q-Q plot of moderated t-statistics
qqt(fit$t[,2],df=fit$df.residual+fit$df.prior)
abline(0,1)

# Various ways of writing results to file
## Not run: write.fit(fit,file="exampleresults.txt")
## Not run: write.table(fit,file="exampleresults2.txt")

# Fit with correlated arrays
# Suppose each pair of arrays is a block
block <- c(1,1,2,2,3,3)
dupcor <- duplicateCorrelation(y,design,block=block)
dupcor$consensus.correlation
fit3 <- lmFit(y,design,block=block,correlation=dupcor$consensus)

# Fit with duplicate probes
# Suppose two side-by-side duplicates of each gene
rownames(y) <- paste("Gene",rep(1:50,each=2))
dupcor <- duplicateCorrelation(y,design,ndups=2)
dupcor$consensus.correlation
fit4 <- lmFit(y,design,ndups=2,correlation=dupcor$consensus)
dim(fit4)
fit4 <- eBayes(fit4)
topTable(fit4,coef=2)
lmseFit

Fit Linear Model to Individual Channels of Two-Color Data

Description

Fit a linear model to the individual log-intensities for each gene given a series of two-color arrays

Usage

lmseFit(object, design, correlation)

Arguments

object an MList object or a list from which M and A values may be extracted
design a numeric matrix containing the design matrix for linear model in terms of the individual channels. The number of rows should be twice the number of arrays. The number of columns will determine the number of coefficients estimated for each gene.
correlation numeric value giving the intra-spot correlation

Details

For two color arrays, the channels measured on the same set of arrays are correlated. The M and A however are uncorrelated for each gene. This function fits a linear model to the set of M and A-values for each gene after re-scaling the M and A-values to have equal variances. The input correlation determines the scaling required. The input correlation is usually estimated using intraspotCorrelation before using lmseFit.

Missing values in M or A are not allowed.

Value

An object of class MArrayLM

Author(s)

Gordon Smyth

References


See Also

lm.fit.

An overview of methods for single channel analysis in limma is given by 07.SingleChannel.
Examples

```r
Not run:
Subset of data from ApoAI case study in Limma User's Guide
Avoid non-positive intensities
RG <- backgroundCorrect(RG, method="normexp")
MA <- normalizeWithinArrays(RG)
MA <- normalizeBetweenArrays(MA, method="Aq")
targets <- data.frame(Cy3=I(rep("Pool",6)), Cy5=I(c("WT","WT","WT","KO","KO","KO")))
targets.sc <- targetsA2C(targets)
targets.sc$Target <- factor(targets.sc$Target, levels=c("Pool","WT","KO"))
design <- model.matrix(~Target, data=targets.sc)
corfit <- intraspotCorrelation(MA, design)
fit <- lmscFit(MA, design, correlation=corfit$consensus)
cont.matrix <- cbind(KOvsWT=c(0,-1,1))
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
topTable(fit2, adjust="fdr")

End(Not run)
```

---

**loessFit**

*Univariate Lowess With Prior Weights*

**Description**

Univariate locally weighted linear regression allowing for prior weights. Returns fitted values and residuals.

**Usage**

```r
loessFit(y, x, weights=NULL, span=0.3, iterations=4L, min.weight=1e-5, max.weight=1e5,
 equal.weights.as.null=TRUE, method="weightedLowess")
```

**Arguments**

- **y**: numeric vector of response values. Missing values are allowed.
- **x**: numeric vector of predictor values. Missing values are allowed.
- **weights**: numeric vector of non-negative prior weights. Missing values are treated as zero.
- **span**: positive numeric value between 0 and 1 specifying proportion of data to be used in the local regression moving window. Larger numbers give smoother fits.
- **iterations**: number of local regression fits. Values greater than 1 produce robust fits.
- **min.weight**: minimum weight. Any lower weights will be reset.
- **max.weight**: maximum weight. Any higher weights will be reset.
- **equal.weights.as.null**: should equal weights be treated as if weights were NULL, so that lowess is called? Applies even if all weights are all zero.
- **method**: method used for weighted lowess. Possibilities are "weightedLowess", "loess" or "locfit".
loessFit

Details
This function is essentially a wrapper function for lowess and weightedLowess with added error checking. The idea is to provide the classic univariate lowess algorithm of Cleveland (1979) but allowing for prior weights and missing values.

The venerable lowess code is fast, uses little memory and has an accurate interpolation scheme, so it is an advantage to use it when prior weights are not needed. This functions calls lowess when weights=NULL, but returns values in original rather than sorted order and allows missing values. The treatment of missing values is analogous to na.exclude.

By default, weights that are all equal (even all zero) are treated as if they were NULL, so lowess is called in this case also.

When unequal weights are provided, this function calls weightedLowess by default, although two other possibilities are also provided. weightedLowess implements a similar algorithm to lowess except that it uses the prior weights both in the local regressions and in determining which other observations to include in the local neighbourhood of each observation.

Two alternative algorithms for weighted lowess curve fitting are provided as options. If method="loess", then a call is made to loess(y~x,weights=weights,span=span,degree=1,family="symmetric",...). This method differs from weightedLowess in that the prior weights are ignored when determining the neighbourhood of each observation.

If method="locfit", then repeated calls are made to locfit:::locfit.raw with deg=1. In principle, this is similar to "loess", but "locfit" makes some approximations and is very much faster and uses much less memory than "loess" for long data vectors.

The arguments span and iterations here have the same meaning as for weightedLowess and loess. span is equivalent to the argument f of loess while iterations is equivalent to iter+1 for lowess. It gives the total number of fits rather than the number of robustifying fits.

When there are insufficient observations to estimate the loess curve, loessFit returns a linear regression fit. This mimics the behavior of lowess but not that of loess or locfit.raw.

Value
A list with components

fitted numeric vector of same length as y giving the loess fit
residuals numeric vector of same length as x giving residuals from the fit

Note
With unequal weights, "loess" was the default method prior to limma version 3.17.25. The default was changed to "locfit" in limma 3.17.25, and then to "weightedLowess" in limma 3.19.16. "weightedLowess" will potentially give somewhat different results to the older algorithms because the local neighbourhood of each observation is determined differently (more carefully).

Author(s)
Gordon Smyth

References
logcosh

Description
Compute \( \log(\cosh(x)) \) without floating overflow or underflow

Usage
logcosh(x)

Arguments
x a numeric vector or matrix.

Details
The computation uses asymptotic expressions for very large or very small arguments. For intermediate arguments, \( \log(\cosh(x)) \) is returned.

Value
Numeric vector or matrix of same dimensions as x.

Author(s)
Gordon K Smyth

See Also
If weights=NULL, this function calls lowess. Otherwise it calls weightedLowess, locfit.raw or loess. See the help pages of those functions for references and credits.
Compare with loess in the stats package.
See 05.Normalization for an outline of the limma package normalization functions.

Examples
x <- (1:100)/101
y <- sin(2*pi*x)+rnorm(100,sd=0.4)
out <- loessFit(y,x)
plot(x,y)
lines(x,out$fitted,col="red")

# Example using weights
y <- x-0.5
w <- rep(c(0,1),50)
y[w==0] <- rnorm(50,sd=0.1)
pch <- ifelse(w>0,16,1)
plot(x,y,pch=pch)
out <- loessFit(y,x,weights=w)
lines(x,out$fitted,col="red")
Examples

```r
x <- c(1e-8,1e-7,1e-6,1e-5,1e-4,1,3,50,800)
logcosh(x)
log(cosh(x))
```

---

Two dimensional Moving Averages with 3x3 Window

Description

Apply a specified function to each to each value of a matrix and its immediate neighbors.

Usage

```r
ma3x3.matrix(x,FUN=mean,na.rm=TRUE,...)
ma3x3.spottedarray(x,printer,FUN=mean,na.rm=TRUE,...)
```

Arguments

- `x`: numeric matrix
- `FUN`: function to apply to each window of values
- `na.rm`: logical value, should missing values be removed when applying `FUN`
- `...`: other arguments are passed to `FUN`
- `printer`: list giving the printer layout, see `PrintLayout-class`

Details

For `ma3x3.matrix`, `x` is an arbitrary function. For `ma3x3.spotted`, each column of `x` is assumed to contain the expression values of a spotted array in standard order. The printer layout information is used to re-arrange the values of each column as a spatial matrix before applying `ma3x3.matrix`.

Value

Numeric matrix of same dimension as `x` containing smoothed values

Author(s)

Gordon Smyth

See Also

An overview of functions for background correction are given in `04.Background`.

Examples

```r
x <- matrix(c(2,5,3,1,6,3,10,12,4,6,4,8,2,1,9,0),4,4)
ma3x3.matrix(x,FUN="mean")
ma3x3.matrix(x,FUN="min")
```
makeContrasts

**Construct Matrix of Custom Contrasts**

**Description**

Construct the contrast matrix corresponding to specified contrasts of a set of parameters.

**Usage**

```r
makeContrasts(..., contrasts=NULL, levels)
```

**Arguments**

- `...`: expressions, or character strings which can be parsed to expressions, specifying contrasts
- `contrasts`: character vector specifying contrasts
- `levels`: character vector or factor giving the names of the parameters of which contrasts are desired, or a design matrix or other object with the parameter names as column names.

**Details**

This function expresses contrasts between a set of parameters as a numeric matrix. The parameters are usually the coefficients from a linear model fit, so the matrix specifies which comparisons between the coefficients are to be extracted from the fit. The output from this function is usually used as input to `contrasts.fit`. The contrasts can be specified either as expressions using `...` or as a character vector through `contrasts`. (Trying to specify contrasts both ways will cause an error.)

The parameter names must be syntactically valid variable names in R and so, for example, must begin with a letter rather than a numeral. See `make.names` for a complete specification of what is a valid name.

**Value**

Matrix which columns corresponding to contrasts.

**Author(s)**

Gordon Smyth

**See Also**

An overview of linear model functions in limma is given by the help page `06.LinearModels`.

**Examples**

```r
makeContrasts(B-A,C-B,C-A,levels=c("A","B","C"))
makeContrasts(contrasts="A-(B+C)/2",levels=c("A","B","C"))
x <- c("B-A","C-B","C-A")
makeContrasts(contrasts=x,levels=c("A","B","C"))
```
makeUnique  

Make Values of Character Vector Unique

Description
Paste characters on to values of a character vector to make them unique.

Usage
makeUnique(x)

Arguments
x  
object to be coerced to a character vector

Details
Repeat values of x are labelled with suffixes "1", "2" etc.

Value
A character vector of the same length as x

Author(s)
Gordon Smyth

See Also
makeUnique is called by merge.RGList. Compare with make.unique in the base package.

Examples
x <- c("a","a","b")
makeUnique(x)

MAList-class  

M-value, A-value Expression List - class

Description
A simple list-based class for storing M-values and A-values for a batch of spotted microarrays. MAList objects are usually created during normalization by the functions normalizeWithinArrays or MA.RG.

Slots/List Components
MAList objects can be created by new("MAList",MA) where MA is a list. This class contains no slots (other than .Data), but objects should contain the following components:

M: numeric matrix containing the M-values (log-2 expression ratios). Rows correspond to spots and columns to arrays.
A: numeric matrix containing the A-values (average log-2 expression values).
Optional components include:

weights: numeric matrix of same dimensions as M containing relative spot quality weights. Elements should be non-negative.
other: list containing other matrices, all of the same dimensions as M.
genes: data.frame containing probe information. Should have one row for each spot. May have any number of columns.
targets: data.frame containing information on the target RNA samples. Rows correspond to arrays. May have any number of columns. Usually includes columns Cy3 and Cy5 specifying which RNA was hybridized to each array.
printer: list containing information on the process used to print the spots on the arrays. See PrintLayout.

Valid MAList objects may contain other optional components, but all probe or array information should be contained in the above components.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on objects of this class. In addition, MAList objects can be subsetted and combined. RGList objects will return dimensions and hence functions such as dim, nrow and ncol are defined. MALists also inherit a show method from the virtual class LargeDataObject, which means that RGLists will print in a compact way.

Other functions in LIMMA which operate on MAList objects include normalizeWithinArrays, normalizeBetweenArrays, normalizeForPrintorder, plotMA and plotPrintTipLoess.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of all the classes defined by this package.
marrayNorm is the corresponding class in the marray package.
mdplot

---

genes
data.frame containing probe annotation.
design
design matrix.
cov.coefficients
numeric matrix giving the unscaled covariance matrix of the estimable coefficients
pivot
integer vector giving the order of coefficients in cov.coefficients. Is computed by the QR-decomposition of the design matrix.
qr
QR-decomposition of the design matrix (if the fit involved no weights or missing values).
...
other components returned by lm.fit (if the fit involved no weights or missing values).

The following component may be added by contrasts.fit:

contrasts
numeric matrix defining contrasts of coefficients for which results are desired.

The following components may be added by eBayes:

s2.prior
numeric value giving empirical Bayes estimated prior value for residual variances
df.prior
df.prior vector giving empirical Bayes estimated degrees of freedom associated with s2.prior for each gene
df.total
numeric vector giving total degrees of freedom used for each gene, usually equal to df.prior + df.residual
s2.post
numeric vector giving posterior residual variances
var.prior
t
numeric vector giving empirical Bayes estimated prior variance for each true coefficient
t
numeric matrix containing empirical Bayes t-statistics

Methods

MArrayLM objects will return dimensions and hence functions such as dim, nrow and ncol are defined. MArrayLM objects inherit a show method from the virtual class LargeDataObject.

The functions eBayes, decideTests and classifyTestsF accept MArrayLM objects as arguments.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of all the classes defined by this package.

---

mdplot

Mean-Difference Plot

Description

Creates a mean-difference plot of two columns of a matrix.

Usage

mdplot(x, columns=c(1,2), xlab="Mean", ylab="Difference", main=NULL, ...)

---

mdplot

Mean-Difference Plot

Description

Creates a mean-difference plot of two columns of a matrix.

Usage

mdplot(x, columns=c(1,2), xlab="Mean", ylab="Difference", main=NULL, ...)

Arguments

- **x**: numeric matrix with at least two columns.
- **columns**: which columns of x to compare. Plot will display second minus first.
- **xlab**: label for the x-axis.
- **ylab**: label for the y-axis.
- **main**: title of the plot. Defaults to
- **...**: any other arguments are passed to `plotWithHighlights`.

Details

Plots differences vs means for a set of bivariate values. This is a generally useful approach for comparing two correlated measures of the same underlying phenomenon. Bland and Altman (1986) argue it is more information than a simple scatterplot of the two variables. The bivariate values are stored as columns of x.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth

References


See also [http://www.statsci.org/micrarra/refs/maplots.html](http://www.statsci.org/micrarra/refs/maplots.html)

See Also

- `plotWithHighlights`
- `plotMD` is an object-oriented implementation of mean-difference plots for expression data.

An overview of diagnostic functions available in LIMMA is given in [09.Diagnostics](#).

Examples

```r
x1 <- runif(100)
x2 <- (x1 + rnorm(100, sd=0.01))^1.2
oldpar <- par(mfrow=c(1,2))
plot(x1,x2)
mdplot(cbind(x1,x2), bg.pch=1, bg.cex=1)
par(oldpar)
```
merge

Merge RGList or MAList Data Objects

Description

Merge two microarray data sets represented by RGLists in possibly irregular order.

Usage

```r
S3 method for class 'RGList'
merge(x, y, ...)
```

Arguments

- `x`: data object of class `RGList`, `MAList`, `EList` or `EListRaw`.
- `y`: data object of same class as `x`, corresponding to the same genes as for `x`, possibly in a different order, but with different arrays.
- `...`: other arguments are accepted but not used at present

Details

RGList, MAList, EListRaw and EList data objects are lists containing numeric matrices all of the same dimensions. The data objects are merged by merging each of the components by row names or, if there are no row names, by IDs in the genes component. Unlike when using `cbind`, row names are not required to be in the same order or to be unique. In the case of repeated row names, the order of the rows with repeated names in preserved. This means that the first occurrence of each name in `x` is matched with the first occurrence of the same name in `y`, the second with the second, and so on. The final vector of row names is the same as in `x`.

Note: if the objects contain the same number of genes in the same order then the appropriate function to combine them is `cbind` rather than `merge`.

Value

An merged object of the same class as `x` and `y` with the same components as `x`. Component matrices have the same rows names as in `x` but columns from `y` as well as from `x`.

Author(s)

Gordon Smyth

See Also

- R base provides a `merge` method for merging data.frames.
- An overview of limma commands for reading, subsetting and merging data is given in `03.Reading-Data`.
mergeScans

Examples

```r
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","a","b","c")
MA1 <- new("MAList",list(M=M,A=A))

M <- A <- matrix(21:24,4,2)
rownames(M) <- rownames(A) <- c("b","a","a","c")
MA2 <- new("MAList",list(M=M,A=A))
merge(MA1,MA2)
merge(MA2,MA1)
```

mergeScans

Merge two scans of two-color arrays

Description

Merge two sets of intensities of two-color arrays that are scanned twice at two different scanner settings, one at a lower gain setting with no saturated spot intensities and the other at a higher gain setting with a higher signal-to-noise ratio and some saturated spot intensities.

Usage

```r
mergeScansRG(RGlow, RHigh, AboveNoiseLowG=NULL, AboveNoiseLowR=NULL, outlierp=0.01)
```

Arguments

- `RGlow`: object of class `RGList` containing red and green intensities constituting two-color microarray data scanned at a lower gain setting.
- `RHigh`: object of class `RGList` containing red and green intensities constituting two-color microarray data scanned at a higher gain setting.
- `AboveNoiseLowG`: matrix of 1 or 0 for low scan intensities of green color, 1 for spots above noise level or 0 otherwise. One column per array.
- `AboveNoiseLowR`: matrix of 1 or 0 for low scan intensities of red color, 1 for spots above noise level or 0 otherwise. One column per array.
- `outlierp`: p-value for outliers. 0 for no outlier detection or any value between 0 and 1. Default p-value is 0.01.

Details

This function merges two separate scans of each fluorescent label on a two-color array scanned at two different scanner settings by using a nonlinear regression model consisting of two linear regression lines and a quadratic function connecting the two, which looks like a hockey stick. The changing point, i.e. the saturation point, in high scan is also estimated as part of model. Signals produced for certain spots can sometimes be very low (below noise) or too high (saturated) to be accurately read by the scanner. The proportions of spots that are below noise or above saturation are affected by the settings of the laser scanner used to read the arrays, with low scans minimizing saturation effects and high scans maximizing signal-to-noise ratios. Saturated spots can cause bias in intensity ratios that cannot be corrected for using conventional normalization methods.
Each fluorescent label on a two-color array can be scanned twice: for example, a high scan targeted at reaching saturation level for the brightest 1 percent of the spots on the array, and a low scan targeted at the lowest level of intensity which still allowed accurate grid placement on the arrays. By merging data from two separate laser scans of each fluorescent label on an array, we can avoid the potential bias in signal intensities due to below noise or above saturation and, thus, provide better estimates of true differential expression as well as increase usable spots.

The merging process is designed to retain signal intensities from the high scan except when scanner saturation causes the high scan signal to be under-measured. The saturated spots are predicted from the corresponding low scans by the fitted regression model. It also checks any inconsistency between low and high scans.

**Value**

An object of class *RGList-class* with the following components:

- **G**: numeric matrix containing the merged green (cy3) foreground intensities. Rows correspond to spots and columns to arrays.
- **R**: numeric matrix containing the merged red (cy5) foreground intensities. Rows correspond to spots and columns to arrays.
- **Gb**: numeric matrix containing the green (cy3) background intensities from high scan.
- **Rb**: numeric matrix containing the red (cy5) background intensities from high scan.
- **other**: list numeric matrices `Gsaturated`, `Rsaturated`, `Goutlier` and `Routlier`. The first two contain saturation flags (1=saturated, 0=otherwise) for the green (cy3) and red (Cy5) channels of the high scan. The second two contain outlier flags (1=outlier, 0=otherwise) for the green (cy3) and red (Cy5) channels.

**Author(s)**

Dongseok Choi <choid@ohsu.edu>.

**References**


**Examples**

```r
Not run:
#RG1: An RGList from low scan
#RG2: An RGList from high scan
RGmerged <- mergeScansRG(RG1, RG2, AboveNoiseLowG=ANc3, AboveNoiseLowR=ANc5)

#merge two scans when all spots are above noise in low scan and no outlier detection.
RGmerged <- mergeScansRG(RG1, RG2, outlierp=0)

End(Not run)
```
modelMatrix

Construct Design Matrix

Description

Construct design matrix from RNA target information for a two colour microarray experiment.

Usage

modelMatrix(targets, parameters, ref, verbose=TRUE)
uniqueTargets(targets)

Arguments

targets matrix or data.frame with columns Cy3 and Cy5 specifying which RNA was hybridized to each array
parameters matrix specifying contrasts between RNA samples which should correspond to regression coefficients. Row names should correspond to unique RNA sample names found in targets.
ref character string giving name of one of the RNA sources to be treated as reference. Exactly one argument of parameters or ref should be specified.
verbose logical, if TRUE then unique names found in targets will be printed to standard output

Details

This function computes a design matrix for input to lmFit when analysing two-color microarray experiments in terms of log-ratios.

If the argument ref is used, then the experiment is treated as a one-way layout and the coefficients measure expression changes relative to the RNA source specified by ref. The RNA source ref is often a common reference which appears on every array or is a control sample to which all the others are compared. There is no restriction however. One can choose ref to be any of the RNA sources appearing the Cy3 or Cy5 columns of targets.

If the parameters argument is set, then the columns of this matrix specify the comparisons between the RNA sources which are of interest. This matrix must be of size n by (n-1), where n is the number of unique RNA sources found in Cy3 and Cy5, and must have row names which correspond to the RNA sources.

Value

modelMatrix produces a numeric design matrix with row names as in targets and column names as in parameters.

uniqueTargets produces a character vector of unique target names from the columns Cy3 and Cy5 of targets.

Author(s)

Gordon Smyth
modifyWeights

See Also
model.matrix in the stats package.
An overview of linear model functions in limma is given by 06.LinearModels.

Examples

targets <- cbind(Cy3=c("Ref","Control","Ref","Treatment"),Cy5=c("Control","Ref","Treatment","Ref"))
rownames(targets) <- paste("Array",1:4)

parameters <- cbind(C=c(-1,1,0),T=c(-1,0,1))
rownames(parameters) <- c("Ref","Control","Treatment")

modelMatrix(targets, parameters)
modelMatrix(targets, ref="Ref")

modifyWeights Modify Matrix of Weights By Control Status of Rows

Description
Modify weights matrix for given gene status values.

Usage
modifyWeights(weights=rep(1,length(status)), status, values, multipliers)

Arguments
weights numeric matrix of relative weights, rows corresponding to genes and columns to arrays
status character vector giving the control status of each spot on the array, of same length as the number of rows of weights
values character vector giving subset of the unique values of status
multipliers numeric vector of same length as values giving factor by which weights will be modified

Details
The function is usually used to temporarily modify the weights matrix during normalization of data. The function can be used for example to give zero weight to spike-in ratio control spots during normalization.

Value
Numeric matrix of same dimensions as weights with rows corresponding to values in status modified by the specified multipliers.

Author(s)
Gordon Smyth
mrlm

Fit Linear Model to Microarray Data by Robust Regression

Description

Fit a linear model gene-wise to expression data from a series of arrays. The fit is by robust M-estimation allowing for a small proportion of outliers. This is a utility function for lmFit.

Usage

mrlm(M, design = NULL, ndups = 1, spacing = 1, weights = NULL, ...)

Arguments

M numeric matrix containing log-ratio or log-expression values for a series of microarrays, rows correspond to genes and columns to arrays.

design numeric design matrix defining the linear model, with rows corresponding to arrays and columns to comparisons to be estimated. The number of rows must match the number of columns of M. Defaults to the unit vector meaning that the arrays are treated as replicates.

ndups a positive integer giving the number of times each gene is printed on an array. nrow(M) must be divisible by ndups.

spacing the spacing between the rows of M corresponding to duplicate spots, spacing=1 for consecutive spots.

weights numeric matrix of the same dimension as M containing weights. If it is of different dimension to M, it will be filled out to the same size. NULL is equivalent to equal weights.

... any other arguments are passed to rlm.default.

Details

This is a utility function used by the higher level function lmFit. Most users should not use this function directly but should use lmFit instead.

This function fits a linear model for each gene by calling the function rlm from the MASS library.

Warning: don’t use weights with this function unless you understand how rlm treats weights. The treatment of weights is somewhat different from that of lm.series and gls.series.

See Also

An overview of normalization functions available in LIMMA is given in 05.Normalization.

Examples

w <- matrix(runif(6*3), 6, 3)
status <- c("Gene", "Gene", "Ratio_Control", "Ratio_Control", "Gene", "Gene")
modifyWeights(w, status, values="Ratio_Control", multipliers=0)
Value

A list with components

- **coefficients** numeric matrix containing the estimated coefficients for each linear model. Same number of rows as M, same number of columns as design.
- **stdev.unscaled** numeric matrix conformal with coef containing the unscaled standard deviations for the coefficient estimators. The standard errors are given by stdev.unscaled * sigma.
- **sigma** numeric vector containing the residual standard deviation for each gene.
- **df.residual** numeric vector giving the degrees of freedom corresponding to sigma.
- **qr** QR decomposition of design.

Author(s)

Gordon Smyth

See Also

rlm.

An overview of linear model functions in limma is given by 06.LinearModels.

---

**nec**

**NormExp Background Correction and Normalization Using Control Probes**

Description

Perform normexp background correction using negative control probes and quantile normalization using negative and positive control probes. Particularly useful for Illumina BeadChips.

Usage

```r
nec(x, status=NULL, negctrl="negative", regular="regular", offset=16, robust=FALSE, detection.p="Detection")
neqc(x, status=NULL, negctrl="negative", regular="regular", offset=16, robust=FALSE, detection.p="Detection", ...)
```

Arguments

- **x** object of class EListRaw or matrix containing raw intensities for regular and control probes from a series of microarrays.
- **status** character vector giving probe types. Defaults to x$genes$Status if x is an EListRaw object.
- **negctrl** character string identifier for negative control probes.
- **regular** character string identifier for regular probes, i.e., all probes other than control probes.
- **offset** numeric value added to the intensities after background correction.
- **robust** logical. Should robust estimators be used for the background mean and standard deviation?
nec

detection.p  

...  

any other arguments are passed to normalizeBetweenArrays.

Details

nec performs background correction followed by quantile normalization, using negative control probes for background correction and both negative and positive controls for normalization (Shi et al, 2010). nec is similar but performs background correction only.

When control data are available, these function call normexp.fit.control to estimate the parameters required by normal+exponential(normexp) convolution model with the help of negative control probes, followed by normexp.signal to perform the background correction. If x contains background intensities x$Eb, then these are first subtracted from the foreground intensities, prior to normexp background correction. After background correction, an offset is added to the data.

When expression values for negative controls are not available, the detection.p argument is used instead. In that case, these functions call normexp.fit.detection.p, which infers the negative control probe intensities from the detection p-values associated with the regular probes. The function outputs a message if this is done.

For more detailed descriptions of the arguments x, status, negctrl, regular and detection.p, please refer to functions normexp.fit.control, normexp.fit.detection.p and read.ilmn.

Both nec and neqc perform the above steps. neqc continues on to quantile normalize the background-corrected intensities, including control probes. After normalization, the intensities are log2 transformed and the control probes are removed.

Value

nec produces a EListRaw-class or matrix object of the same dimensions as x containing background-corrected intensities, on the raw scale. neqc produces a EList-class or matrix object containing normalized log2 intensities, with rows corresponding to control probes removed.

Author(s)

Wei Shi and Gordon Smyth

References


See Also

An overview of background correction functions is given in 04.Background.

An overview of LIMMA functions for normalization is given in 05.Normalization.

normexp.fit.control estimates the parameters in the normal+exponential convolution model using the negative control probes.

normexp.fit.detection.p estimates the parameters in the normal+exponential convolution model using negative control probe intensities inferred from regular probes by using their detection p-values information.
normalizeBetweenArrays

**Description**

Normalizes expression intensities so that the intensities or log-ratios have similar distributions across a set of arrays.

**Usage**

normalizeBetweenArrays(object, method=NULL, targets=NULL, cyclic.method="fast", ...)

**Arguments**

- `object` a numeric matrix, `EListRaw`, `RGLlist` or `MAList` object containing un-normalized expression data. If a matrix, then it is assumed to contain log-transformed single-channel data.
- `method` character string specifying the normalization method to be used. Choices for single-channel data are "none", "scale", "quantile" or "cyclicloess". Choices for two-color data are those previously mentioned plus "Aquantile", "Gquantile", "Rquantile" or "Tquantile". A partial string sufficient to uniquely identify the choice is permitted. The default is "Aquantile" for two-color data objects or "quantile" for single-channel objects.
- `targets` vector, factor or matrix of length twice the number of arrays, used to indicate target groups if `method="Tquantile"`
- `cyclic.method` character string indicating the variant of `normalizeCyclicLoess` to be used if `method="cyclicloess", see `normalizeCyclicLoess` for possible values.
- `...` other arguments are passed to `normalizeQuantiles` or `normalizeCyclicLoess`
normalizeBetweenArrays normalizes expression values to achieve consistency between arrays. For two-color arrays, normalization between arrays is usually a follow-up step after normalization within arrays using normalizeWithinArrays. For single-channel arrays, within array normalization is not usually relevant and so normalizeBetweenArrays is the sole normalization step.

For single-channel data, the scale, quantile or cyclic loess normalization methods can be applied to the columns of data. Trying to apply other normalization methods when object is a matrix or EListRaw object will produce an error. If object is an EListRaw object, then normalization will be applied to the matrix object$E$ of expression values, which will then be log2-transformed. Scale (method="scale") scales the columns to have the same median. Quantile and cyclic loess normalization was originally proposed by Bolstad et al (2003) for Affymetrix-style single-channel arrays. Quantile normalization forces the entire empirical distribution of each column to be identical. Cyclic loess normalization applies loess normalization to all possible pairs of arrays, usually cycling through all pairs several times. Cyclic loess is slower than quantile, but allows probe-wise weights and is more robust to unbalanced differential expression.

The other normalization methods are for two-color arrays. Scale normalization was proposed by Yang et al (2001, 2002) and is further explained by Smyth and Speed (2003). The idea is simply to scale the log-ratios to have the same median-absolute-deviation (MAD) across arrays. This idea has also been implemented by the maNormScale function in the marray package. The implementation here is slightly different in that the MAD scale estimator is replaced with the median-absolute-value and the A-values are normalized as well as the M-values.

Quantile normalization was explored by Yang and Thorne (2003) for two-color cDNA arrays. method="quantile" ensures that the intensities have the same empirical distribution across arrays and across channels. method="Aquantile" ensures that the A-values (average intensities) have the same empirical distribution across arrays leaving the M-values (log-ratios) unchanged. These two methods are called "q" and "Aq" respectively in Yang and Thorne (2003).

method="Tquantile" performs quantile normalization separately for the groups indicated by targets. targets may be a target frame such as read by readTargets or can be a vector indicating green channel groups followed by red channel groups.

method="Gquantile" ensures that the green (first) channel has the same empirical distribution across arrays, leaving the M-values (log-ratios) unchanged. This method might be used when the green channel is a common reference throughout the experiment. In such a case the green channel represents the same target throughout, so it makes compelling sense to force the distribution of intensities to be same for the green channel on all the arrays, and to adjust to the red channel accordingly. method="Rquantile" ensures that the red (second) channel has the same empirical distribution across arrays, leaving the M-values (log-ratios) unchanged. Both Gquantile and Rquantile normalization have the implicit effect of changing the red and green log-intensities by equal amounts.

See the limma User’s Guide for more examples of use of this function.

Value

If object is a matrix then normalizeBetweenArrays produces a matrix of the same size. If object is an EListRaw object, then an EList object with expression values on the log2 scale is produced. For two-color data, normalizeBetweenArrays produces an MAList object with M and A-values on the log2 scale.

Author(s)

Gordon Smyth
**normalizeCyclicLoess**

Normalize Columns of a Matrix by Cyclic Loess

**Description**

Normalize the columns of a matrix, cyclicly applying loess normalization to normalize each pair of columns to each other.

**Usage**

```r
normalizeCyclicLoess(x, weights = NULL, span=0.7, iterations = 3, method = "fast")
```

**References**


**See Also**

An overview of LIMMA functions for normalization is given in **05.Normalization**.

The `neqc` function provides a variation of quantile normalization that is customized for Illumina BeadChips. This method uses control probes to refine the background correction and normalization steps.

Note that vsn normalization, previously offered as a method of this function, is now performed by the `normalizeVSN` function.

See also `maNormScale` in the marray package and `normalize-methods` in the affy package.

**Examples**

```r
ngenes <- 100
narrays <- 4
x <- matrix(rnorm(ngenes*narrays),100,4)
y <- normalizeBetweenArrays(x)
```
Arguments

x numeric matrix, or object which can be coerced to a numeric matrix, containing log-expression values.

weights numeric vector of probe weights. Must be non-negative.

span span of loess smoothing window, between 0 and 1.

iterations number of times to cycle through all pairs of columns.

method character string specifying which variant of the cyclic loess method to use. Options are "fast", "affy" or "pairs".

Details

This function is intended to normalize single channel or A-value microarray intensities between arrays. Cyclic loess normalization is similar in effect and intention to quantile normalization, but with some advantages, in particular the ability to incorporate probe weights.

A number of variants of cyclic loess have been suggested. method="pairs" implements the intuitive idea that each pair of arrays is subjected to loess normalization as for two-color arrays. This process is simply cycled through all possible pairs of arrays, then repeated for several iterations. This is the method described by Ballman et al (2004) as ordinary cyclic loess normalization.

method="affy" implements a method similar to normalize.loess in the affy package, except that here we call loess instead of lowess and avoid the use of probe subsets and the predict function. In this approach, no array is modified until a complete cycle of all pairs has been completed. The adjustments are stored for a complete iteration, then averaged, and finally used to modify the arrays. The "affy" method is invariant to the order of the columns of x, whereas the "pairs" method is not. The affy approach is presumably that used by Bolstad et al (2003), although the algorithm was not explicitly described in that article.

method="fast" implements the "fast linear loess" method of Ballman et al (2004), whereby each array is simply normalized to a reference array, the reference array being the average of all the arrays. This method is relatively fast because computational time is linear in the number of arrays, whereas "pairs" and "affy" are quadratic in the number of arrays. "fast" requires n lowess fits per iteration, whereas "pairs" and "affy" require n*(n-1)/2 lowess fits per iteration.

Value

A matrix of the same dimensions as x containing the normalized values.

Author(s)

Yunshun (Andy) Chen and Gordon Smyth

References


normalizeForPrintorder

Print-Order Normalization

Description

Normalize intensity values on one or more spotted microarrays to adjust for print-order effects.

Usage

normalizeForPrintorder(object, layout, start="topleft", method = "loess",
separate.channels = FALSE, span = 0.1, plate.size = 32)
normalizeForPrintorder.rg(R, G, printorder, method = "loess",
separate.channels = FALSE, span = 0.1, plate.size = 32, plot = FALSE)
plotPrintorder(object, layout, start="topleft", slide = 1, method = "loess",
separate.channels = FALSE, span = 0.1, plate.size = 32)

Arguments

object an RGList or list object containing components R and G which are matrices containing the red and green channel intensities for a series of arrays
R numeric vector containing red channel intensities for a single microarray
G numeric vector containing the green channel intensities for a single microarray
layout list specifying the printer layout, see PrintLayout-class
start character string specifying where printing starts in each pin group. Choices are "topleft" or "topright".
printorder numeric vector specifying order in which spots are printed. Can be computed from printorder(layout,start=start).
slide positive integer giving the column number of the array for which a plot is required
method character string, "loess" if a smooth loess curve should be fitted through the print-order trend or "plate" if plate effects are to be estimated
separate.channels logical, TRUE if normalization should be done separately for the red and green channel and FALSE if the normalization should be proportional for the two channels
span numerical constant between 0 and 1 giving the smoothing span for the loess the curve. Ignored if method="plate".
plate.size positive integer giving the number of consecutive spots corresponding to one plate or plate pack. Ignored if method="loess".
plot logical. If TRUE then a scatter plot of the print order effect is sent to the current graphics device.

See Also

An overview of LIMMA functions for normalization is given in 05.Normalization.
normalize.loess in the affy package also implements cyclic loess normalization, without weights.
normalizeForPrintorder

Details

Print-order is associated with the 384-well plates used in the printing of spotted microarrays. There may be variations in DNA concentration or quality between the different plates. The may be variations in ambient conditions during the time the array is printed.

This function is intended to pre-process the intensities before other normalization methods are applied to adjust for variations in DNA quality or concentration and other print-order effects.

Printorder means the order in which spots are printed on a microarray. Spotted arrays are printed using a print head with an array of print-tips. Spots in the various tip-groups are printed in parallel. Printing is assumed to start in the top left hand corner of each tip-groups and to proceed right and down by rows, or else to start in the top right hand and to proceed left and down by rows. See printorder for more details. (WARNING: this is not always the case.) This is true for microarrays printed at the Australian Genome Research Facility but might not be true for arrays from other sources.

If object is an RGList then printorder is performed for each intensity in each array. plotPrintorder is a non-generic function which calls normalizeForPrintorder with plot=TRUE.

Value

normalizeForPrintorder produces an RGList containing normalized intensities.

The function plotPrintorder or normalizeForPrintorder.rg with plot=TRUE returns no value but produces a plot as a side-effect.

normalizeForPrintorder.rg with plot=FALSE returns a list with the following components:

- R numeric vector containing the normalized red channel intensities
- G numeric vector containing the normalized red channel intensites
- R.trend numeric vector containing the fitted printorder trend for the red channel
- G.trend numeric vector containing the fitted printorder trend for the green channel

Author(s)

Gordon Smyth

References


See Also

printorder.

An overview of LIMMA functions for normalization is given in 05.Normalization.

Examples

```r
Not run:
plotPrintorder(RG,layout,slide=1,separate=TRUE)
RG <- normalizeForPrintorder(mouse.data,mouse.setup)
End(Not run)
```
normalizeMedianAbsValues

Normalize Columns of a Matrix to have the Median Absolute Value

Description
Performs scale normalization of an M-value matrix or an A-value matrix across a series of arrays. Users do not normally need to call these functions directly - use normalizeBetweenArrays instead.

Usage

normalizeMedianValues(x)
normalizeMedianAbsValues(x)

Arguments

x numeric matrix

Details
If x is a matrix of log-ratios of expression (M-values) then normalizeMedianAbsValues is very similar to scaling to equalize the median absolute deviation (MAD) as in Yang et al (2001, 2002). Here the median-absolute value is used for preference to as to not re-center the M-values.

normalizeMedianAbsValues is also used to scale the A-values when scale-normalization is applied to an MAList object.

Value
A numeric matrix of the same size as that input which has been scaled so that each column has the same median value (for normalizeMedianValues) or median-absolute value (for normalizeMedianAbsValues).

Author(s)
Gordon Smyth

See Also
An overview of LIMMA functions for normalization is given in 05.Normalization.

Examples

M <- cbind(Array1=rnorm(10),Array2=2*rnorm(10))
normalizeMedianAbsValues(M)
normalizeQuantiles Normalize Columns of a Matrix to have the same Quantiles

Description

Normalize the columns of a matrix to have the same quantiles, allowing for missing values. Users do not normally need to call this function directly - use normalizeBetweenArrays instead.

Usage

normalizeQuantiles(A, ties=TRUE)

Arguments

A numeric matrix. Missing values are allowed.

ties logical. If TRUE, ties in each column of A are treated in careful way. tied values will be normalized to the mean of the corresponding pooled quantiles.

Details

This function is intended to normalize single channel or A-value microarray intensities between arrays. Each quantile of each column is set to the mean of that quantile across arrays. The intention is to make all the normalized columns have the same empirical distribution. This will be exactly true if there are no missing values and no ties within the columns: the normalized columns are then simply permutations of one another.

If there are ties amongst the intensities for a particular array, then with ties=FALSE the ties are broken in an unpredictable order. If ties=TRUE, all the tied values for that array will be normalized to the same value, the average of the quantiles for the tied values.

Value

A matrix of the same dimensions as A containing the normalized values.

Author(s)

Gordon Smyth

References


See Also

An overview of LIMMA functions for normalization is given in 05.Normalization.
normalizeRobustSpline Normalize Single Microarray Using Shrink Robust Splines

Description
Normalize the M-values for a single microarray using robustly fitted regression splines and empirical Bayes shrinkage.

Usage
normalizeRobustSpline(M, A, layout=NULL, df=5, method="M")

Arguments
- M: numeric vector of M-values
- A: numeric vector of A-values
- layout: list specifying the dimensions of the spot matrix and the grid matrix. Defaults to a single group for the whole array.
- df: degrees of freedom for regression spline, i.e., the number of regression coefficients and the number of knots
- method: choices are "M" for M-estimation or "MM" for high breakdown point regression

Details
This function implements an idea similar to print-tip loess normalization but uses regression splines in place of the loess curves and uses empirical Bayes ideas to shrink the individual print-tip curves towards a common value. This allows the technique to introduce less noise into good quality arrays with little spatial variation while still giving good results on arrays with strong spatial variation.

The original motivation for the robustspline method was to use whole-array information to moderate the normalization curves used for the individual print-tip groups. This was an important issue for academically printed spotted two-color microarrays, especially when some of the print-tip groups contained relatively few spots. In these situations, robust spline normalization ensures stable results even for print-tip groups with few spots.

Modern commercial two colour arrays do not usually have print tips, so in effect the whole array is a single print-tip group, and so the need for moderating individual curves is gone. Robustspline normalization can still be used for data from these arrays, in which case a single normalization curve is estimated. In this situation, the method is closely analogous to global loess, with a regression spline replacing the loess curve and with robust regression replacing the loess robustifying weights. Robust spline normalization with method="MM" has potential advantages over global loess normalization when there a lot of differential expression or the differential expression is assymetric, because of the increased level of robustness. The potential advantages of this approach have not been fully explored in a refereed publication however.

Value
Numeric vector containing normalized M-values.

Author(s)
Gordon Smyth
normalizeVSN

Variance Stabilizing Normalization (vsn)

Description

Apply variance stabilizing normalization (vsn) to limma data objects.

Usage

normalizeVSN(x, ...)

Arguments

x              a numeric matrix, EListRaw or RGList object.
...
other arguments are passed to vsn

Details

This is an interface to the vsnMatrix function from the vsn package. The input x should contain raw intensities. If x contains background and well as foreground intensities, these will be subtracted from the foreground intensities before vsnMatrix is called.

Note that the vsn algorithm performs background correction and normalization simultaneously. If the data are from two-color microarrays, then the red and green intensities are treated as if they were single channel data, i.e., red and green channels from the same array are treated as unpaired. This algorithm is therefore separate from the backgroundCorrection, normalizeWithinArrays, then normalizeBetweenArrays paradigm used elsewhere in the limma package.
Value

The class of the output depends on the input. If \( x \) is a matrix, then the result is a matrix of the same size. If \( x \) is an `EListRaw` object, then an `EList` object with expression values on the log2 scale is produced. For \( x \) is an `RGList`, then an `MAList` object with \( M \) and \( A \)-values on the log2 scale is produced.

Author(s)

Gordon Smyth

References


See Also

An overview of LIMMA functions for normalization is given in 05.Normalization. See also `vsn` and `vsnMatrix` in the vsn package.

Examples

```r
ngenes <- 100
narrays <- 4
x <- matrix(rnorm(ngenes*narrays),100,4)
y <- normalizeVSN(x)
```

Description

Normalize the expression log-ratios for one or more two-colour spotted microarray experiments so that the log-ratios average to zero within each array or sub-array.

Usage

```r
normalizeWithinArrays(object, layout, method="printtiploess", weights=object$weights, span=0.3, iterations=4, controlspots=NULL, df=5, robust="M", bc.method="subtract", offset=0)
```

```r
MA.RG(object, bc.method="subtract", offset=0)
RG.MA(object)
```

Arguments

- `object`: object of class `list`, `RGLlist` or `MAList` containing red and green intensities constituting two-color microarray data.
- `layout`: list specifying the dimensions of the spot matrix and the grid matrix. For details see `PrintLayout-class`.
normalizeWithinArrays

method character string specifying the normalization method. Choices are "none", "median", "loess", "printtiploess", "composite", "control" and "robustspline". A partial string sufficient to uniquely identify the choice is permitted.

weights numeric matrix or vector of the same size and shape as the components of object containing spot quality weights.

span numeric scalar giving the smoothing parameter for the loess fit

iterations number of iterations used in loess fitting. More iterations give a more robust fit.

controlspots numeric or logical vector specifying the subset of spots which are non-differentially-expressed control spots, for use with method="composite" or method="control".

df degrees of freedom for spline if method="robustspline".

robust robust regression method if method="robustspline". Choices are "M" or "MM".

bc.method character string specifying background correct method, see backgroundCorrect for options.

offset numeric value, intensity offset used when computing log-ratios, see backgroundCorrect.

Details

Normalization is intended to remove from the expression measures any systematic trends which arise from the microarray technology rather than from differences between the probes or between the target RNA samples hybridized to the arrays.

This function normalizes M-values (log-ratios) for dye-bias within each array. Apart from method="none" and method="median", all the normalization methods make use of the relationship between dye-bias and intensity. Method "none" computes M-values and A-values but does no normalization. Method "median" subtracts the weighted median from the M-values for each array.

The loess normalization methods ("loess", "printtiploess" and "composite") were proposed by Yang et al (2001, 2002). Smyth and Speed (2003) review these methods and describe how the methods are implemented in the limma package, including choices of tuning parameters. More information on the loess control parameters span and iterations can be found under loessFit. The default values used here are equivalent to those for the older function stat.ma in the sma package.

Oshlack et al (2004) consider the special issues that arise when a large proportion of probes are differentially expressed. They propose an improved version of composite loess normalization, which is implemented in the "control" method. This fits a global loess curve through a set of control spots, such as a whole-library titration series, and applies that curve to all the other spots.

The "robustspline" method calls normalizeRobustSpline. See that function for more documentation.

MA.RG converts an unlogged RGList object into an MAList object. MA.RG(object) is equivalent to normalizeWithinArrays(object, method="none").

RG.MA(object) converts back from an MAList object to a RGList object with unlogged intensities.

weights is normally a matrix giving a quality weight for every spot on every array. If weights is instead a vector or a matrix with only one column, then the weights will be assumed to be the same for every array, i.e., the weights will be probe-specific rather than spot-specific.

Value

An object of class MAList. Any components found in object will preserved except for R, G, Rb, Gb and other.
**normexp.fit**

**Author(s)**
Gordon Smyth

**References**


**See Also**

An overview of limma functions for normalization is given in 05.Normalization. In particular, see *normalizeBetweenArrays* for between-array normalization.

The original loess normalization function was the *statma* function in the sma package. *normalizeWithinArrays* is a direct generalization of that function, with more options and with support for quantitative spot quality weights.

A different implementation of loess normalization methods, with potentially different behavior, is provided by the *maNorm* in the marray package.

---

**normexp.fit**  
*Fit Normal+Exp Convolution Model to Observed Intensities*

**Description**

Fit the normal+exponential convolution model to a vector of observed intensities. The normal part represents the background and the exponential part represents the signal intensities. This function is called by *backgroundCorrect* and is not normally called directly by users.

**Usage**

```r
normexp.fit(x, method="saddle", n.pts=NULL, trace=FALSE)
```

**Arguments**

- **x**: numeric vector of (background corrected) intensities
- **method**: method used to estimate the three parameters. Choices for *normexp.fit* are "mle", "saddle", "rma" and "rma75".
- **n.pts**: number of quantiles of *x* to use for the fit. If NULL then all values of *x* will be used.
- **trace**: logical, if TRUE, tracing information on the progress of the optimization is given.
The Normal+Exp (normexp) convolution model is a mathematical model representing microarray intensity data for the purposes of background correction. It was proposed originally as part of the RMA algorithm for Affymetrix microarray data. For two-color microarray data, the normexp background correction method was introduced and compared with other methods by Ritchie et al (2007).

This function uses maximum likelihood estimation to fit the normexp model to background-corrected intensities. The model assumes that the observed intensities are the sum of background and signal components, the background being normal and the signal being exponential distributed.

The likelihood may be computed exactly (method="mle") or approximated using a saddle-point approximation (method="saddle"). The saddle-point approximation was proposed by Ritchie et al (2007). Silver et al (2008) added some computational refinements to the saddle-point approximation, making it more reliable in practice, and developed the exact likelihood maximization algorithm. The "mle" method uses the best performing algorithm from Silver et al (2008), which calls the optimization function nlmnb with analytic first and second derivatives. Derivatives are computed with respect to the normal-mean, the log-normal-variance and the log-exponential-mean.

Two ad-hoc estimators are also available which do not require iterative estimation. "rma" results in a call to the bg.parameters function of the affy package. This provides the kernel estimation method that is part of the RMA algorithm for Affymetrix data. "rma75" uses the similar but less biased RMA-75 method from McGee and Chen (2006).

If the length x is very large, it may be worth saving computation time by setting n.pts to a value less than the total number of probes, for example n.pts=2^14.

A list containing the components

<table>
<thead>
<tr>
<th>par</th>
<th>numeric vector giving estimated values of the mean and log-standard-deviation of the background-normal part and the log-mean of the signal-exponential part.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2loglik</td>
<td>numeric scalar giving minus twice the maximized log-likelihood</td>
</tr>
<tr>
<td>convergence</td>
<td>integer code indicating successful convergence or otherwise of the optimization.</td>
</tr>
</tbody>
</table>

Gordon Smyth and Jeremy Silver

References


See Also

normexp.signal, normexp.fit.control. Also bg.parameters in the affy package.

An overview of background correction functions is given in \texttt{04.Background}.

Examples

```r
x <- c(2,3,1,10,3,20,5,6)
out <- normexp.fit(x)
normexp.signal(out$par, x=x)
```

Description

The mean and log-standard-deviation of the background-normal part of the normexp+exponential convolution model is estimated as the mean and log-standard deviation of intensities from negative control probes. The log-mean of the signal-exponential part is estimated as the log of the difference between signal mean and background mean.

Usage

```
normexp.fit.control(x, status=NULL, negctrl="negative", regular="regular", robust=FALSE)
```

Arguments

- `x`: object of class \texttt{EListRaw-class} or matrix containing raw intensities for regular and control probes for a series of microarrays.
- `status`: character vector giving probe types.
- `negctrl`: character string identifier for negative control probes.
- `regular`: character string identifier for regular probes.
- `robust`: logical. Should robust estimators be used for the background mean and standard deviation?

Details

`x` has to contain raw expression intensities from both regular probes and negative control probes. The probe type information for an object of \texttt{EListRaw-class} is normally saved in the \texttt{Status} column of its \texttt{genes} component. However, it will be overriden by the \texttt{status} parameter if it is explicitly provided to this function. If `x` is a matrix object, the probe type information has to be provided through the \texttt{status} parameter of this function. Regular probes have the status `regular`. Negative control probes have the status indicated by `negctrl`, which is `negative` by default.

This function estimates parameters of the normal+exponential convolution model with the help of negative control probes. The mean and log-standard-deviation of the background-normal part of the normexp+exponential(normexp) convolution model are estimated as the mean and log-standard deviation of intensities from negative control probes respectively. The log-mean of the signal-exponential part is estimated as the log of the difference between signal mean and background mean. The signal mean is simply the mean of intensities from regular probes.

When negative control probes are not available, the \texttt{normexp.fit.detection.p} function can be used to estimate the normexp model parameters which infers the negative control probe intensities from regular probes by taking advantage of their detection \texttt{p} value information.
Value
A matrix containing estimated parameters with rows being arrays and with columns being parameters. Column names are \( \mu \), \( \log \sigma \) and \( \log \alpha \).

Author(s)
Wei Shi and Gordon Smyth

References

See Also
nec calls this function to get the parameters of the normal+exponential convolution model and then calls \( \text{normexp.signal} \) to perform the background correction.
\( \text{normexp.fit.detection.p} \) estimates the parameters in the normal+exponential convolution model using negative control probe intensities inferred from regular probes by using their detection p values information.
\( \text{normexp.fit} \) estimates normexp parameters using a saddle-point approximation or other methods.
An overview of background correction functions is given in \texttt{04.Background}.

Examples
```r
Not run:
read in BeadChip probe profile file and control profile file
x <- read.ilmn(files="sample probe profile", ctrlfiles="control probe profile")
estimated normexp parameters
normexp.fit.control(x)
normalization using control data
y <- neqc(x)
End(Not run)
```

---

\texttt{normexp.fit.detection.p}

\textit{Estimate Normexp Model Parameter Using Negative Controls Inferred from Regular Probes}

\textbf{Description}
Detection p values from Illumina BeadChip microarray data can be used to infer negative control probe intensities from regular probe intensities by using detection p value information when negative control data are not available. The inferred negative control intensities can then be used in the background correction in the same way as those control data outputted from BeadChip used in the \( \text{normexp.fit.control} \) function.

\textbf{Usage}
\begin{verbatim}
normexp.fit.detection.p(x, detection.p="Detection")
\end{verbatim}
Arguments

x  object of class EListRaw-class or matrix containing raw intensities of regular probes for a series of microarrays

detection.p  a character string giving the name of the component which contains detection p value information in x or a numeric matrix giving detection p values, Detection by default

Details

This function estimates the normexp parameters in the same way as `normexp.fit.control` does, except that negative control probe intensities are inferred from regular probes by taking advantage of detection p value information rather than from the control probe profile outputted by BeadStudio.

Calculation of detection p values in Illumina BeadChip data is based on the rank of probe intensities in the list of negative control probe intensities. Therefore, the detection p values can be used to find regular probes which have expression intensities falling into the range of negative control probe intensities. These probes give a good approximation to the real negative control data and thus can be used to estimate the mean and standard deviation of background intensities when negative control data is not available.

If x is an EListRaw-class object, this function will try to look for the component which includes detection p value matrix in x when detection.p is a character string. This function assumes that this component is located within the other component in x. The component name specified by detection.p should be exactly the same as the name of the detection p value component in x. If detection.p is a matrix, then this matrix will be used as the detection p value data used in this function.

If x is an matrix object, then detection.p has to be a data matrix which includes detection p values.

When detection.p is a matrix, it has to have the same dimension as that of x.

This function will replace the detection p values with 1 subtracted by these values if high intensity probes have detection p values less than those from low intensity probes.

Note that when control data are available, the `normexp.fit.control` function should be used instead.

Value

A matrix containing estimated parameters with rows being arrays and with columns being parameters. Column names are mu, logsigma and logalpha.

Author(s)

Wei Shi and Gordon Smyth

References

Shi W, Oshlack A and Smyth GK (2010). Optimizing the noise versus bias trade-off for Illumina Whole Genome Expression BeadChips. *Nucleic Acids Research* 38, e204. [http://nar.oxfordjournals.org/content/38/22/e204](http://nar.oxfordjournals.org/content/38/22/e204)
normexp.signal

Expected Signal Given Observed Foreground Under Normal+Exp Model

Description

Adjust foreground intensities for observed background using Normal+Exp Model. This function is called by backgroundCorrect and is not normally called directly by the user.

Usage

`normexp.signal(par, x)`

Arguments

- `par` numeric vector containing the parameters of the Normal+Exp distribution, see `normexp.fit` for details.
- `x` numeric vector of (background corrected) intensities

Details

In general the vector normmean is computed conditional on background at each spot.

Value

Numeric vector containing adjusted intensities.

Author(s)

Gordon Smyth
# plotDensities

## Description

Plot the density of expression values for multiple arrays on the same plot.

## Usage

```r
S3 method for class 'RGList'
plotDensities(object, log=TRUE, group=NULL, col=NULL, main="RG Densities",
bc.method="subtract", ...)
S3 method for class 'MAList'
plotDensities(object, log=TRUE, group=NULL, col=NULL, main="RG Densities", ...)
S3 method for class 'EListRaw'
plotDensities(object, log=TRUE, bc.method="subtract", ...)
S3 method for class 'EList'
plotDensities(object, log=TRUE, ...)
Default S3 method:
plotDensities(object, group=NULL, col=NULL, main=NULL, legend="topleft", ...)
```

## Arguments

- `object`: an RGList, MAList, EListRaw or EList object containing expression data. Or any data object that can be coerced to a matrix.
- `log`: logical, should densities be plotted on the log2 scale?
- `group`: optional vector or factor classifying the arrays into groups. Should be same length as `ncol(object)`.
- `col`: optional vector of colors of the same length as the number of groups.
- `main`: the main title for the plot.
- `bc.method`: background subtraction method passed to `backgroundCorrect`.

## References


## See Also

`normexp.fit`  
An overview of background correction functions is given in [04.Background](#).

## Examples

```r
See normexp.fit
```
plotExons

Plot exons of differentially expressed gene

Description

Plot exons of differentially expressed gene and mark the differentially expressed exons.

Usage

plotExons(fit, coef = ncol(fit), geneid = NULL, genecolname = "GeneID", exoncolname = NULL, rank = 1L, FDR = 0.05)
Arguments

fit MArrayLM fit object produced by eBayes.
coef the coefficient (column) of fit for which differential expression is assessed.
geneid character string, ID of the gene to plot.
genecolname character string for the column name of fit$genes containing gene IDs. Defaults to "GeneID" for Entrez Gene ID.
exoncolname character string for the column name of fit$genes containing exon IDs.
rank integer, if geneid=NULL then this ranked gene will be plotted.
FDR numeric, mark differentially expressed exons with false discovery rate less than this cutoff.

Details

Plots log2-fold-change by exon for the specified gene and highlight the differentially expressed exons. Show annotations such as GeneID, Symbol and Strand if available as title for the gene to plot. The significantly differentially expressed individual exons are highlighted as red dots for up-regulation and as blue dots for down-regulation. The size of the dots are weighted by its significance.

Value

A plot is created on the current graphics device.

Author(s)

Yifang Hu and Gordon Smyth

See Also

lmFit, eBayes, plotSplice

A summary of functions available in LIMMA for RNA-seq analysis is given in 11.RNAseq.

Examples

```r
Not run:
fit <- lmFit(y,design)
fit <- eBayes(fit)
plotExons(fit)
plotExons(fit, exoncolname = "Start", rank = 1)
plotExons(fit, geneid = "ps", genecolname = "Symbol", exoncolname = "Start")
End(Not run)
```
plotFB  

FB-Plot

Description

Creates foreground-background plots.

Usage

## S3 method for class 'RGList'
plotFB(x, array=1, lim="separate", pch=16, cex=0.2, ...)
## S3 method for class 'EListRaw'
plotFB(x, array=1, pch=16, cex=0.2, ...)

Arguments

- **x**: an RGList or EListRaw object.
- **array**: integer giving the array to be plotted.
- **lim**: character string indicating whether the red and green plots should have "separate" or "common" x- and y-co-ordinate limits.
- **pch**: vector or list of plotting characters. Defaults to integer code 16.
- **cex**: numeric vector of plot symbol expansions.
- **...**: any other arguments are passed to `plot`

Details

A foreground-background plot is a plot of log2-foreground vs log2-background for a particular array. For two-color arrays, this function produces a pair of plots, one for the green channel and one for the red.

See `points` for possible values for `pch`, `col` and `cex`.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth

See Also

An overview of diagnostic functions available in LIMMA is given in `09.Diagnostics`. 
**plotlines**  

**Description**  
Time course style plot of expression data.

**Usage**  
```r  
plotlines(x, first.column.origin=FALSE, xlab="Column", ylab="x", col="black", lwd=1, ...)
```

**Arguments**  
- `x`: numeric matrix or object containing expression data.  
- `first.column.origin`: logical, should the lines be started from zero?  
- `xlab`: x-axis label  
- `ylab`: y-axis label  
- `col`: vector of colors for lines  
- `lwd`: line width multiplier  
- `...`: any other arguments are passed to `plot`

**Details**  
Plots a line for each probe.

**Value**  
A plot is created on the current graphics device.

**Author(s)**  
Gordon Smyth

**See Also**  
An overview of modeling functions and associated plots available in LIMMA is given in 06.Linear-Models.
**plotMA**

*MA-Plot of Expression Data*

**Description**

Creates an MA-plot with color coding for control spots.

**Usage**

```r
Default S3 method:
plotMA(object, array = 1, xlab = "Average log-expression",
 ylab = "Expression log-ratio (this sample vs others)",
 main = colnames(object)[array], status=NULL, ...)
S3 method for class 'EList'
plotMA(object, array = 1, xlab = "Average log-expression",
 ylab = "Expression log-ratio (this sample vs others)",
 main = colnames(object)[array], status=object$genes$Status,
 zero.weights = FALSE, ...)
S3 method for class 'RGList'
plotMA(object, array = 1, xlab = "A", ylab = "M",
 main = colnames(object)[array], status=object$genes$Status,
 zero.weights = FALSE, ...)
S3 method for class 'MAList'
plotMA(object, array = 1, xlab = "A", ylab = "M",
 main = colnames(object)[array], status=object$genes$Status,
 zero.weights = FALSE, ...)
S3 method for class 'MArrayLM'
plotMA(object, coef = ncol(object), xlab = "Average log-expression",
 ylab = "log-fold-change", main = colnames(object)[coef],
 status=object$genes$Status, zero.weights = FALSE, ...)
```

**Arguments**

- `object` an RGList, MAList, EList, ExpressionSet or MArrayLM object. Alternatively a numeric matrix.
- `array` integer giving the array to be plotted.
- `coef` integer giving the linear model coefficient to be plotted.
- `xlab` character string, label for x-axis
- `ylab` character string, label for y-axis
- `main` character string, title for plot
- `status` vector giving the control status of each spot on the array, of same length as the number of rows of object. If NULL, then all points are plotted in the default color, symbol and size.
- `zero.weights` logical, should spots with zero or negative weights be plotted?
- `...` other arguments are passed to `plotWithHighlights`.

---

140
**Details**


For two color data objects, a within-array MA-plot is produced with the M and A values computed from the two channels for the specified array. This is the same as a mean-difference plot (mdplot) with the red and green log2-intensities of the array providing the two columns.

For single channel data objects, a between-array MA-plot is produced. An artificial array is produced by averaging all the arrays other than the array specified. A mean-difference plot is then producing from the specified array and the artificial array. Note that this procedure reduces to an ordinary mean-difference plot when there are just two arrays total.

If object is an MArrayLM object, then the plot is an fitted model MA-plot in which the estimated coefficient is on the y-axis and the average A-value is on the x-axis.

The status vector can correspond to any grouping of the probes that is of interest. If object is a fitted model object, then status vector is often used to indicate statistically significance, so that differentially expressed points are highlighted. If object is a microarray data object, then status might distinguish control probes from regular probes so that different types of controls are highlighted.

The status can be included as the component object$genes$Status instead of being passed as an argument to plotMA.

See plotWithHighlights for how to set colors and graphics parameters for the highlighted and non-highlighted points.

**Value**

A plot is created on the current graphics device.

**Note**

The plotMD function provides the same functionality as plotMA with slightly different arguments.

**Author(s)**

Gordon Smyth

**References**


**See Also**

The driver function for plotMA is plotWithHighlights.

An overview of plot functions available in LIMMA is given in 09.Diagnostics.

**Examples**

A <- runif(1000,4,16)
y <- A + matrix(rnorm(1000*3, sd=0.2),1000,3)
status <- rep(c(0,-1,1),c(950,40,10))
y[,1] <- y[,1] + status
plotMA(y, array=1, status=status, values=c(-1,1), hl.col=c("blue","red"))

MA <- new("MAList")
MA$A <- runif(300,4,16)
MA$M <- rt(300,df=3)

# Spike-in values
MA$M[1:3] <- 0
MA$M[7:9] <- -3

status <- rep("Gene",300)
status[1:3] <- "M=0"
status[4:6] <- "M=3"
status[7:9] <- "M=-3"
values <- c("M=0","M=3","M=-3")
col <- c("blue","red","green")

plotMA(MA,main="MA-Plot with 12 spiked-in points",
      status=status, values=values, hl.col=col)

# Same as above but setting graphical parameters as attributes
attr(status,"values") <- values
attr(status,"col") <- col
plotMA(MA, main="MA-Plot with 12 spiked-in points", status=status)

# Same as above but passing status as part of object
MA$genes$Status <- status
plotMA(MA, main="MA-Plot with 12 spiked-in points")

# Change settings for background points
MA$genes$Status <- status
plotMA(MA, bg.pch=1, bg.cex=0.5)

Write MA-Plots to Files

Description
Write MA-plots to files in PNG format, six plots to a file in a 3 by 2 grid arrangement.

Usage
plotMA3by2(object, prefix="MA", path=NULL, main=colnames(object),
           zero.weights=FALSE, common.lim=TRUE, device="png", ...)

Arguments
  object  an MAList, RGList, EListRaw or EList object, or a matrix containing log-intensities.
  prefix  character string giving prefix to attach to file names
  path    character string specifying directory for output files
  main    character vector giving titles for plots
Mean-Difference Plot of Expression Data

Description

Creates a mean-difference plot (aka MA plot) with color coding for highlighted points.

Usage

```r
Default S3 method:
plotMD(object, column = 1, xlab = "Average log-expression",
 ylab = "Expression log-ratio (this sample vs others)",
 main = colnames(object)[column], status=NULL, ...
S3 method for class 'EList'
plotMD(object, column = 1, array = NULL, xlab = "Average log-expression",
 ylab = "Expression log-ratio (this sample vs others)",
 main = colnames(object)[column], status=object$genes$Status,
 zero.weights = FALSE, ...
S3 method for class 'RGList'
plotMD(object, column = 1, array = NULL, xlab = "A", ylab = "M",
 main = colnames(object)[column], status=object$genes$Status,
 zero.weights = FALSE, ...
S3 method for class `MAList`
plotMD(object, column = 1, array = NULL, xlab = "A", ylab = "M",
 main = colnames(object)[column], status=object$genes$Status,
 zero.weights = FALSE, ...)
```
plotMD(object, column = 1, array = NULL, xlab = "A", ylab = "M",
       main = colnames(object)[column], status=object$genes$Status,
       zero.weights = FALSE, ...)
## S3 method for class 'MArrayLM'
plotMD(object, column = ncol(object), coef = NULL, xlab = "Average log-expression",
       ylab = "log-fold-change", main = colnames(object)[column],
       status=object$genes$Status, zero.weights = FALSE, ...)

Arguments

**object**
an RGList, MAList, EList, ExpressionSet or MArrayLM object. Alternatively a numeric matrix.

**column**
integer, column of object to be plotted.

**array**
alternative to column for microarray data objects. If specified, then column is ignored.

**coef**
alternative to column for fitted model objects. If specified, then column is ignored.

**xlab**
character string, label for x-axis

**ylab**
character string, label for y-axis

**main**
character string, title for plot

**status**
vector giving the control status of each spot on the array, of same length as the number of rows of object. If NULL, then all points are plotted in the default color, symbol and size.

**zero.weights**
logical, should spots with zero or negative weights be plotted?

**...**
other arguments are passed to **plotWithHighlights**.

Details

A mean-difference plot (MD-plot) is a plot of log-intensity ratios (differences) versus log-intensity averages (means). For two color data objects, a within-array MD-plot is produced with the M and A values computed from the two channels for the specified array. This is the same as a mean-difference plot (**mdplot**) with the red and green log2-intensities of the array providing the two columns.

For single channel data objects, a between-array MD-plot is produced. An artificial array is produced by averaging all the arrays other than the array specified. A mean-difference plot is then produced from the specified array and the artificial array. Note that this procedure reduces to an ordinary mean-difference plot when there are just two arrays total.

If **object** is an **MArrayLM** object, then the plot is an fitted model MD-plot in which the estimated coefficient is on the y-axis and the average A-value is on the x-axis.

The status vector can correspond to any grouping of the probes that is of interest. If **object** is a fitted model object, then status vector is often used to indicate statistically significance, so that differentially expressed points are highlighted. If **object** is a microarray data object, then status might distinguish control probes from regular probes so that different types of controls are highlighted.

The status can be included as the component **object$genes$Status** instead of being passed as an argument to **plotMD**.

See **plotWithHighlights** for how to set colors and graphics parameters for the highlighted and non-highlighted points.
Value

A plot is created on the current graphics device.

Note

This function is an alternative to `plotMA`, which was one of the original functions of the `limma` package in 2002. The history of mean-difference plots and MA-plots is reviewed in Ritchie et al (2015).

Author(s)

Gordon Smyth

References


See Also

The driver function for `plotMD` is `plotWithHighlights`. See also `mdplot` for a very basic mean-difference plot function.

An overview of plot functions available in LIMMA is given in 09.Diagnostics.

Examples

```r
A <- runif(1000,4,16)
y <- A + matrix(rnorm(1000*3,sd=0.2),1000,3)
status <- rep(c(0,-1,1),c(950,40,10))
y[,1] <- y[,1] + status
plotMD(y, column=1, status=status, values=c(-1,1), hl.col=c("blue","red"))

MA <- new("MAList")
MA$A <- runif(300,4,16)
MA$M <- rt(300,df=3)

Spike-in values
MA$M[1:3] <- 0
MA$M[7:9] <- -3

status <- rep("Gene",300)
status[1:3] <- "M=0"
status[4:6] <- "M=3"
status[7:9] <- "M=-3"
values <- c("M=0","M=3","M=-3")
hl.col <- c("blue","red","green")

plotMD(MA,main="MA-Plot with 12 spiked-in points",
 status=status, values=values, hl.col=hl.col)

Same as above but setting graphical parameters as attributes
attr(status,"values") <- values
attr(status,"col") <- hl.col
```
plotMDS(MA, main="Mean-Difference Plot with 12 spiked-in points", status=status)

# Same as above but passing status as part of object
MA$genes$Status <- status
plotMDS(MA, main="Mean-Difference Plot with 12 spiked-in points")

# Change settings for background points
MA$genes$Status <- status
plotMDS(MA, bg.pch=1, bg.cex=0.5)

---

**plotMDS**

Multidimensional scaling plot of distances between gene expression profiles

---

**Description**

Plot samples on a two-dimensional scatterplot so that distances on the plot approximate the typical log2 fold changes between the samples.

**Usage**

```r
Default S3 method:
pplotMDS(x, top = 500, labels = NULL, pch = NULL, cex = 1,
dim.plot = c(1,2), ndim = max(dim.plot), gene.selection = "pairwise",
xlab = NULL, ylab = NULL, plot = TRUE, ...)
S3 method for class 'MDS'
pplotMDS(x, labels = NULL, pch = NULL, cex = 1, dim.plot = NULL,
xlab = NULL, ylab = NULL, ...)```

Arguments

- `x` any data object which can be coerced to a matrix, such as ExpressionSet or EList.
- `top` number of top genes used to calculate pairwise distances.
- `labels` character vector of sample names or labels. Defaults to `colnames(x)`.
- `pch` plotting symbol or symbols. See `points` for possible values. Ignored if `labels` is non-NULL.
- `cex` numeric vector of plot symbol expansions.
- `dim.plot` integer vector of length two specifying which principal components should be plotted.
- `ndim` number of dimensions in which data is to be represented.
- `gene.selection` character, "pairwise" to choose the top genes separately for each pairwise comparison between the samples or "common" to select the same genes for all comparisons.
- `xlab` title for the x-axis.
- `ylab` title for the y-axis.
- `plot` logical. If TRUE then a plot is created on the current graphics device.
- `...` any other arguments are passed to `plot`, and also to `text` (if `pch` is NULL).
This function is a variation on the usual multidimensional scaling (or principle coordinate) plot, in that a distance measure particularly appropriate for the microarray context is used. The distance between each pair of samples (columns) is the root-mean-square deviation (Euclidean distance) for the top top genes. Distances on the plot can be interpreted as leading log2-fold-change, meaning the typical (root-mean-square) log2-fold-change between the samples for the genes that distinguish those samples.

If gene.selection is "common", then the top genes are those with the largest standard deviations between samples. If gene.selection is "pairwise", then a different set of top genes is selected for each pair of samples. The pairwise feature selection may be appropriate for microarray data when different molecular pathways are relevant for distinguishing different pairs of samples.

If pch=NULL, then each sample is represented by a text label, defaulting to the column names of x. If pch is not NULL, then plotting symbols are used.

See text for possible values for col and cex.

Value

If plot=TRUE, a plot is created on the current graphics device.
An object of class "MDS" is also invisibly returned. This is a list containing the following components:

distance.matrix numeric matrix of pairwise distances between columns of x
cmdscale.out output from the function cmdscale given the distance matrix
dim.plot dimensions plotted
x x-xordinates of plotted points
y y-cordinates of plotted points
gene.selection gene selection method

Author(s)

Di Wu and Gordon Smyth

References

See Also

cmdscale
An overview of diagnostic functions available in LIMMA is given in 09.Diagnostics.

Examples

```r
# Simulate gene expression data for 1000 probes and 6 microarrays.
# Samples are in two groups
# First 50 probes are differentially expressed in second group
sd <- 0.3*sqrt(4/rchisq(1000,df=4))
x <- matrix(rnorm(1000*6, sd=sd), 1000, 6)
```
rownames(x) <- paste("Gene",1:1000)
without labels, indexes of samples are plotted.
mds <- plotMDS(x, col=c(rep("black",3), rep("red",3)))
or labels can be provided, here group indicators:
plotMDS(mds, col=c(rep("black",3), rep("red",3)), labels= c(rep("Grp1",3), rep("Grp2",3)))

plotPrintTipLoess MA Plots by Print-Tip Group

Description

Creates a coplot giving MA-plots with loess curves by print-tip groups.

Usage

plotPrintTipLoess(object,layout,array=1,span=0.4,...)

Arguments

- **object**: MAList or RGList object or list with components M containing log-ratios and A containing average intensities
- **layout**: a list specifying the number of tip rows and columns and the number of spot rows and columns printed by each tip. Defaults to MA$printer if that is non-null.
- **array**: integer giving the array to be plotted. Corresponds to columns of M and A.
- **span**: span of window for lowess curve
- **...**: other arguments passed to panel.smooth

Details

Note that spot quality weights in object are not used for computing the loess curves for this plot even though such weights would be used for loess normalization using normalizeWithinArrays.

Value

A plot is created on the current graphics device. If there are missing values in the data, then the vector of row numbers for spots with missing values is invisibly returned, as for coplot.

Author(s)

Gordon Smyth

See Also

An overview of diagnostic functions available in LIMMA is given in 09.Diagnostics.
plotRLDF

Plot of regularized linear discriminant functions for microarray data

Description

Plot regularized linear discriminant functions for classifying samples based on expression data.

Usage

```r
plotRLDF(y, design = NULL, z = NULL, nprobes = 100, plot = TRUE,
         labels.y = NULL, labels.z = NULL, pch.y = NULL, pch.z = NULL,
         col.y = "black", col.z = "black",
         show.dimensions = c(1,2), ndim = max(show.dimensions),
         var.prior = NULL, df.prior = NULL, trend = FALSE, robust = FALSE, ...)
```

Arguments

- **y**: the training dataset. Can be any data object which can be coerced to a matrix, such as `ExpressionSet` or `EList`.
- **design**: design matrix defining the training groups to be distinguished. The first column is assumed to represent the intercept. Defaults to `model.matrix(~factor(labels.y))`.
- **z**: the dataset to be classified. Can be any data object which can be coerced to a matrix, such as `ExpressionSet` or `EList`. Rows must correspond to rows of `y`.
- **nprobes**: number of probes to be used for the calculations. The probes will be selected by moderated F statistic.
- **plot**: logical, should a plot be created?
- **labels.y**: character vector of sample names or labels in `y`. Defaults to `colnames(y)` or failing that to `1:n`.
- **labels.z**: character vector of sample names or labels in `z`. Defaults to `colnames(z)` or failing that to `letters[1:n]`.
- **pch.y**: plotting symbol or symbols for `y`. See `points` for possible values. Takes precedence over `labels.y` if both are specified.
- **pch.z**: plotting symbol or symbols for `y`. See `points` for possible values. Takes precedence over `labels.z` if both are specified.
- **col.y**: colors for the plotting `labels.y`.
- **col.z**: colors for the plotting `labels.z`.
- **show.dimensions**: integer vector of length two indicating which two discriminant functions to plot. Functions are in decreasing order of discriminatory power.
- **ndim**: number of discriminant functions to compute
- **var.prior**: prior variances, for regularizing the within-group covariance matrix. By default is estimated by `squeezeVar`.
- **df.prior**: prior degrees of freedom for regularizing the within-group covariance matrix. By default is estimated by `squeezeVar`.
- **trend**: logical, should a trend be estimated for `var.prior`? See `eBayes` for details. Only used if `var.prior` or `df.prior` are `NULL`.
- **robust**: logical, should `var.prior` and `df.prior` be estimated robustly? See `eBayes` for details. Only used if `var.prior` or `df.prior` are `NULL`.
- **...**: any other arguments are passed to `plot`.
Details

The function builds discriminant functions from the training data (y) and applies them to the test data (z). The method is a variation on classical linear discriminant functions (LDFs), in that the within-group covariance matrix is regularized to ensure that it is invertible, with eigenvalues bounded away from zero. The within-group covariance matrix is squeezed towards a diagonal matrix with empirical Bayes posterior variances as diagonal elements.

The calculations are based on a filtered list of probes. The nprobes probes with largest moderated F statistics are used to discriminate.

The $ndim$ argument allows all required LDFs to be computed even though only two are plotted.

Value

If $plot=TRUE$ a plot is created on the current graphics device. A list containing the following components is (invisibly) returned:

- `training`: numeric matrix with $nrow(y)$ rows and $ndim$ columns containing discriminant functions evaluated for the training data.
- `predicting`: numeric matrix with $nrow(z)$ rows and $ndim$ columns containing discriminant functions evaluated on the classification data.
- `top`: integer vector of length $nprobes$ giving indices of probes used.
- `metagenes`: numeric matrix with $nprobes$ rows and $ndim$ columns containing probe weights defining each discriminant function.
- `singular.values`: singular values showing the predictive power of each discriminant function.
- `rank`: maximum number of discriminant functions with singular.values greater than zero.
- `var.prior`: numeric vector of prior variances.
- `df.prior`: numeric vector of prior degrees of freedom.

Note

The default values for `df.prior` and `var.prior` were changed in limma 3.27.10. Previously these were preset values. Now the default is to estimate them using `squeezeVar`.

Author(s)

Gordon Smyth, Di Wu and Yifang Hu

See Also

`lda` in package MASS

Examples

```r
# Simulate gene expression data for 1000 probes and 6 microarrays.
# Samples are in two groups
# First 50 probes are differentially expressed in second group
sd <- 0.3 * sqrt(4/rchisq(1000, df=4))
y <- matrix(rnorm(1000*6, sd=sd),1000,6)
ownames(y) <- paste("Gene",1:1000)
```
z <- matrix(rnorm(1000*6, sd=sd), 1000, 6)
rownames(z) <- paste("Gene", 1:1000)
z[1:50, 1:3] <- z[1:50, 1:3] - 0.2
design <- cbind(Grp1=1, Grp2vs1=c(0, 0, 0, 1, 1, 1))
options(digit=3)

Samples 1-6 are training set, samples a-f are test set:
plotRLDF(y, design, z=z, col.y="black", col.z="red")
legend("top", pch=16, col=c("black", "red"), legend=c("Training", "Predicted"))

plotSA

Sigma vs A plot for microarray linear model

Description

Plot log residual standard deviation versus average log expression for a fitted microarray linear model.

Usage

```r
plotSA(fit, xlab="Average log-expression", ylab="log2(sigma)", zero.weights=FALSE, pch=16, cex=0.3, ...)
```

Arguments

- `fit`: an `MArrayLM` object.
- `xlab`: character string giving label for x-axis
- `ylab`: character string giving label for y-axis
- `pch`: vector or list of plotting characters. Default is integer code 16 which gives a solid circle.
- `cex`: numeric expansion factor for plotting character. Defaults to 0.2.
- `zero.weights`: logical, should spots with zero or negative weights be plotted?
- `...`: any other arguments are passed to `plot`

Details

This plot is used to check the mean-variance relationship of the expression data, after fitting a linear model.

See `points` for possible values for `pch` and `cex`.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth
See Also

An overview of diagnostic functions available in LIMMA is given in 09.Diagnostics.

plotSplice
Differential splicing plot

Description

Plot relative log-fold changes by exons for the specified gene and highlight the significantly spliced exons.

Usage

```r
plotSplice(fit, coef=ncol(fit), geneid=NULL, genecolname=NULL, rank=1L, FDR = 0.05)
```

Arguments

- `fit`: `MArrayLM` fit object produced by `diffSplice`.
- `coef`: the coefficient (column) of fit for which differentially splicing is assessed.
- `geneid`: character string, ID of the gene to plot.
- `genecolname`: column name of `fit$genes` containing gene IDs. Defaults to `fit$genecolname`.
- `rank`: integer, if `geneid=NULL` then this ranked gene will be plotted.
- `FDR`: numeric, highlight exons as red dots with false discovery rate less than this cut-off. The FDR of the individual exon is calculated based on the exon-level t-statistics test for differences between each exon and all other exons for the same gene.

Details

Plot relative log2-fold-changes by exon for the specified gene. The relative logFC is the difference between the exon’s logFC and the overall logFC for the gene, as computed by `diffSplice`. The significantly spliced individual exons are highlighted as red dots. The size of the red dots are weighted by its significance.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth and Yifang Hu

See Also

`diffSplice`, `topSplice`

A summary of functions available in LIMMA for RNA-seq analysis is given in 11.RNAseq.

Examples

```r
# See diffSplice
```
plotWithHighlights Scatterplot With Highlighting of Special Points

Description

Creates scatterplot, with optional size and color coding for points of special interest. This is the engine for plotMD and plotMA.

Usage

plotWithHighlights(x, y, status = NULL, values = NULL,
 hl.pch = 16, hl.col = NULL, hl.cex = 1, legend = "topleft",
 bg.pch = 16, bg.col = "black", bg.cex = 0.3,
 pch = NULL, col = NULL, cex = NULL, ...)

Arguments

x numeric vector.
y numeric vector.
status character vector giving the control status of each point, of same length as x and y. If NULL, then all points are plotted in the background color, symbol and size.
values character vector giving values of status to be highlighted on the plot. Defaults to unique values of status in decreasing order of frequency, with the most frequent value set as the background value. Ignored if there is no status vector.

hl.pch vector of plotting characters for highlighted points, either of unit length or of same length as values. Ignored if there is no status vector.

hl.col vector of colors for highlighted points, either of unit length or of same length as values. Defaults to 1:1:length(values). Ignored if there is no status vector.

hl.cex numeric vector of plot symbol expansions for highlighted points, either of unit length or of same length as values. Ignored if there is no status vector.

legend character string giving position to place legend. See legend for possible values. Can also be logical, with FALSE meaning no legend. Ignored if there is no status vector.

bg.pch plotting character for background (non-highlighted) points.

bg.col color for background (non-highlighted) points.

bg.cex plot symbol expansion for background (non-highlighted) points.

pch synonym for hl.pch allowed for backward compatibility.

col synonym for hl.col allowed for backward compatibility.

cex synonym for hl.cex allowed for backward compatibility.

... other arguments are passed to plot.
Details

This function produces a scatterplot in which the highlighted points are, by default, larger and colored compared to background points.

The status vector establishes the status of each point and values indicates which values of status should be highlighted. If values=NULL, then the most common value of status is assumed to correspond to background points and all other values are highlighted.

The arguments hl.pch, hl.col and hl.cex give graphics settings for highlighted points. By default, highlighted points are larger than background points and a different color is used for each distinct highlighted value.

The arguments bg.pch, bg.col and bg.cex give the graphics settings for non-highlighted (background) points. The same settings are used for all background points.

The arguments values, pch, col and cex can be included as attributes to status instead of being passed as arguments to plotWithHighlights. This is for compatibility with controlStatus.

See points for possible values for the graphics parameters.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth

References

See Also

plotMD, plotMA, mdplot

An overview of diagnostic plots available in LIMMA is given in 09.Diagnostics.

Examples

```r
x <- runif(1000, min=4, max=16)
status <- rep(c(0,-1,1), c(950,40,10))
y <- status + rnorm(1000, sd=0.2)
plotWithHighlights(x, y, status=status)
```

poolVar

Pool Sample Variances with Unequal Variances

Description

Compute the Satterthwaite (1946) approximation to the distribution of a weighted sum of sample variances.
Usage

poolVar(var, df=n-1, multiplier=1/n, n)

Arguments

- **var**: numeric vector of independent sample variances
- **df**: numeric vector of degrees of freedom for the sample variances
- **multiplier**: numeric vector giving multipliers for the sample variances
- **n**: numeric vector of sample sizes

Details

The sample variances \(\text{var} \) are assumed to follow scaled chi-square distributions. A scaled chi-square approximation is found for the distribution of \(\text{sum}(\text{multiplier} \times \text{var}) \) by equating first and second moments. On output the sum to be approximated is equal to \(\text{multiplier} \times \text{var} \) which follows approximately a scaled chisquare distribution on \(\text{df} \) degrees of freedom. The approximation was proposed by Satterthwaite (1946).

If there are only two groups and the degrees of freedom are one less than the sample sizes then this gives the denominator of Welch’s t-test for unequal variances.

Value

A list with components

- **var**: effective pooled sample variance
- **df**: effective pooled degrees of freedom
- **multiplier**: pooled multiplier

Author(s)

Gordon Smyth

References

Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. *Biometrika* 29, 350-362.

Welch, B. L. (1947). The generalization of 'Student’s’ problem when several different population variances are involved. *Biometrika* 34, 28-35.

Examples

Welch's t-test with unequal variances
x <- rnorm(10, mean=1, sd=2)
y <- rnorm(20, mean=2, sd=1)
s2 <- c(var(x), var(y))
n <- c(10, 20)
out <- poolVar(var=s2, n=n)
predFCm <- (mean(x)-mean(y)) / sqrt(out$var*out$multiplier)
pvalue <- 2*pt(-abs(tstat),df=out$df)
Equivalent to t.test(x,y)

predFCm

Predictive log fold change for microarrays

Description

Calculate the predictive log fold change for a particular coefficient from a fit object.

Usage

predFCm(fit, coef=2, var.indep.of.fc=TRUE, all.de=TRUE, prop.true.null.method="lfdr")

Arguments

- `fit`: an MArrayLM fitted model object produced by lmFit and eBayes
- `coef`: integer vector indicating which columns in the fit object are to be shrunk
- `var.indep.of.fc`: assume the genewise variances are independent of genewise fold changes?
- `all.de`: assume all genes are have a non-zero true fold change (TRUE)? If FALSE, then the proportion of truly non-differentially (non-DE) genes expressed will be estimated.
- `prop.true.null.method`: method used to estimate proportion of truly non-DE genes. See propTrueNull for possible values.

Details

The predictive log fold changes are calculated as the posterior mean log fold changes in the empirical Bayes hierarchical model. We call them predictive log fold changes because they are the best prediction of what the log fold change will be for each gene in a comparable future experiment.

The log fold changes are shrunk towards zero depending on how variable they are. The var.indep.of.fc argument specifies whether the prior belief is that the log fold changes are independent of the variability of the genes or whether the log fold changes increase with increasing variability of the genes.

If all.de=TRUE, then all genes are assumed to have a non-zero log fold change, even if quite small. If all.de=FALSE, then some genes are assumed to have log fold changes exactly zero. The proportion of non-DE genes is estimated and taken into account in the calculation.

Value

numeric vector of predictive (shrunk) log fold changes

Author(s)

Belinda Phipson and Gordon Smyth
References

See Also

lmFit, eBayes, contrasts.fit

Examples

Simulate gene expression data,
6 microarrays with 1000 genes on each array
set.seed(2004)
y <- matrix(rnorm(6000),ncol=4)

two experimental groups and one control group with two replicates each
group <- factor(c("A","A","B","B"))
design <- model.matrix(~group)

fit a linear model
fit <- lmFit(y,design)
fit <- eBayes(fit)

output predictive log fold changes for first 5 genes
pfc <- predFCm(fit,coef=2)

printHead

Print Leading Rows of Large Objects

Description

Print the leading rows of a large vector, matrix or data.frame. This function is used by show methods for data classes defined in LIMMA.

Usage

printHead(x)

Arguments

x any object

Details

If x is a vector with more than 20 elements, then printHead(x) prints only the first 5 elements. If x is a matrix or data.frame with more than 10 rows, then printHead(x) prints only the first 5 rows. Any other type of object is printed normally.

Author(s)

Gordon Smyth
See Also

An overview of classes defined in LIMMA is given in 02.Classes

PrintLayout

Print Layout - class

Description

A list-based class for storing information about the process used to print spots on a microarray. PrintLayout objects can be created using getLayout. The printer component of an RGList or MAList object is of this class.

Slots/List Components

Objects of this class contains no slots but should contain the following list components:

- ngrid.r: number of grid rows on the arrays
- ngrid.c: number of grid columns on the arrays
- nspot.r: number of rows of spots in each grid
- nspot.c: number of columns of spots in each grid
- ndups: number of duplicates of each DNA clone, i.e., number of times print-head dips into each well of DNA
- spacing: number of spots between duplicate spots. Only applicable if ndups > 1. spacing = 1 for side-by-side spots by row, spacing = nspot.c for side-by-side spots by column, spacing = ngrid.r * ngrid.c * nspot.r * nspot.c / 2 for duplicate spots in top and bottom halves of each array.
- npins: actual number of pins or tips on the print-head
- start: character string giving position of the spot printed first in each grid. Choices are "topleft" or "topright" and partial matches are accepted.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of all the classes defined by this package.

Examples

Settings for Swirl and ApoAI example data sets in User's Guide

printer <- list(ngrid.r=4, ngrid.c=4, nspot.r=22, nspot.c=24, ndups=1, spacing=1, npins=16, start="topleft")

Typical settings at the Australian Genome Research Facility

Full pin set, duplicates side-by-side on same row

printer <- list(ngrid.r=12, ngrid.c=4, nspot.r=20, nspot.c=20, ndups=2, spacing=1, npins=48, start="topright")

Half pin set, duplicates in top and lower half of slide

printer <- list(ngrid.r=12, ngrid.c=4, nspot.r=20, nspot.c=20, ndups=2, spacing=9600, npins=24, start="topright")
printorder

Identify Order in which Spots were Printed

Description

Identify order in which spots were printed and the 384-well plate from which they were printed.

Usage

```
printorder(layout, ndups=1, spacing="columns", npins, start="topleft")
```

Arguments

- **layout**: list with the components `ngrid.r`, `ngrid.c`, `nspot.r` and `nspot.c`, or an RGList or MAList object from which the printer layout may be extracted.
- **ndups**: number of duplicate spots, i.e., number of times print-head dips into each well
- **spacing**: character string indicating layout of duplicate spots. Choices are "columns", "rows" or "topbottom".
- **npins**: actual number of pins or tips on the print-head
- **start**: character string giving position of the spot printed first in each grid. Choices are "topleft" or "topright" and partial matches are accepted.

Details

In most cases the printer-head contains the `layout$ngrid.r` times `layout$ngrid.c` pins or tips and the array is printed using `layout$nspot.r` times `layout$nspot.c` dips of the head. The plate holding the DNA to be printed is assumed to have 384 wells in 16 rows and 24 columns.

`ndups` indicates the number of spots printed from each well. The replicate spots from multiple dips into the same wells are assumed to be side-by-side by columns (spacing="columns"), by rows (spacing="rows") or in the top and bottom halves of the array (spacing="topbottom").

In some cases a smaller number of physical pins is used and the total number of grids is built up by effectively printing two or more sub-arrays on the same slide. In this case the number of grids should be a multiple of the number of pins.

Printing is assumed to proceed by rows within in each grid starting either from the top-left or the top-right.

Value

List with components

- **printorder**: numeric vector giving printorder of each spot, i.e., which dip of the print-head was used to print it
- **plate**: numeric vector giving plate number from which each spot was printed
- **plate.r**: numeric vector giving plate-row number of the well from which each spot was printed
- **plate.c**: numeric vector giving plate-column number of the well from which each spot was printed
- **plateposition**: character vector summarizing plate number and plate position of the well from which each spot was printed with letters for plate rows and number for columns. For example 02B13 is second row, 13th column, of the second plate.
printtipWeights

Description

Estimates relative quality weights for each sub-array in a multi-array experiment.

Usage

```r
printtipWeights(object, design = NULL, weights = NULL, method = "genebygene", layout, maxiter = 50, tol = 1e-10, trace=FALSE)
```

Arguments

- **object**: object of class `numeric`, `matrix`, `MAList`, `marrayNorm`, or `ExpressionSet` containing log-ratios or log-values of expression for a series of spotted microarrays.
- **design**: the design matrix of the microarray experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates.
- **weights**: optional numeric matrix containing prior weights for each spot.
- **method**: character string specifying the estimating algorithm to be used. Choices are "genebygene" and "reml".
- **layout**: list specifying the dimensions of the spot matrix and the grid matrix. For details see `PrintLayout-class`.
- **maxiter**: maximum number of iterations allowed.
- **tol**: convergence tolerance.
- **trace**: logical variable. If true then output diagnostic information at each iteration of "reml" algorithm.

Examples

```r
printorder(list(ngrid.r=2,ngrid.c=2,nspot.r=12,nspot.c=8))
```
Details

The relative reliability of each sub-array (print-tip group) is estimated by measuring how well the expression values for that sub-array follow the linear model.

The method described in Ritchie et al (2006) and implemented in the `arrayWeights` function is adapted for this purpose. A heteroscedastic model is fitted to the expression values for each gene by calling the function `lm.wfit`. The dispersion model is fitted to the squared residuals from the mean fit, and is set up to have sub-array specific coefficients, which are updated in either full REML scoring iterations, or using an efficient gene-by-gene update algorithm. The final estimates of the sub-array variances are converted to weights.

The data object `object` is interpreted as if for `lmFit`. In particular, the arguments `design`, `weights` and `layout` will be extracted from the data object if available and do not normally need to be set explicitly in the call; if any of these are set in the call then they will over-ride the slots or components in the data object.

Value

A matrix of sub-array weights.

Author(s)

Matthew Ritchie and Gordon Smyth

References

See Also

An overview of linear model functions in limma is given by [06.LinearModels](http://www.biomedcentral.com/1471-2105/7/261/abstract).

Examples

```r
## Not run:
# This example is designed for work on a subset of the data
# from ApoAI case study in Limma User's Guide
RG <- backgroundCorrect(RG, method="normexp")
MA <- normalizeWithinArrays(RG)
targets <- data.frame(Cy3=I(rep("Pool",6)),Cy5=I(c("WT","WT","WT","KO","KO","KO"))
design <- modelMatrix(targets, ref="Pool")
subarrayw <- printtipWeights(MA, design, layout=mouse.setup)
fit <- lmFit(MA, design, weights=subarrayw)
fit2 <- contrasts.fit(fit, contrasts=c(-1,1))
fit2 <- eBayes(fit2)
# Use of sub-array weights increases the significance of the top genes
topTable(fit2)
# Create an image plot of sub-array weights from each array
zlim <- c(min(subarrayw), max(subarrayw))
par(mfrow=c(3,2), mai=c(0.1,0.1,0.3,0.1))
for(i in 1:6)
  imageplot(subarrayw[,i], layout=mouse.setup, zlim=zlim, main=paste("Array", i))
```
End(Not run)

propexpr

Estimate Proportion of Expressed Probes

Description

Estimate the proportion of microarray probes which are expressed in each array.

Usage

```r
propexpr(x, neg.x=NULL, status=x$genes$Status, labels=c("negative", "regular"))
```

Arguments

- `x`: matrix or similar object containing raw intensities for a set of arrays.
- `neg.x`: matrix or similar object containing raw intensities for negative control probes for the same arrays. If `NULL`, then negative controls must be provided in `x`.
- `status`: character vector specifying control type of each probe. Only used if `neg.x` is `NULL`.
- `labels`: character vector giving the `status` values for negative control probes and regular (non-control) probes respectively. If of length 1, then all probes other than the negative controls are assumed to be regular. Only used if `neg.x` is `NULL`.

Details

This function estimates the overall proportion of probes on each microarray that are correspond to expressed genes using the method of Shi et al (2010). The function is especially useful for Illumina BeadChips arrays, although it can in principle be applied to any platform with good quality negative controls.

The negative controls can be supplied either as rows of `x` or as a separate matrix. If supplied as rows of `x`, then the negative controls are identified by the `status` vector. `x` might also include other types of control probes, but these will be ignored in the calculation.

Illumina BeadChip arrays contain 750–1600 negative control probes. If `read.idat` is used to read Illumina expression IDAT files, then the control probes will be populated as rows of the output `EListRaw` object, and the vector `x$genes$Status` will be set to identify control probes.

Alternatively, expression values can be exported from Illumina's GenomeStudio software as tab-delimited text files. In this case, the control probes are usually written to a separate file from the regular probes.

Value

Numeric vector giving the proportions of expressed probes in each array.

Author(s)

Wei Shi and Gordon Smyth
References

See Also

Description to the control probes in Illumina BeadChips can be found in `read.ilmn`.

Examples

```r
## Not run:
# Read Illumina binary IDAT files
x <- read.idat(idat, bgx)
propexpr(x)

# Read text files exported from GenomeStudio
x <- read.ilmn(files = "sample probe profile.txt",
               ctrlfiles = "control probe profile.txt")
propexpr(x)
## End(Not run)
```

propTrueNull

Estimate Proportion of True Null Hypotheses

Description

Estimate the proportion of true null hypotheses from a vector of p-values.

Usage

```r
propTrueNull(p, method="lfdr", nbins=20, ...)
convest(p, niter=100, plot=FALSE, report=FALSE, file="", tol=1e-6)
```

Arguments

- `p` numeric vector of p-values.
- `method` estimation method. Choices are "lfdr", "mean", "hist" or "convest".
- `nbins` number of histogram bins (if method="hist").
- `niter` number of iterations to be used in fitting the convex, decreasing density for the p-values.
- `plot` logical, should updated plots of fitted convex decreasing p-value density be produced at each iteration?
- `report` logical, should the estimated proportion be printed at each iteration?
- `file` name of file to which to write the report. Defaults to standard output.
- `tol` accuracy of the bisectional search for finding a new convex combination of the current iterate and the mixing density
- `...` other arguments are passed to `convest` if method="convest".
Details

The proportion of true null hypotheses in a collection of hypothesis tests is often denoted \(\pi_0 \). This function estimates \(\pi_0 \) from a vector of p-values.

- `method="lfdr"` implements the method of Phipson (2013) based on averaging local false discovery rates across the p-values.
- `method="mean"` is a very simple method based on averaging the p-values. It gives a slightly smaller estimate than \(2\times \text{mean}(p) \).
- `method="convest"` calls `convest`, which implements the method of Langaas et al (2005) based on a convex decreasing density estimate.

Value

Numeric value in the interval \([0,1]\) representing the estimated proportion of true null hypotheses.

Author(s)

Belinda Phipson and Gordon Smyth for `propTrueNull`; Egil Ferkingstad, Mette Langaas and Marcus Davy for `convest`

References

See Also

See `08.Tests` for other functions for producing or interpreting p-values.

Examples

```r
# Test statistics
z <- rnorm(200)

# First 40 are have non-zero means
z[1:40] <- z[1:40]+2

# True pi0
```
```r
# Two-sided p-values
p <- 2*pnorm(-abs(z))

# Estimate pi0
propTrueNull(p, method="lfdr")
propTrueNull(p, method="hist")
```

protectMetachar

Protect Metacharacters

Description

Add backslashes before any metacharacters found in a string.

Usage

```r
protectMetachar(x)
```

Arguments

- `x` character vector

Details

This function is used to protect strings containing metacharacters so that the metacharacters can be treated as ordinary characters in string matching functions operations.

Value

A character vector of the same length as `x` in which two backslashes have been inserted before any metacharacter.

Author(s)

Gordon Smyth

See Also

An overview of LIMMA functions for reading data is given in [03.ReadingData](#).

Examples

```r
# without protectMetachar, this would be no match
grep(protectMetachar("Ch1 (mean)"),"Ch1 (mean)")
```
qqt

Student's t Quantile-Quantile Plot

Description

Plots the quantiles of a data sample against the theoretical quantiles of a Student’s t distribution.

Usage

```r
qqt(y, df = Inf, ylim = range(y), main = "Student's t Q-Q Plot",
   xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, ...
qqt(y, df1, df2, ylim=range(y), main= "F Distribution Q-Q Plot",
   xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, ...
```

Arguments

- `y` a numeric vector or array containing the data sample
- `df` degrees of freedom for the t-distribution. The default `df=Inf` represents the normal distribution.
- `df1` numerator degrees of freedom for the F-distribution.
- `df2` denominator degrees of freedom for the F-distribution.
- `ylim` plotting range for `y`
- `main` main title for the plot
- `xlab` x-axis title for the plot
- `ylab` y-axis title for the plot
- `plot.it` whether or not to produce a plot
- `...` other arguments to be passed to `plot`

Details

This function is analogous to `qqnorm` for normal probability plots. In fact `qqt(y,df=Inf)` is identical to `qqnorm(y)` in all respects except the default title on the plot.

Value

A list is invisibly returned containing the values plotted in the QQ-plot:

- `x` theoretical quantiles of the t-distribution or F-distribution
- `y` the data sample, same as input `y`

Author(s)

Gordon Smyth

See Also

`qqnorm`
QualityWeights

Examples

```r
# See also the lmFit examples

y <- rt(50, df=4)
qqt(y, df=4)
abline(0,1)
```

Description

Functions to calculate quality weights for individual spots based on image analysis output file.

Usage

```r
wtarea(ideal=c(160,170))
wtfflags(weight=0, cutoff=0)
wtfIgnore.Filter
```

Arguments

- **ideal**
 - numeric vector giving the ideal area or range of areas for a spot in pixels
- **weight**
 - weight to be given to flagged spots
- **cutoff**
 - cutoff value for Flags below which spots will be downweighted

Details

These functions can be passed as an argument to `read.maimages` to construct quality weights as the microarray data is read in.

`wtarea` downweights unusually small or large spots and is designed for SPOT output. It gives weight 1 to spots which have areas in the ideal range, given in pixels, and linearly downweights spots which are smaller or larger than this range.

`wtfflags` is designed for GenePix output and gives the specified weight to spots with Flags value less than the `cutoff` value. Choose `cutoff=0` to downweight all flagged spots. Choose `cutoff=-50` to downweight bad or absent spots or `cutoff=-75` to downweight only spots which have been manually flagged as bad.

`wtfIgnore.Filter` is designed for QuantArray output and sets the weights equal to the column `Ignore Filter` produced by QuantArray. These weights are 0 for spots to be ignored and 1 otherwise.

Value

A function which takes a dataframe or matrix as argument and produces a numeric vector of weights between 0 and 1

Author(s)

Gordon Smyth
rankSumTestWithCorrelation

Two Sample Wilcoxon-Mann-Whitney Rank Sum Test Allowing For Correlation

Description

A extension of the well-known rank-based test, but allowing for correlations between cases.

Usage

```
rankSumTestWithCorrelation(index, statistics, correlation=0, df=Inf)
```

Arguments

- `index`: any index vector such that `statistics[index]` contains the values of the statistic for the test group.
- `statistics`: numeric vector giving values of the test statistic.
- `correlation`: numeric scalar, average correlation between cases in the test group. Cases in the second group are assumed independent of each other and other the first group.
- `df`: degrees of freedom which the correlation has been estimated.

Details

This function implements a correlation-adjusted version of the Wilcoxon-Mann-Whitney test proposed by Wu and Smyth (2012). It tests whether the mean rank of statistics in the test group is greater or less than the mean rank of the remaining statistic values.

When the correlation (or variance inflation factor) is zero, the function performs the usual two-sample Wilcoxon-Mann-Whitney rank sum test. The Wilcoxon-Mann-Whitney test is implemented following the formulas given in Zar (1999) Section 8.10, including corrections for ties and for continuity.

The test allows for the possibility that cases in the test group may be more highly correlated on average than cases not in the group. When the correlation is non-zero, the variance of the rank-sum statistic is computing using a formula derived from equation (4.5) of Barry et al (2008). When the correlation is positive, the variance is increased and test will become more conservative.
Value
Numeric vector of length 2 containing the left.tail and right.tail p-values.

Author(s)
Gordon Smyth and Di Wu

References

See Also
wilcox.test performs the usual Wilcoxon-Mann-Whitney test assuming independence.
An overview of tests in limma is given in 08.Tests.

Examples
stat <- rnorm(100)
index <- 1:10
stat[index] <- stat[1:10]+1

rankSumTestWithCorrelation(index, stat)
rankSumTestWithCorrelation(index, stat, correlation=0.1)

group <- rep(1,100)
group[index] <- 2
group <- factor(group)
wilcox.test(stat ~ group)

read.columns()
Arguments

- **file**: the name of the file which the data are to be read from.
- **required.col**: character vector of names of the required columns
- **text.to.search**: character string. If any column names can be found in this string, those columns will also be read.
- **sep**: the field separator character
- **quote**: character string of characters to be treated as quote marks
- **skip**: the number of lines of the data file to skip before beginning to read data.
- **fill**: logical: if TRUE then in case the rows have unequal length, blank fields are implicitly added.
- **blank.lines.skip**: logical: if TRUE blank lines in the input are ignored.
- **comment.char**: character: a character vector of length one containing a single character or an empty string.
- **allowEscapes**: logical. Should C-style escapes such as ‘\n’ be processed or read verbatim (the default)?
- **...**: other arguments are passed to `read.table`, excluding the following which are reserved and cannot be set by the user: `header`, `col.names`, `check.names` and `colClasses`.

Details

This function is an interface to `read.table` in the base package. It uses `required.col` and `text.to.search` to set up the `colClasses` argument of `read.table`.

Note the following arguments of `read.table` are used by `read.columns` and therefore cannot be set by the user: `header`, `col.names`, `check.names` and `colClasses`.

This function is used by `read.maimages`.

Value

A data frame (`data.frame`) containing a representation of the data in the file.

Author(s)

Gordon Smyth

See Also

`read.maimages`, `read.table`.

An overview of LIMMA functions for reading data is given in 03.ReadingData.
read.idat

Read Illumina expression data directly from IDAT files

Description

Read Illumina BeadArray data from IDAT and manifest (.bgx) files for gene expression platforms.

Usage

```r
read.idat(idatfiles, bgxfile, dateinfo = FALSE, annotation = "Symbol",
          tolerance = 0L, verbose = TRUE)
```

Arguments

- `idatfiles`: character vector specifying idat files to be read in.
- `bgxfile`: character string specifying bead manifest file (.bgx) to be read in.
- `dateinfo`: logical. Should date and software version information be read in?
- `annotation`: character vector of annotation columns to be read from the manifest file.
- `tolerance`: integer. The number of probe ID discrepancies allowed between the manifest and any of the IDAT files.
- `verbose`: logical. Should progress messages are sent to standard output?

Details

Illumina’s BeadScan/iScan software outputs probe intensities in IDAT format (encrypted XML files) and uses probe information stored in a platform specific manifest file (.bgx). These files can be processed using the low-level functions `readIDAT` and `readBGX` from the `illuminaio` package (Smith et al. 2013).

The `read.idat` function provides a convenient way to read these files into R and to store them in an EListRaw-class object. The function serves a similar purpose to `read.ilmn`, which reads text files exported by Illumina’s GenomeStudio software, but it reads the IDAT files directly without any need to convert them first to text.

The function reads information on control probes as well for regular probes. Probe types are indicated in the Status column of the genes component of the EListRaw object.

If more than `tolerance` probes in the manifest cannot be found in an IDAT file then the function will return an error.
Value

An EListRaw object with the following components:

- **E**: numeric matrix of raw intensities.
- **other$NumBeads**: numeric matrix of same dimensions as **E** giving number of beads used for each intensity value.
- **other$STDEV**: numeric matrix of same dimensions as **E** giving bead-level standard deviation or standard error for each intensity value.
- **genes**: data.frame of probe annotation. This includes the **Probe_Id** and **Array_Address_Id** columns extracted from the manifest file, plus a **Status** column identifying control probes, plus any other columns specified by annotation.
- **targets**: data.frame of sample information. This includes the IDAT file names plus other columns if dateinfo=TRUE.

Author(s)

Matt Ritchie

References

See Also

- **read.ilmn** imports gene expression data output by GenomeStudio.
- **neqc** performs normexp by control background correction, log transformation and quantile between-array normalization for Illumina expression data.
- **propexpr** estimates the proportion of expressed probes in a microarray.
- **detectionPValues** computes detection p-values from the negative controls.

Examples

```r
## Not run:
idatfiles <- dir(pattern="idat")
bgxfile <- dir(pattern="bgx")
x <- read.idat(idatfiles, bgxfile)
x$other$Detection <- detectionPValues(x)
propexpr(data)
y <- neqc(data)

## End(Not run)
```
Description

Read Illumina summary probe profile files and summary control probe profile files

Usage

read.ilmn(files=NULL, ctrlfiles=NULL, path=NULL, ctrlpath=NULL, probeid="Probe", annotation=c("TargetID", "SYMBOL"), expr="AVG_Signal", other.columns="Detection", sep="\t", quote="\"", verbose=TRUE, ...)

Arguments

files character vector giving the names of the summary probe profile files.
ctrlfiles character vector giving the names of the summary control probe profile files.
path character string giving the directory containing the summary probe profile files. Default is the current working directory.
ctrlpath character string giving the directory containing the summary control probe profile files. Default is the same directory as for the probe profile files.
probeid character string giving the name of the probe identifier column.
annotation character vector giving possible column names for probe annotation.
expr character string giving a keyword identifying the expression intensity columns. Any input column with column name containing this key will be read as containing intensity values.
other.columns character vector giving keywords sufficient to identify any extra data columns that should be read in, such as "Detection", "Avg_NBEADS", "BEAD_STDEV" etc. The default of Detection is usually sufficient to identify the columns containing detection p-values.
sep the field separator character.
quote character string of characters to be treated as quote marks.
verbose logical, TRUE to report names of profile files being read.
... any other parameters are passed on to read.columns.

Details

Illumina BeadStudio outputs probe intensities (regular probe intensities) and control probe intensities to summary probe profile files (containing regular probes) and summary control probe profile files, respectively. If both files and ctrlfiles are not NULL, this function will combine the data read from the two file types and save them to an EListRaw-class object. If one of them is NULL, then only the required data are read in.

Probe types are indicated in the Status column of genes, a component of the returned EListRaw-class object. There are totally seven types of control probes including negative, biotin, labeling, cy3_hyb, housekeeping, high_stringency_hyb or low_stringency_hyb. Regular probes have the probe type regular. The Status column will not be created if ctrlfiles is NULL.

To read in columns other than probeid, annotation and expr, users needs to specify keywords in other.columns. One keyword corresponds to one type of columns. Examples of keywords are "Detection", "Avg_NBEADS", "BEAD_STDEV" etc.
Value

An EListRaw-class object with the following components:

E numeric matrix of intensities.

genes data.frame of probe annotation. Contains any columns specified by annotation that are found in the input files.

other a list of matrices corresponding to any other.columns found in the input files.

Author(s)

Wei Shi and Gordon K Smyth

See Also

read.ilmn.targets reads in Illumina expression data using the file information extracted from a target data frame which is often created by the readTargets function.

neqc performs normexp by control background correction, log transformation and quantile between-array normalization for Illumina expression data.

normexp.fit.control estimates the parameters of the normal+exponential convolution model with the help of negative control probes.

propexpr estimates the proportion of expressed probes in a microarray.

Examples

```r
## Not run:
x <- read.ilmn(files="sample probe profile.txt",
               ctrlfiles="control probe profile.txt")
## End(Not run)
# See neqc and beadCountWeights for other examples using read.ilmn
```

read.ilmn.targets Read Illumina Data from a Target Dataframe

Description

Read Illumina data from a target dataframe

Usage

```r
read.ilmn.targets(targets, ...)
```

Arguments

targets data frame including names of profile files.

... any other parameters are passed on to read.ilmn.
Details

targets is often created by calling the function `readTargets`. Rows in targets are arrays and columns contain related array or RNA sample information.

At least one of the two columns called `files` and/or `ctrlfiles` should be present in targets, which includes names of summary probe profile files and names of summary control probe profile files respectively. This function calls `read.ilmn` to read in the data.

Value

An `EListRaw-class` object. See return value of the function `read.ilmn` for details.

Author(s)

Wei Shi

See Also

`read.ilmn`

read.maimages Read RGList or EListRaw from Image Analysis Output Files

Description

Reads an RGList from a set of two-color microarray image analysis output files, or an EListRaw from a set of one-color files.

Usage

```r
read.maimages(files=NULL, source=NULL, path=NULL, ext=NULL, names=NULL, columns=NULL, other.columns=NULL, annotation=NULL, green.only=FALSE, wt.fun=NULL, verbose=TRUE, sep=NULL, quote=NULL, ...
read.imagene(files, path=NULL, ext=NULL, names=NULL, columns=NULL, other.columns=NULL, wt.fun=NULL, verbose=TRUE, sep=NULL, quote=NULL, ...
```

Arguments

- `files` character vector giving the names of the files containing image analysis output or, for Imagene data, a character matrix of names of files. Alternatively, it can be a data.frame containing a column called `FileName`. If omitted, then all files with extension `ext` in the specified directory will be read in alphabetical order.
- `source` character string specifying the image analysis program which produced the output files. Choices are "generic", "agilent", "agilent.median", "agilent.mean", "arrayvision", "arrayvision.ARM", "arrayvision.MTM", "bluefuse", "genepix", "genepix.custom", "genepix.median", "imagene", "imagene9", "quantarray", "scanarrayexpress", "smd.old", "smd", "spot" or "spot.close.open".
- `path` character string giving the directory containing the files. The default is the current working directory.
- `ext` character string giving optional extension to be added to each file name
read.maimages

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>names</td>
<td>character vector of unique names to be associated with each array as column name. Can be supplied as <code>files$Label</code> if <code>files</code> is a data.frame. Defaults to <code>removeExt(files)</code>.</td>
</tr>
<tr>
<td>columns</td>
<td>list, or named character vector. For two color data, this should have fields R, G, Rb and Gb giving the column names to be used for red and green foreground and background or, in the case of Imagene data, a list with fields f and b. For single channel data, the fields are usually E and Eb. This argument is optional if <code>source</code> is specified, otherwise it is required.</td>
</tr>
<tr>
<td>other.columns</td>
<td>character vector of names of other columns to be read containing spot-specific information</td>
</tr>
<tr>
<td>annotation</td>
<td>character vector of names of columns containing annotation information about the probes</td>
</tr>
<tr>
<td>green.only</td>
<td>logical, for use with <code>source</code>, should the green (Cy3) channel only be read, or are both red and green required?</td>
</tr>
<tr>
<td>wt.fun</td>
<td>function to calculate spot quality weights</td>
</tr>
<tr>
<td>verbose</td>
<td>logical, TRUE to report each time a file is read</td>
</tr>
<tr>
<td>sep</td>
<td>the field separator character</td>
</tr>
<tr>
<td>quote</td>
<td>character string of characters to be treated as quote marks</td>
</tr>
<tr>
<td>...</td>
<td>any other arguments are passed to <code>read.table</code></td>
</tr>
</tbody>
</table>

Details

These are the main data input functions for the LIMMA package. `read.maimages` reads either single channel or two-color microarray intensity data from text files. `read.imagene` is specifically for two-color ImaGene intensity data created by ImaGene versions 1 through 8, and is called by `read.maimages` to read such data.

`read.maimages` is designed to read data from any microarray platform except for Illumina Bead-Chips, which are read by `read.ilmn`, and Affymetrix GeneChip data, which is best read and pre-processed by specialist packages designed for that platform.

`read.maimages` extracts the foreground and background intensities from a series of files, produced by an image analysis program, and assembles them into the components of one list. The image analysis programs Agilent Feature Extraction, ArrayVision, BlueFuse, GenePix, ImaGene, QuantArray (Version 3 or later), Stanford Microarray Database (SMD) and SPOT are supported explicitly. Almost all these programs write the intensity data for each microarray to one file. The exception is ImaGene, early versions of which wrote the red and green channels of each microarray to different files. Data from some other image analysis programs not mentioned above can be read if the appropriate column names containing the foreground and background intensities are specified using the `columns` argument. (Reading custom columns will work provided the column names are unique and there are no rows in the file after the last line of data. Header lines are ok.)

For Agilent files, two possible foreground estimators are supported: `source="agilent.median"` use median foreground while `source="agilent.mean"` uses mean foreground. Background estimates are always medians. The use of `source="agilent"` defaults to "agilent.median". Note that this behavior is new from 9 March 2012. Previously, in limma 3.11.16 or earlier, "agilent" had the same meaning as "agilent.mean".

For GenePix files, two possible foreground estimators are supported as well as custom background: `source="genepix.median"` uses the median foreground estimates while `source="genepix.mean"` uses mean foreground estimates. The use of `source="genepix"` defaults to "genepix.mean". Background estimates are always medians unless `source="genepix.custom"` is specified. GenePix 6.0 and later supply some custom background options, notably morphological background. If the
GPR files have been written using a custom background, then `source="genepix.custom"` will cause it to be read and used.

For SPOT files, two possible background estimators are supported: `source="spot"` uses background intensities estimated from the morphological opening algorithm. If `source="spot.close.open"` then background intensities are estimated from morphological closing followed by opening.

ArrayVision reports spot intensities in a number of different ways. `read.maimages` caters for ArrayVision's Artifact-removed (ARM) density values using `source="arrayvision.ARM"` or for Median-based Trimmed Mean (MTM) density values with "arrayvision.MTM". ArrayVision users may find it useful to read the top two lines of their data file to check which version of density values they have.

SMD data should consist of raw data files from the database, in tab-delimited text form. There are two possible sets of column names depending on whether the data was entered into the database before or after September 2003. `source="smd.old"` indicates that column headings in use prior to September 2003 should be used.

Intensity data from ImaGene versions 1 to 8 (source="imagene") is different from other image analysis programs in that the read and green channels were written to separate files. `read.maimages` handles the special behaviour of the early ImaGene versions by requiring that the argument `files` should be a matrix with two columns instead of a vector. The first column should contain the names of the files containing green channel (cy3) data and the second column should contain names of files containing red channel (cy5) data. Alternately, `files` can be entered as a vector of even length instead of a matrix. In that case, each consecutive pair of file names is assumed to contain the green (cy3) and red (cy5) intensities respectively from the same array. The function `read.imagene` is called by `read.maimages` when `source="imagene"`, so `read.imagene` does not need to be called directly by users.

ImaGene version-9 (source="imagene9") reverts to the same behavior as the other image analysis programs. For ImaGene-9, `files` is a vector of length equal to the number of microarrays, same as for other image analysis programs.

Spot quality weights may be extracted from the image analysis files using a weight function `wt.fun`. `wt.fun` may be any user-supplied function which accepts a data.frame argument and returns a vector of non-negative weights. The columns of the data.frame are as in the image analysis output files. There is one restriction, which is that the column names should be referred to in full form in the weight function, i.e., do not rely on name expansion for partial matches when referring to the names of the columns. See `QualityWeights` for suggested weight functions.

The argument `other.columns` allows arbitrary columns of the image analysis output files to be preserved in the data object. These become matrices in the component other component. For ImaGene data, the other column headings should be prefixed with "R " or "G " as appropriate.

Value

For one-color data, an `EListRaw` object. For two-color data, an `RGList` object containing the components

- **R** matrix containing the red channel foreground intensities for each spot for each array.
- **Rb** matrix containing the red channel background intensities for each spot for each array.
- **G** matrix containing the green channel foreground intensities for each spot for each array.
- **Gb** matrix containing the green channel background intensities for each spot for each array.
weights spot quality weights, if wt.fun is given
other list containing matrices corresponding to other.columns if given
genes data frame containing annotation information about the probes, for example gene names and IDs and spatial positions on the array, currently set only if source is "agilent", "genepix" or source="imagene" or if the annotation argument is set
targets data frame with column FileName giving the names of the files read. If files was a data.frame on input, then the whole data.frame is stored here on output.
source character string giving the image analysis program name
printer list of class PrintLayout, currently set only if source="imagene"

Warnings
All image analysis files being read are assumed to contain data for the same genelist in the same order. No checking is done to confirm that this is true. Probe annotation information is read from the first file only.

Author(s)
Gordon Smyth, with speed improvements suggested by Marcus Davy

References
Web pages for the image analysis software packages mentioned here are listed at http://www.statsci.org/micrarra/image.html

See Also
read.maimages uses read.columns for efficient reading of text files. As far as possible, it is has similar behavior to read.table in the base package.
read.ilmn reads probe or gene summary profile files from Illumina BeadChips.
An overview of LIMMA functions for reading data is given in 03.ReadingData.

Examples
Read all .gpr files from current working directory
and give weight 0.1 to spots with negative flags

Not run: files <- dir(pattern="*\.gpr$")
RG <- read.maimages(files,"genepix",wt.fun=wtflags(0.1))
End(Not run)

Read all .spot files from current working directory and down-weight
spots smaller or larger than 150 pixels

Not run: files <- dir(pattern="*\.spot$")
RG <- read.maimages(files,"spot",wt.fun=wtarea(150))
End(Not run)
readGAL

Read a GAL file

Description
Read a GenePix Array List (GAL) file into a dataframe.

Usage
```
readGAL(galfile=NULL,path=NULL,header=TRUE,sep="\t",quote="\",skip=NULL,as.is=TRUE,...)
```

Arguments
- `galfile` character string giving the name of the GAL file. If NULL then a file with extension .gal is found in the directory specified by path.
- `path` character string giving the directory containing the files. If NULL then assumed to be the current working directory.
- `header` logical variable, if TRUE then the first line after skip is assumed to contain column headings. If FALSE then a value should specified for skip.
- `sep` the field separator character
- `quote` the set of quoting characters
- `skip` number of lines of the GAL file to skip before reading data. If NULL then this number is determined by searching the file for column headings.
- `as.is` logical variable, if TRUE then read in character columns as vectors rather than factors.
- `...` any other arguments are passed to `read.table`

Details
A GAL file is a list of genes IDs and associated information produced by an Axon microarray scanner. Apart from header information, the file must contain data columns labeled Block, Column, Row and ID. A Name column is usually included as well. Other columns are optional. See the Axon URL below for a detailed description of the GAL file format.

This function reads in the data columns with a minimum of user information. In most cases the function can be used without specifying any of the arguments.

Value
A data frame with columns
- Block numeric vector containing the print tip indices
- Column numeric vector containing the spot columns
- Row numeric vector containing the spot rows
- ID character vector, for factor if as.is=FALSE, containing gene library identifiers
- Name character vector, for factor if as.is=FALSE, containing gene names

The data frame will be sorted so that Column is the fastest moving index, then Row, then Block.
Author(s)

Gordon Smyth

References

http://www.cryer.co.uk/file-types/a/atf/genepix_file_formats.htm

See Also

read.Galfile in the marray package.

An overview of LIMMA functions for reading data is given in \texttt{03.ReadingData}.

Examples

```
# readGAL()
# will read in the first GAL file (with suffix ".gal")
# found in the current working directory
```

readHeader
Read Header Information from Microarray Raw Data File

Description

Read the header information from a microarray raw data file, as output from an image analysis software program such as GenePix. These functions are used internally by \texttt{read.maimages} and are not usually called directly by users.

Usage

```r
readGenericHeader(file, columns, sep="\t")
readGPRHeader(file)
readSMDHeader(file)
```

Arguments

- `file` character string giving file name. If it does not contain an absolute path, the file name is relative to the current working directory.
- `columns` character vector specifying data column headings expected to be in file
- `sep` the character string separating column names

Details

Raw data files exported by image analysis programs include a number of header lines which contain information about the scanning process. This function extracts that information and locates the line where the intensity data begins. \texttt{readGPRHeader} is for GenePix output and \texttt{readSMDHeader} is for files from the Stanford Microarray Database (SMD). \texttt{readGenericHeader} finds the line in the file on which the data begins by searching for specified column headings.
readImaGeneHeader

Value

A list with components corresponds to lines of header information. A key component is `NHeaderRecords` which gives the number of lines in the file before the intensity data begins. All other components are character vectors.

Author(s)

Gordon Smyth

References

See http://www.cryer.co.uk/file-types/a/atf/genepix_file_formats.htm for GenePix formats.

See http://smd.princeton.edu for the SMD.

See Also

`read.maimages`

An overview of LIMMA functions to read data is given in 03.ReadingData.

readImaGeneHeader
Read ImaGene Header Information

Description

Read the header information from an ImaGene image analysis output file. This function is used internally by `read.maimages` and is not usually called directly by users.

Usage

```r
readImaGeneHeader(file)
```

Arguments

- `file` character string giving file name or path

Details

The raw data files exported by the image analysis software ImaGene include a number of header lines which contain information about the printing and scanning processes. This function extracts that information and locates the line where the intensity data begins.

Value

A list containing information read from the header of the ImaGene file. Each Begin-End environment found in the file header will become a recursive list in the output object, with components corresponding to fields in the file. See the ImaGene documentation for further information. The output object will also contain a component `NHeaderRecords` giving the number of lines in the file before the intensity data begins.
readSpotTypes

Description
Read a table giving regular expressions to identify different types of spots in the gene-dataframe.

Usage
readSpotTypes(file="SpotTypes.txt", path=NULL, sep="\t", check.names=FALSE, ...)

Arguments
- **file**: character string giving the name of the file specifying the spot types.
- **path**: character string giving the directory containing the file. Can be omitted if the file is in the current working directory.
- **sep**: the field separator character
- **check.names**: logical, if FALSE column names will not be converted to valid variable names, for example spaces in column names will not be left as is
- **...**: any other arguments are passed to `read.table`

Details
The file is a text file with rows corresponding to types of spots and the following columns: SpotType gives the name for the spot type, ID is a regular expression matching the ID column, Name is a regular expression matching the Name column, and Color is the R name for the color to be associated with this type.

Examples
```r
## Not run:
library(limma)
file <- readImaGeneHeader("myImaGenefile.txt")
for (i in 1:5) { names(file) } 
```

See Also
read.image
An overview of LIMMA functions to read data is given in `03.ReadingData`.
readTargets

Value

A data frame with columns

- **SpotType**: character vector giving names of the spot types
- **ID**: character vector giving regular expressions
- **Name**: character vector giving regular expressions
- **Color**: character vector giving names of colors

Author(s)

Gordon Smyth following idea of James Wettenhall

See Also

An overview of LIMMA functions for reading data is given in `03.ReadingData`.

<table>
<thead>
<tr>
<th>readTargets</th>
<th>Read Targets File</th>
</tr>
</thead>
</table>

Description

Read targets file for a microarray experiment into a dataframe.

Usage

```r
readTargets(file="Targets.txt", path=NULL, sep="\t", row.names=NULL, quote="\",...)```

**Arguments**

- **file**: character string giving the name of the targets file.
- **path**: character string giving the directory containing the file. Can be omitted if the file is in the current working directory.
- **sep**: field separator character
- **row.names**: character string giving the name of a column from which to obtain row names
- **quote**: the set of quoting characters
- **...**: other arguments are passed to `read.table`

**Details**

The targets file is a text file containing information about the RNA samples used as targets in the microarray experiment. Rows correspond to arrays and columns to covariates associated with the targets. For a two-color experiment, the targets file will normally include columns labelled `Cy3` and `Cy5` or similar specifying which RNA samples are hybridized to each channel of each array. Other columns may contain any other covariate information associated with the arrays or targets used in the experiment.

If `row.names` is non-null and there is a column by that name with unique values, then those values will be used as row names for the dataframe. If `row.names` is null, then the column `Label` will be used if such exists or, failing that, the column `FileName`.

See the Limma User’s Guide for examples of this function.
removeBatchEffect

Value

A dataframe. Character columns are not converted into factors.

Author(s)

Gordon Smyth

See Also

An overview of LIMMA functions for reading data is given in 03.ReadingData.

removeBatchEffect  Remove Batch Effect

Description

Remove batch effects from expression data.

Usage

removeBatchEffect(x, batch=NULL, batch2=NULL, covariates=NULL,
                   design=matrix(1,ncol(x),1), ...)

Arguments

x        numeric matrix, or any data object that can be processed by getEAWP containing log-expression values for a series of samples. Rows correspond to probes and columns to samples.
batch    factor or vector indicating batches.
batch2   optional factor or vector indicating a second series of batches.
covariates  matrix or vector of numeric covariates to be adjusted for.
design   optional design matrix relating to treatment conditions to be preserved
...      other arguments are passed to lmFit.

Details

This function is useful for removing batch effects, associated with hybridization time or other technical variables, prior to clustering or unsupervised analysis such as PCA, MDS or heatmaps. The design matrix is used to describe comparisons between the samples, for example treatment effects, which should not be removed. The function (in effect) fits a linear model to the data, including both batches and regular treatments, then removes the component due to the batch effects.

In most applications, only the first batch argument will be needed. This covers the situation where the data has been collected in a series of separate batches.

The batch2 argument is used when there is a second series of batch effects, independent of the first series. For example, batch might correspond to time of data collection while batch2 might correspond to operator or some other change in operating characteristics. If batch2 is included, then the effects of batch and batch2 are assumed to be additive.
The `covariates` argument allows correction for one or more continuous numeric effects, similar to the analysis of covariance method in statistics. If `covariates` contains more than one column, then the columns are assumed to have additive effects.

The data object `x` can be of any class for which `lmFit` works. If `x` contains weights, then these will be used in estimating the batch effects.

**Value**

A numeric matrix of log-expression values with batch and covariate effects removed.

**Note**

This function is not intended to be used prior to linear modelling. For linear modelling, it is better to include the batch factors in the linear model.

**Author(s)**

Gordon Smyth and Carolyn de Graaf

**See Also**

05.Normalization

**Examples**

```r
y <- matrix(rnorm(10*9),10,9)
y[,1:3] <- y[,1:3] + 5
batch <- c("A","A","A","B","B","B","C","C","C")
y2 <- removeBatchEffect(y, batch)
par(mfrow=c(1,2))
boxplot(as.data.frame(y),main="Original")
boxplot(as.data.frame(y2),main="Batch corrected")
```

---

**removeExt**

Remove Common Extension from File Names

**Description**

Finds and removes any common extension from a vector of file names.

**Usage**

`removeExt(x, sep=".")`

**Arguments**

- `x` character vector
- `sep` character string that separates the body of each character string from the extension.
Details

This function is used for simplifying file names, or any vector of character strings, when the strings all finish with the same suffix or extension. If the same extension is not shared by every element of x, then it is not removed from any element.

Note that sep is interpreted as a literal character string: it is not a regular expression.

Value

A character vector of the same length as x in which any common extension has been stripped off.

Author(s)

Gordon Smyth

See Also

An overview of LIMMA functions for reading data is given in 03.ReadingData.

Examples

```r
x <- c("slide1.spot","slide2.spot","slide3.spot")
removeExt(x)

x <- c("Harry - a name from Harry Potter","Hermione - a name from Harry Potter")
removeExt(x, sep=" - ")
```

residuals.MArrayLM  Extract Residuals from MArrayLM Fit

Description

This method extracts the residuals from all the probewise linear model fits and returns them in a matrix.

Usage

```r
S3 method for class 'MArrayLM'
residuals(object, y, ...)
```

Arguments

- **object**: a fitted model object inheriting from class MarrayLM.
- **y**: a data object containing the response data used to compute the fit. This can be of any class for which as.matrix is defined, including MAList, ExpressionSet, marrayNorm etc.
- **...**: other arguments are not used

Value

Numeric matrix of residuals.
RGList-class

Description

A list-based S4 class for storing red and green channel foreground and background intensities for a batch of spotted microarrays. RGList objects are normally created by `read.maimages`.

Slots/List Components

RGList objects can be created by `new("RGList",RG)` where RG is a list. Objects of this class contains no slots (other than `.Data`), but objects should contain the following list components:

- **R**: numeric matrix containing the red (cy5) foreground intensities. Rows correspond to spots and columns to arrays.
- **G**: numeric matrix containing the green (cy3) foreground intensities. Rows correspond to spots and columns to arrays.

Optional components include

- **Rb**: numeric matrix containing the red (cy5) background intensities
- **Gb**: numeric matrix containing the green (cy3) background intensities
- **weights**: numeric matrix of same dimension as R containing relative spot quality weights. Elements should be non-negative.
- **other**: list containing other matrices, all of the same dimensions as R and G.
- **genes**: data.frame containing probe information. Should have one row for each spot. May have any number of columns.
- **targets**: data.frame containing information on the target RNA samples. Rows correspond to arrays. May have any number of columns. Usually includes columns `Cy3` and `Cy5` specifying which RNA was hybridized to each array.
- **printer**: list containing information on the process used to print the spots on the arrays. See `PrintLayout`.

Valid RGList objects may contain other optional components, but all probe or array information should be contained in the above components.

Methods

This class inherits directly from class `list` so any operation appropriate for lists will work on objects of this class. In addition, RGList objects can be `subbed`, `combed` and `merged`. RGList objects will return dimensions and hence functions such as `dim`, `nrow` and `ncol` are defined. RGLists also inherit a `show` method from the virtual class `LargeDataObject`, which means that RGLists will print in a compact way.

RGList objects can be converted to exprSet2 objects by `as(RG,"exprSet2")`.

Other functions in LIMMA which operate on RGList objects include `normalizeBetweenArrays`, `normalizeForPrintorder`, `normalizeWithinArrays`.

Author(s)

Gordon Smyth

See Also

`02.Classes` gives an overview of all the classes defined by this package.
marrayRaw is the corresponding class in the marray package.

---

**roast**

### Rotation Gene Set Tests

**Description**

Rotation gene set testing for linear models.

**Usage**

```r
Default S3 method:
roast(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
 set.statistic = "mean", gene.weights = NULL, var.prior = NULL, df.prior = NULL,
 nrot = 999, approx.zscore = TRUE, ...)
Default S3 method:
mroast(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
 set.statistic = "mean", gene.weights = NULL, var.prior = NULL, df.prior = NULL,
 nrot = 999, approx.zscore = TRUE, adjust.method = "BH",
 midp = TRUE, sort = "directional", ...)
Default S3 method:
fry(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
 standardize = "posterior.sd", sort = "directional", ...)
```

**Arguments**

- **y**: numeric matrix giving log-expression or log-ratio values for a series of microarrays, or any object that can be coerced to a matrix including ExpressionSet, MAList, EList or PLMSet objects. Rows correspond to probes and columns to samples. If either var.prior or df.prior are NULL, then y should contain values for all genes on the arrays. If both prior parameters are given, then only y values for the test set are required.
- **index**: index vector specifying which rows (probes) of y are in the test set. Can be a vector of integer indices, or a logical vector of length nrow(y), or a vector of gene IDs corresponding to entries in geneid. Alternatively it can be a data.frame with the first column containing the index vector and the second column containing directional gene weights. For mroast or fry, index is a list of index vectors or a list of data.frames.
- **design**: design matrix
- **contrast**: contrast for which the test is required. Can be an integer specifying a column of design, or the name of a column of design, or a numeric contrast vector of length equal to the number of columns of design.
- **geneid**: gene identifiers corresponding to the rows of y. Can be either a vector of length nrow(y) or the name of the column of y$genes containing the gene identifiers. Defaults to rownames(y).
- **set.statistic**: summary set statistic. Possibilities are "mean","floormean","mean50" or "msq".
- **gene.weights**: numeric vector of directional (positive or negative) probewise weights. For mroast or fry, this vector must have length equal to nrow(y). For roast, can be of length nrow(y) or of length equal to the number of genes in the test set.
var.prior  prior value for residual variances. If not provided, this is estimated from all the data using squeezeVar.

df.prior  prior degrees of freedom for residual variances. If not provided, this is estimated using squeezeVar.

nrot  number of rotations used to compute the p-values.

approx.zscore  logical, if TRUE then a fast approximation is used to convert t-statistics into z-scores prior to computing set statistics. If FALSE, z-scores will be exact.

adjust.method  method used to adjust the p-values for multiple testing. See p.adjust for possible values.

midp  logical, should mid-p-values be used in instead of ordinary p-values when adjusting for multiple testing?

sort  character, whether to sort output table by directional p-value ("directional"), non-directional p-value ("mixed"), or not at all ("none").

standardize  how to standardize for unequal probewise variances. Possibilities are "residual.sd", "posterior.sd" or "none".

...  any argument that would be suitable for lmFit or eBayes can be included.

Details

These functions implement the ROAST gene set tests proposed by Wu et al (2010). They perform self-contained gene set tests in the sense defined by Goeman and Buhlmann (2007). For competitive gene set tests, see camera. For a gene set enrichment analysis style analysis using a database of gene sets, see romer.

roast and mroast test whether any of the genes in the set are differentially expressed. They can be used for any microarray experiment which can be represented by a linear model. The design matrix for the experiment is specified as for the lmFit function, and the contrast of interest is specified as for the contrasts.fit function. This allows users to focus on differential expression for any coefficient or contrast in a linear model. If contrast is not specified, then the last coefficient in the linear model will be tested.

The argument index is often made using ids2indices.

The argument gene.weights allows directional weights to be set for individual genes in the set. This is often useful, because it allows each gene to be flagged as to its direction and magnitude of change based on prior experimentation. A typical use is to make the gene.weights 1 or -1 depending on whether the gene is up or down-regulated in the pathway under consideration.

The arguments array.weights, block and correlation have the same meaning as for the lmFit function. The arguments df.prior and var.prior have the same meaning as in the output of the eBayes function. If these arguments are not supplied, they are estimated exactly as is done by eBayes.

The gene set statistics "mean", "floormean", "mean50" and msq are defined by Wu et al (2010). The different gene set statistics have different sensitivities to small number of genes. If set.statistic="mean" then the set will be statistically significantly only when the majority of the genes are differentially expressed. "floormean" and "mean50" will detect as few as 25% differentially expressed. "msq" is sensitive to even smaller proportions of differentially expressed genes, if the effects are reasonably large.

The output gives p-values three possible alternative hypotheses, "Up" to test whether the genes in the set tend to be up-regulated, with positive t-statistics, "Down" to test whether the genes in the set tend to be down-regulated, with negative t-statistics, and "Mixed" to test whether the genes in the set tend to be differentially expressed, without regard for direction.
roast estimates p-values by simulation, specifically by random rotations of the orthogonalized
residuals (Langsrud, 2005), so p-values will vary slightly from run to run. To get more precise p-
values, increase the number of rotations nrot. The p-value is computed as \((b+1)/(nrot+1)\) where
\(b\) is the number of rotations giving a more extreme statistic than that observed (Phipson and Smyth,
2010). This means that the smallest possible p-value is \(1/(nrot+1)\).

mroast does roast tests for multiple sets, including adjustment for multiple testing. By default,
mroast reports ordinary p-values but uses mid-p-values (Routledge, 1994) at the multiple testing
stage. Mid-p-values are probably a good choice when using false discovery rates (adjust.method="BH")
but not when controlling the family-wise type I error rate (adjust.method="holm").

fry is a fast approximation to mroast. In the special case that df.prior is large and set.statistic="mean",
fry gives the same result as mroast with an infinite number of rotations. In other circumstances,
when genes have different variances, fry uses a standardization strategy to approximate the mroast
results. Using fry may be advisable when performing tests for a large number of sets, because it is
fast and because the fry p-values are not limited by the number of rotations performed.

Value

roast produces an object of class "Roast". This consists of a list with the following components:

- **p.value**: data.frame with columns Active.Prop and P.Value, giving the proportion of
genes in the set contributing materially to significance and estimated p-values,
respectively. Rows correspond to the alternative hypotheses Down, Up, UpOr-
Down (two-sided) and Mixed.
- **var.prior**: prior value for residual variances.
- **df.prior**: prior degrees of freedom for residual variances.

mroast produces a data.frame with a row for each set and the following columns:

- **NGenes**: number of genes in set
- **PropDown**: proportion of genes in set with \(z < -\sqrt{2}\)
- **PropUp**: proportion of genes in set with \(z > \sqrt{2}\)
- **Direction**: direction of change, "Up" or "Down"
- **PValue**: two-sided directional p-value
- **FDR**: two-sided directional false discovery rate
- **PValue.Mixed**: non-directional p-value
- **FDR.Mixed**: non-directional false discovery rate

fry produces the same output format as mroast but without the columns PropDown and PropUp.

Note

The default setting for the set statistic was changed in limma 3.5.9 (3 June 2010) from "msq" to
"mean".

Author(s)

Gordon Smyth and Di Wu
References


See Also

See 10.GeneSetTests for a description of other functions used for gene set testing.

Examples

```r
y <- matrix(rnorm(100*4),100,4)
design <- cbind(Intercept=1,Group=c(0,0,1,1))

First set of 5 genes contains 3 that are genuinely differentially expressed
index1 <- 1:5
y[index1,3:4] <- y[index1,3:4]+3

Second set of 5 genes contains none that are DE
index2 <- 6:10

roast(y,index1,design,contrast=2)
fry(y,list(set1=index1,set2=index2),design,contrast=2)
```

---

**romer**

*Rotation Gene Set Enrichment Analysis*

Description

Gene set enrichment analysis for linear models using rotation tests (ROtation testing using MEan Ranks).

Usage

```r
Default S3 method:
romer(y, index, design = NULL, contrast = ncol(design),
 array.weights = NULL, block = NULL, correlation,
 set.statistic = "mean", nrot = 9999, shrink.resid = TRUE, ...)
```
Arguments

- **y**: numeric matrix giving log-expression values.
- **index**: list of indices specifying the rows of `y` in the gene sets. The list can be made using `ids2indices`.
- **design**: design matrix.
- **contrast**: contrast for which the test is required. Can be an integer specifying a column of design, or else a contrast vector of length equal to the number of columns of design.
- **array.weights**: optional numeric vector of array weights.
- **block**: optional vector of blocks.
- **correlation**: correlation vector between blocks.
- **set.statistic**: statistic used to summarize the gene ranks for each set. Possible values are "mean", "floormean" or "mean50".
- **nrot**: number of rotations used to estimate the p-values.
- **shrink.resid**: logical, should the residuals be shrunk to remove systematics effects before rotation.
- ...: other arguments not currently used.

Details

This function implements the ROMER procedure described by Majewski et al (2010) and Ritchie et al (2015). `romer` tests a hypothesis similar to that of Gene Set Enrichment Analysis (GSEA) (Subramanian et al, 2005) but is designed for use with linear models. Like GSEA, it is designed for use with a database of gene sets. Like GSEA, it is a competitive test in that the different gene sets are pitted against one another. Instead of permutation, it uses rotation, a parametric resampling method suitable for linear models (Langsrud, 2005; Wu et al, 2010). `romer` can be used with any linear model with some level of replication.

In the output, p-values are given for each set for three possible alternative hypotheses. The alternative "up" means the genes in the set tend to be up-regulated, with positive t-statistics. The alternative "down" means the genes in the set tend to be down-regulated, with negative t-statistics. The alternative "mixed" test whether the genes in the set tend to be differentially expressed, without regard for direction. In this case, the test will be significant if the set contains mostly large test statistics, even if some are positive and some are negative. The first two alternatives are appropriate if you have a prior expectation that all the genes in the set will react in the same direction. The "mixed" alternative is appropriate if you know only that the genes are involved in the relevant pathways, without knowing the direction of effect for each gene.

Note that `romer` estimates p-values by simulation, specifically by random rotations of the orthogonalized residuals (called effects in R). This means that the p-values will vary slightly from run to run. To get more precise p-values, increase the number of rotations `nrot`. By default, the orthogonalized residual corresponding to the contrast being tested is shrunk have the same expected squared size as a null residual.

The argument `set.statistic` controls the way that t-statistics are summarized to form a summary test statistic for each set. In all cases, genes are ranked by moderated t-statistic. If `set.statistic="mean"`, the mean-rank of the genes in each set is the summary statistic. If `set.statistic="floormean"` then negative t-statistics are put to zero before ranking for the up test, and vice versa for the down test. This improves the power for detecting genes with a subset of responding genes. If `set.statistic="mean50"`, the mean of the top 50% ranks in each set is the summary statistic. This statistic performs well in practice but is slightly slower to compute. See Wu et al (2010) for discussion of these set statistics.
Value

Numeric matrix giving p-values and the number of matched genes in each gene set. Rows correspond to gene sets. There are four columns giving the number of genes in the set and p-values for the alternative hypotheses mixed, up or down.

Author(s)

Yifang Hu and Gordon Smyth

References


See Also
topRomer, ids2indices, roast, camera, wilcoxGST

There is a topic page on 10.GeneSetTests.

Examples

```r
y <- matrix(rnorm(100*4),100,4)
design <- cbind(Intercept=1,Group=c(0,0,1,1))
index <- 1:5

index1 <- 1:5
index2 <- 6:10
r <- romer(y=y,index=list(set1=index1,set2=index2),design=design,contrast=2,nrot=99)
r

topRomer(r,alt="up")
topRomer(r,alt="down")
```
selectModel

Select Appropriate Linear Model

Description

Select the best fitting linear model for each gene by minimizing an information criterion.

Usage

```r
selectModel(y, designlist, criterion="aic", df.prior=0, s2.prior=NULL, s2.true=NULL, ...)
```

Arguments

- **y**: a matrix-like data object, containing log-ratios or log-values of expression for a series of microarrays. Any object class which can be coerced to matrix is acceptable including numeric, matrix, MAList, marrayNorm, ExpressionSet or PLMset.
- **designlist**: list of design matrices
- **criterion**: information criterion to be used for model selection, "aic", "bic" or "mallowscp".
- **df.prior**: prior degrees of freedom for residual variances. See `squeezeVar`
- **s2.prior**: prior value for residual variances, to be used if df.prior>0.
- **s2.true**: numeric vector of true variances, to be used if criterion="mallowscp".
- **...**: other optional arguments to be passed to `lmFit`

Details

This function chooses, for each probe, the best fitting model out of a set of alternative models represented by a list of design matrices. Selection is by Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC) or by Mallow's Cp. The criteria have been generalized slightly to accommodate an information prior on the variances represented by s2.prior and df.prior or by s2.post. Suitable values for these parameters can be estimated using `squeezeVar`.

Value

List with components

- **IC**: matrix of information criterion scores, rows for probes and columns for models
- **pref**: factor indicating the model with best (lowest) information criterion score

Author(s)

Alicia Oshlack and Gordon Smyth

See Also

An overview of linear model functions in limma is given by `06.LinearModels`.
Examples

```r
nprobes <- 100
narrays <- 5
y <- matrix(rnorm(nprobes*narrays),nprobes,narrays)
A <- c(0,0,1,1,1)
B <- c(0,1,0,1,1)
designlist <- list(
 None=cbind(Int=c(1,1,1,1,1)),
 A=cbind(Int=1,A=A),
 B=cbind(Int=1,B=B),
 Both=cbind(Int=1,AB=A*B),
 Add=cbind(Int=1,A=A,B=B),
 Full=cbind(Int=1,A=A,B=B,AB=A*B)
)
out <- selectModel(y,designlist)
table(out$pref)
```

**squeezeVar**  
*Squeeze Sample Variances*

**Description**

Squeeze a set of sample variances together by computing empirical Bayes posterior means.

**Usage**

```r
squeezeVar(var, df, covariate=NULL, robust=FALSE, winsor.tail.p=c(0.05,0.1))
```

**Arguments**

- `var` numeric vector of independent sample variances.
- `df` numeric vector of degrees of freedom for the sample variances.
- `covariate` if non-NULL, var.prior will depend on this numeric covariate. Otherwise, var.prior is constant.
- `robust` logical, should the estimation of df.prior and var.prior be robustified against outlier sample variances?
- `winsor.tail.p` numeric vector of length 1 or 2, giving left and right tail proportions of x to Winsorize. Used only when robust=TRUE.

**Details**

This function implements an empirical Bayes algorithm proposed by Smyth (2004). A conjugate Bayesian hierarchical model is assumed for a set of sample variances. The hyperparameters are estimated by fitting a scaled F-distribution to the sample variances. The function returns the posterior variances and the estimated hyperparameters.

Specifically, the sample variances `var` are assumed to follow scaled chi-squared distributions, conditional on the true variances, and an scaled inverse chi-squared prior is assumed for the true variances. The scale and degrees of freedom of this prior distribution are estimated from the values of `var`.
The effect of this function is to squeeze the variances towards a common value, or to a global trend if a covariate is provided. The squeezed variances have a smaller expected mean square error to the true variances than do the sample variances themselves.

If covariate is non-null, then the scale parameter of the prior distribution is assumed to depend on the covariate. If the covariate is average log-expression, then the effect is an intensity-dependent trend similar to that in Sartor et al (2006).

robust=TRUE implements the robust empirical Bayes procedure of Phipson et al (2016) which allows some of the var values to be outliers.

**Value**

A list with components

- var.post: numeric vector of posterior variances.
- var.prior: location of prior distribution. A vector if covariate is non-NULL, otherwise a scalar.
- df.prior: degrees of freedom of prior distribution. A vector if robust=TRUE, otherwise a scalar.

**Note**

This function is called by eBayes, but beware a possible confusion with the output from that function. The values var.prior and var.post output by squeezeVar correspond to the quantities s2.prior and s2.post output by eBayes, whereas var.prior output by eBayes relates to a different parameter.

**Author(s)**

Gordon Smyth

**References**


**See Also**

This function is called by `ebayes`.

This function calls `fitFDist`.

An overview of linear model functions in limma is given by `06.LinearModels`. 
strsplit2

Examples

```r
s2 <- rchisq(20,df=5)/5
squeezeVar(s2, df=5)
```

**strsplit2**  
*Split Composite Names*

**Description**

Split a vector of composite names into a matrix of simple names.

**Usage**

```r
strsplit2(x, split, ...)
```

**Arguments**

- `x` character vector
- `split` character to split each element of vector on, see `strsplit`
- `...` other arguments are passed to `strsplit`

**Details**

This function is the same as `strsplit` except that the output value is a matrix instead of a list. The first column of the matrix contains the first component from each element of `x`, the second column contains the second components etc. The number of columns is equal to the maximum number of components for any element of `x`.

The motivation for this function in the limma package is handle input columns which are composites of two or more annotation fields.

**Value**

A list containing components

- `Name` character vector of the same length as `x` contain first splits of each element
- `Annotation` character vector of the same length as `x` contain second splits of each element

**Author(s)**

Gordon Smyth

**See Also**

- `strsplit`
  An overview of LIMMA functions for reading data is given in 03.ReadingData.

**Examples**

```r
x <- c("AA196000;actinin, alpha 3",
 "AA464163;acyl-Coenzyme A dehydrogenase, very long chain",
 "3E7;W15277;No Annotation")
strsplit2(x,split=";")
```
subsetting

Subset RGList, MAList, EListRaw, EList or MArrayLM Objects

Description

Return an RGList, MAList, EListRaw, EList or MArrayLM object with only selected rows and columns of the original object.

Usage

## S3 method for class 'RGList'
object[i, j]
subsetListOfArrays(object, i, j, IJ, IX, I, JX)

Arguments

object object of class RGList, MAList, EListRaw, EList or MArrayLM.
i, j elements to extract. i subsets the probes or spots while j subsets the arrays.
IJ character vector giving names of components that should be subsetted by i and j.
IX character vector giving names of 2-dimensional components that should be subsetted by i only.
I character vector giving names of vector components that should be subsetted by i.
JX character vector giving names of 2-dimensional components whose row dimension corresponds to j.

Details

i, j may take any values acceptable for the matrix components of object. Either or both can be missing. See the Extract help entry for more details on subsetting matrices.
object[] will return the whole object unchanged. A single index object[i] will be taken to subset rows, so object[i] and object[i,] are equivalent.
subsetListOfArrays is used internally as a utility function by the subsetting operations. It is not intended to be called directly by users. Values must be supplied for all arguments other than i and j.

Value

An object the same as object but containing data from the specified subset of rows and columns only.

Author(s)

Gordon Smyth

See Also

Extract in the base package.
02.Classes for a summary of the different data classes.
Examples

```r
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A","B")
MA <- new("MAList",list(M=M,A=A))
MA[1:2,]
MA[c("a","b"),]
MA[1:2,2]
MA[,2]
```

summary

## S3 method for class 'RGList'

### summary(object, ...)

#### Arguments

- **object**: an object of class `RGList`, `MAList`, `EListRaw`, `EList` or `MArrayLM`
- **...**: other arguments are not used

#### Details

The data objects are summarized as if they were lists, i.e., brief information about the length and type of the components is given.

#### Value

A table.

#### Author(s)

Gordon Smyth

#### See Also

- `summary` in the base package.
- `02.Classes` gives an overview of data classes used in LIMMA.
targetsA2C

Convert Two-Color Targets Dataframe from One-Row-Per-Array to One-Row-Per-Channel

Description

Convert a two-color targets dataframe with one row per array to one with one row per channel.

Usage

targetsA2C(targets, channel.codes = c(1,2), channel.columns = list(Target=c("Cy3","Cy5")), grep = FALSE)

Arguments

- **targets**: data.frame with one row per array giving information about target samples associated covariates.
- **channel.codes**: numeric or character vector of length 2 giving codes for the channels
- **channel.columns**: named list of character vectors of length 2. Each entry gives a pair of names of columns in targets which contain channel-specific information. This pair of columns should be assembled into one column in the output.
- **grep**: logical, if TRUE then the channel column names are found by grepping, i.e., the actual column names need only contain the names given by channel.columns as substrings

Details

The targets dataframe holds information about the RNA samples used as targets in the microarray experiment. It is often read from a file using readTargets. This function is used to convert the dataframe from an array-orientated format with one row for each array and two columns for the two channels into a channel-orientated format with one row for each individual channel observations. In statistical terms, the first format treats the arrays as cases and treats the channels as repeated measurements. The second format treats the individual channel observations as cases. The second format may be more appropriate if the data is to be analyzed in terms of individual log-intensities.

Value

data.frame with twice as many rows as targets. Any pair of columns named by channel.columns will now be one column.

Author(s)

Gordon Smyth

References

See Also

targetsA2C is used by the coerce method from RGList to ExpressionSet in the convert package.
An overview of methods for single channel analysis in limma is given by 07.SingleChannel.

Examples

```r
targets <- data.frame(FileName=c("file1.gpr","file2.gpr"),Cy3=c("WT","KO"),Cy5=c("KO","WT"))
targetsA2C(targets)
```

TestResults-class

Matrix of Test Results - class

Description

A matrix-based class for storing the results of simultaneous tests. TestResults objects are normally created by `decideTests`, `classifyTestsF`, `classifyTestsT` or `classifyTestsP`.

Usage

```r
S3 method for class 'TestResults'
summary(object, ...)
```

Arguments

- `object` object of class TestResults
- `...` other arguments are not used

Slots/List Components

A TestResults object is essentially a numeric matrix with elements equal to 0, 1 or -1. Zero represents acceptance of the null hypothesis, 1 indicates rejection in favor of the right tail alternative and -1 indicates rejection in favor of the left tail alternative.

TestResults objects can be created by `new("TestResults",results)` where `results` is a matrix. Objects of this class contain no slots (other than `.Data`), although the attributes `dim` and `dimnames` may be treated as slots.

Methods

This class inherits directly from class `matrix` so any operation appropriate for matrices will work on objects of this class. `show` and summary methods are also implemented.

Functions in LIMMA which operate on TestResults objects include `heatDiagram`, `vennCounts`, `vennDiagram`, `write.fit`.

Author(s)

Gordon Smyth

See Also

02.Classes gives an overview of all the classes defined by this package. 08.Tests gives an overview of multiple testing.
Examples

```r
Not run:
Assume a data object MA and a design matrix
fitted <- lmFit(MA, design)
fitted <- eBayes(fitted)
results <- decideTests(fitted)
summary(results)
End(Not run)
```

tmixture

*Estimate Scale Factor in Mixture of t-Distributions*

Description

These functions estimate the unscaled standard deviation of the true (unobserved) log fold changes for differentially expressed genes. They are used by the functions ebayes and eBayes and are not intended to be called directly by users.

Usage

```r
tmixture.vector(tstat, stdev.unscaled, df, proportion, v0.lim = NULL)
tmixture.matrix(tstat, stdev.unscaled, df, proportion, v0.lim = NULL)
```

Arguments

- `tstat`: numeric vector or matrix of t-statistics. `tmixture.vector` assumes a vector while `tmixture.matrix` assumes a matrix.
- `stdev.unscaled`: numeric vector or matrix, conformal with `tstat`, containing the unscaled standard deviations of the coefficients used to compute the t-statistics.
- `df`: numeric vector giving the degrees of freedom associated with `tstat`.
- `proportion`: assumed proportion of genes that are differentially expressed.
- `v0.lim`: numeric vector of length 2 giving the lower and upper limits for the estimated unscaled standard deviations.

Details

The values in each column of `tstat` are assumed to follow a mixture of an ordinary t-distribution, with mixing proportion `(1 - proportion)`, and 

\[ \frac{v0+v1}{v1} \text{ times a t-distribution, with mixing proportion } \] 

\[ \text{proportion. Here } v1 \text{ is } stdev.unscaled^2 \text{ and } v0 \text{ is the value to be estimated.} \]

Value

Numeric vector, of length equal to the number of columns of `tstat`, containing estimated `v0` values.

Author(s)

Gordon Smyth

See Also

`ebayes`
Description

Extract top GO terms from goana output or top KEGG pathways from kegga output.

Usage

\begin{verbatim}
topGO(results, ontology = c("BP", "CC", "MF"), sort = NULL, number = 20L,
      truncate.term = NULL)
topKEGG(results, sort = NULL, number = 20L, truncate.path = NULL)
\end{verbatim}

Arguments

- `results`: data frame produced by `goana` or `kegga`.
- `ontology`: character vector of ontologies to be included in output. Elements should be one or more of "BP", "CC" or "MF".
- `sort`: character vector of names of gene lists for which results are required. Should be one or more of the column names of `results`. Defaults to all gene lists.
- `number`: maximum number of top GO terms or top KEGG pathways to list. For all terms or all pathways, set `number=Inf`.
- `truncate.term`: truncate the name of the GO term at this number of characters.
- `truncate.path`: truncate the name of the KEGG pathway at this number of characters.

Details

`topGO` organizes the output from `goana` into top-tables of the most significant GO terms. `topKEGG` similarly extracts the most significant KEGG pathways from `kegga` output. In either case, rows are sorted by the minimum p-value of any of the result columns specified by `sort`.

Value

Same as `results` but with rows subsetted by Ontology and sorted by p-value.

Author(s)

Gordon Smyth and Yifang Hu

See Also

- `goana`, `kegga`

See `10.GeneSetTests` for a description of other functions used for gene set testing.

Examples

\begin{verbatim}
# See goana examples
\end{verbatim}
Description

Extract a matrix of the top gene set testing results from the romer output.

Usage

topRomer(x,n=10,alternative="up")

Arguments

x matrix which is the output from romer.
n number of top gene set testing results to be extracted.
alternative character which can be one of the three possible alternative p values: "up", "down" or "mixed".

Details

This function takes the results from romer and returns a number of top gene set testing results that are sorted by the p values.

Value

matrix, which is sorted by the "up", "down" or "mixed" p values, with the rows corresponding to estimated p-values for the top number of gene sets and the columns corresponding to the number of genes for each gene set and the alternative hypotheses mixed, up, down.

Author(s)

Gordon Smyth and Yifang Hu

See Also

romer

There is a topic page on 10.GeneSetTests.

Examples

# See romer for examples
**topSplice**

Top table of differentially spliced genes or exons

**Description**

Top table ranking the most differentially spliced genes or exons.

**Usage**

```r
topSplice(fit, coef=ncol(fit), test="simes", number=10, FDR=1)
```

**Arguments**

- `fit` MArrayLM fit object produced by `diffSplice`.
- `coef` the coefficient (column) of fit for which differentially splicing is assessed.
- `test` character string, possible values are "simes", "F" or "t". "F" gives F-tests for each gene. "t" gives t-tests for each exon. "simes" gives genewise p-values derived from the t-tests after Simes adjustment for each gene.
- `number` integer, maximum number of rows to output.
- `FDR` numeric, only show exons or genes with false discovery rate less than this cutoff.

**Details**

Ranks genes or exons by evidence for differential splicing. The F-statistic tests for any differences in exon usage between experimental conditions. The exon-level t-statistics test for differences between each exon and all other exons for the same gene.

The Simes processes the exon-level p-values to give an overall call of differential splicing for each gene. It returns the minimum Simes-adjusted p-values for each gene.

The F-tests are likely to be powerful for genes in which several exons are differentially spliced. The Simes p-values is likely to be more powerful when only a minority of the exons for a gene are differentially spliced. The exon-level t-tests are not recommended for formal error rate control.

**Value**

A data.frame with any annotation columns found in fit plus the following columns

- `logFC` log2-fold change of exon vs other exons for the same gene (if level="exon")
- `t` moderated t-statistic (if level="exon")
- `F` moderated F-statistic (if level="gene")
- `P.Value` p-value
- `FDR` false discovery rate

**Author(s)**

Gordon Smyth

**See Also**

diffSplice, plotSplice

A summary of functions available in LIMMA for RNA-seq analysis is given in 11.RNAseq.
Examples

# See diffSplice

toptable

Table of Top Genes from Linear Model Fit

Description

Extract a table of the top-ranked genes from a linear model fit.

Usage

topTable(fit, coef=NULL, number=10, genelist=fit$genes, adjust.method="BH",
sort.by="B", resort.by=NULL, p.value=1, lfc=0, confint=FALSE)
toptable(fit, coef=1, number=10, genelist=NULL, A=NULL, eb=NULL, adjust.method="BH",
sort.by="B", resort.by=NULL, p.value=1, lfc=0, confint=FALSE, ...)
topTableF(fit, number=10, genelist=fit$genes, adjust.method="BH",
sort.by="F", p.value=1, lfc=0)
topTreat(fit, coef=1, sort.by="p", resort.by=NULL, ...)

Arguments

fit list containing a linear model fit produced by lmFit, lm.series, gls.series or mrlm. For topTable, fit should be an object of class MArrayLM as produced by lmFit and eBayes.
coef column number or column name specifying which coefficient or contrast of the linear model is of interest. For topTable, can also be a vector of column subscripts, in which case the gene ranking is by F-statistic for that set of contrasts.
number maximum number of genes to list
genelist data frame or character vector containing gene information. For topTable only, this defaults to fit$genes.
A matrix of A-values or vector of average A-values. For topTable only, this defaults to fit$Amean.
eb output list from ebayes(fit). If NULL, this will be automatically generated.
adjust.method method used to adjust the p-values for multiple testing. Options, in increasing conservatism, include "none", "BH", "BY" and "holm". See p.adjust for the complete list of options. A NULL value will result in the default adjustment method, which is "BH".
sort.by character string specifying statistic to rank genes by. Possible values for topTable and toptable are "logFC", "AveExpr", "t", "p", "p", "B" or "none". (Permitted synonyms are "M" for "logFC", "A" or "Amean" for "AveExpr", "T" for "t" and "p" for "p"). Possibilities for topTableF are "F" or "none". Possibilities for topTreat are as for topTable except for "B".
resort.by character string specifying statistic to sort the selected genes by in the output data.frame. Possibilities are the same as for sort.by.
p.value cutoff value for adjusted p-values. Only genes with lower p-values are listed.
minimum absolute log2-fold-change required. topTable and topTableF include only genes with (at least one) absolute log-fold-changes greater than lfc. topTreat does not remove genes but ranks genes by evidence that their log-fold-change exceeds lfc.

logical, should confidence 95% intervals be output for logFC? Alternatively, can take a numeric value between zero and one specifying the confidence level required.

For toptable, other arguments are passed to ebayes (if eb=NULL). For topTreat, other arguments are passed to topTable.

toptable is an earlier interface and is retained only for backward compatibility.

These functions summarize the linear model fit object produced by lmFit, lm.series, gls.series or mrlm by selecting the top-ranked genes for any given contrast. topTable and topTableF assume that the linear model fit has already been processed by eBayes. topTreat assumes that the fit has been processed by treat. The p-values for the coefficient/contrast of interest are adjusted for multiple testing by a call to p.adjust. The "BH" method, which controls the expected false discovery rate (FDR) below the specified value, is the default adjustment method because it is the most likely to be appropriate for microarray studies. Note that the adjusted p-values from this method are bounds on the FDR rather than p-values in the usual sense. Because they relate to FDRs rather than rejection probabilities, they are sometimes called q-values. See help("p.adjust") for more information.

Note, if there is no good evidence for differential expression in the experiment, that it is quite possible for all the adjusted p-values to be large, even for all of them to be equal to one. It is quite possible for all the adjusted p-values to be equal to one if the smallest p-value is no smaller than 1/ngenes where ngenes is the number of genes with non-missing p-values.

The sort.by argument specifies the criterion used to select the top genes. The choices are: "logFC" to sort by the (absolute) coefficient representing the log-fold-change; "A" to sort by average expression level (over all arrays) in descending order; "T" or "t" for absolute t-statistic; "P" or "p" for p-values; or "B" for the lods or B-statistic.

Normally the genes appear in order of selection in the output table. If a different order is wanted, then the resort.by argument may be useful. For example, topTable(fit, sort.by="B", resort.by="logFC") selects the top genes according to log-odds of differential expression and then orders the selected genes by log-ratio in decreasing order. Or topTable(fit, sort.by="logFC", resort.by="logFC") would select the genes by absolute log-fold-change and then sort them from most positive to most negative.

topTableF ranks genes on the basis of moderated F-statistics for one or more coefficients. If topTable is called and coef has two or more elements, then the specified columns will be extracted from fit and topTableF called on the result. topTable with coef=NULL is the same as topTableF, unless the fitted model fit has only one column.

Topetable output for all probes in original (unsorted) order can be obtained by topTable(fit,sort="none",n=Inf). However write.fit or write may be preferable if the intention is to write the results to a file. A related method is as.data.frame(fit) which coerces an MArrayLM object to a data.frame.

By default number probes are listed. Alternatively, by specifying p.value and number=Inf, all genes with adjusted p-values below a specified value can be listed.

The argument lfc gives the ability to filter genes by log-fold change. This argument is not available for topTreat because treat already handles fold-change thresholding in a more sophisticated way.
Value

A dataframe with a row for the number top genes and the following columns:

- **genelist**: one or more columns of probe annotation, if genelist was included as input
- **logFC**: estimate of the log2-fold-change corresponding to the effect or contrast (for topTableF there may be several columns of log-fold-changes)
- **CI.L**: left limit of confidence interval for logFC (if confint=TRUE or confint is numeric)
- **CI.R**: right limit of confidence interval for logFC (if confint=TRUE or confint is numeric)
- **AveExpr**: average log2-expression for the probe over all arrays and channels, same as Amean in the MarrayLM object
- **t**: moderated t-statistic (omitted for topTableF)
- **F**: moderated F-statistic (omitted for topTable unless more than one coef is specified)
- **P.Value**: raw p-value
- **adj.P.Value**: adjusted p-value or q-value
- **B**: log-odds that the gene is differentially expressed (omitted for topTreat)

If fit had unique rownames, then the row.names of the above data.frame are the same in sorted order. Otherwise, the row.names of the data.frame indicate the row number in fit. If fit had duplicated row names, then these are preserved in the ID column of the data.frame, or in ID0 if genelist already contained an ID column.

Note

Although topTable enables users to set p-value and lfc cutoffs simultaneously, this is not generally recommended. If the fold changes and p-values are not highly correlated, then the use of a fold change cutoff can increase the false discovery rate above the nominal level. Users wanting to use fold change thresholding are usually recommended to use treat and topTreat instead.

In general, the adjusted p-values returned by adjust.method="BH" remain valid as FDR bounds only when the genes remain sorted by p-value. Resorting the table by log-fold-change can increase the false discovery rate above the nominal level for genes at the top of resorted table.

Author(s)

Gordon Smyth

See Also

An overview of linear model and testing functions is given in 06.LinearModels. See also p.adjust in the stats package.

Examples

```r
See lmFit examples
```
Description

Apply a moving average smoother with tricube distance weights to a numeric vector.

Usage

tricubeMovingAverage(x, span=0.5, power=3)

Arguments

- `x`: numeric vector
- `span`: the smoother span. This gives the proportion of `x` values that contribute to each moving average. Larger values give more smoothness. Should be positive but not greater than 1.
- `power`: a positive exponent used to compute the tricube weights. `power=3` gives the usual tricube weights. Smaller values give more even weighting. Should be greater than 0.

Details

This function smooths a vector (considered as a time series) using a moving average with tricube weights. Specifically, the function computes running weighted means of `w` consecutive values of `x`, where the window width `w` is equal to `2*h+1` with `h = 2*floor(span*length(x)/2)`. The window width `w` is always odd so that each window has one of the original `x` values at its center. Each weighted mean uses a set of tricube weights so that values near the ends of the window receive less weight.

The smoother returns a vector of the same length as input. At the start and end of the vector, the series is considered to be extended by missing values, and the weighted average is computed only over the observed values. In other words, the window width is reduced to `h+1` at the boundaries with asymmetric weights.

The result of this function is similar to a least squares loess curve of degree zero, with a couple of differences. First, a continuity correction is applied when computing the distance to neighbouring points, so that exactly `w` points are included with positive weights in each average. Second, the span halves at the end points so that the smoother is more sensitive to trends at the ends.

The `filter` function in the stats package is called to do the low-level calculations.

This function is used by `barcodeplot` to compute enrichment worms.

Value

Numeric vector of same length as `x` containing smoothed values.

Author(s)

Gordon Smyth

See Also

`filter`, `barcodeplot`, `loessByCol`
Examples

```r
x <- rbinom(100,size=1,prob=0.5)
plot(1:100, tricubeMovingAverage(x))
```
trimWhiteSpace

Trim Leading and Trailing White Space

Description

Trims leading and trailing white space from character strings.

Usage

trimWhiteSpace(x)

Arguments

x character vector

Value

A character vector of the same length as x in which leading and trailing white space has been stripped off each value.

Author(s)

Tim Beissbarth and Gordon Smyth

See Also

An overview of LIMMA functions for reading data is given in 03.ReadingData.

Examples

x <- c("a ", " b ")
trimWhiteSpace(x)

uniquegenelist

Eliminate Duplicate Names from the Gene List

Description

Eliminate duplicate names from the gene list. The new list is shorter than the full list by a factor of ndups.

Usage

uniquegenelist(genelist, ndups=2, spacing=1)

Arguments

genelist vector of gene names
ndups number of duplicate spots. The number of rows of genelist must be divisible by ndups.
spacing the spacing between duplicate names in genelist
unwrapdups

Value

A vector of length \text{length}(\text{genelist})/\text{ndups} containing each gene name once only.

Author(s)

Gordon Smyth

See Also

unwrapdups

Examples

\begin{verbatim}
genelist <- c("A","A","B","B","C","C","D","D")
uniquegenelist(genelist,ndups=2)
genelist <- c("A","B","A","B","C","D","C","D")
uniquegenelist(genelist,ndups=2,spacing=2)
\end{verbatim}

unwrapdups

Unwrap Duplicate Spot Values from Rows into Columns

Description

Reshape a matrix so that a set of consecutive rows becomes a single row in the output.

Usage

\texttt{unwrapdups}(M,\text{ndups}=2,\text{spacing}=1)

Arguments

\begin{itemize}
\item \textbf{M} a matrix.
\item \textbf{ndups} number of duplicate spots. The number of rows of \text{M} must be divisible by \text{ndups}.
\item \textbf{spacing} the spacing between the rows of \text{M} corresponding to duplicate spots, \text{spacing}=1 for consecutive spots
\end{itemize}

Details

This function is used on matrices corresponding to a series of microarray experiments. Rows corresponding to duplicate spots are re-arranged to that all values corresponding to a single gene are on the same row. This facilitates fitting models or computing statistics for each gene.

Value

A matrix containing the same values as \text{M} but with fewer rows and more columns by a factor of \text{ndups}. Each set of \text{ndups} rows in \text{M} is strung out to a single row so that duplicate values originally in consecutive rows in the same column are in consecutive columns in the output.

Author(s)

Gordon Smyth
Examples

```
M <- matrix(1:12, 6, 2)
unwrapdups(M, ndups=2)
unwrapdups(M, ndups=3)
unwrapdups(M, ndups=2, spacing=3)
```

Description

Compute classification counts and draw a Venn diagram.

Usage

```
vennCounts(x, include="both")
vennDiagram(object, include="both", names=NULL, mar=rep(1,4), cex=c(1.5,1,0.7), lwd=1,
circle.col=NULL, counts.col=NULL, show.include=NULL, ...)
```

Arguments

- **x**: a `TestResults` matrix. This is numeric matrix of 0's, 1's and -1's indicating significance of a test or membership of a set. Each row corresponds to a gene and each column to a contrast or set. Usually created by `decideTests`.
- **object**: either a `TestResults` matrix or a `VennCounts` object produced by `vennCounts`.
- **include**: character vector specifying whether all differentially expressed genes should be counted, or whether the counts should be restricted to genes changing in a certain direction. Choices are "both" for all differentially expressed genes, "up" for up-regulated genes only or "down" for down-regulated genes only. If `include=c("up","down")` then both the up and down counts will be shown. This argument is ignored if `object` if `object` is already a `vennCounts` object.
- **names**: character vector giving names for the sets or contrasts
- **mar**: numeric vector of length 4 specifying the width of the margins around the plot. This argument is passed to `par`.
- **cex**: numerical vector of length 3 giving scaling factors for large, medium and small text on the plot.
- **lwd**: numerical value giving the amount by which the circles should be scaled on the plot. See `par`.
- **circle.col**: vector of colors for the circles. See `par` for possible values.
- **counts.col**: vector of colors for the counts. Of same length as `include`. See `par` for possible values.
- **show.include**: logical value whether the value of `include` should be printed on the plot. Defaults to `FALSE` if `include` is a single value and `TRUE` otherwise
- **...**: any other arguments are passed to `plot`
Details

Each column of \( x \) corresponds to a contrast or set, and the entries of \( x \) indicate membership of each row in each set or alternatively the significance of each row for each contrast. In the latter case, the entries can be negative as well as positive to indicate the direction of change.

\texttt{vennCounts} can collate intersection counts for any number of sets. \texttt{vennDiagram} can plot up to five sets.

Value

\texttt{vennCounts} produces an object of class "VennCounts". This contains only one slot, which is numerical matrix with \( 2^{\text{ncol}(x)} \) rows and \( \text{ncol}(x)+1 \) columns. Each row corresponds to a particular combination of set memberships. The first \( \text{ncol}(x) \) columns of output contain 1 or 0 indicating membership or not in each set. The last column called "Counts" gives the number of rows of \( x \) corresponding to that combination of memberships.

\texttt{vennDiagram} produces no output but causes a plot to be produced on the current graphical device.

Author(s)

Gordon Smyth, James Wettenhall, Francois Pepin, Steffen Moeller and Yifang Hu

See Also

An overview of linear model functions in limma is given by \texttt{06.LinearModels}.

Examples

\begin{verbatim}
Y <- matrix(rnorm(100*6),100,6)
design <- cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))
fit <- eBayes(lmFit(Y,design))
results <- decideTests(fit)
a <- vennCounts(results)
print(a)

mfrow.old <- par()$mfrow
par(mfrow=c(1,2))
vennDiagram(a)

vennDiagram(results,
    include=c("up", "down"),
    counts.col=c("red", "blue"),
    circle.col = c("red", "blue", "green3"))
par(mfrow=mfrow.old)
\end{verbatim}

---

\texttt{volcanoplot}  \quad \textit{Volcano Plot}

Description

Creates a volcano plot of log-fold changes versus log-odds of differential expression.
Usage

```
volcanoplot(fit, coef=1, highlight=0, names=fit$genes$ID,
 xlab="Log Fold Change", ylab="Log Odds", pch=16, cex=0.35, ...)
```

Arguments

- `fit`: an `MArrayLM` fitted linear model object
- `coef`: integer giving the coefficient
- `highlight`: number of top genes to be highlighted
- `names`: character vector giving text labels for the probes to be used in highlighting
- `xlab`: character string giving label for x-axis
- `ylab`: character string giving label for y-axis
- `pch`: vector or list of plotting characters. Default is integer code 16 which gives a solid circle.
- `cex`: numeric vector of plot symbol expansions. Default is 0.35.
- `...`: any other arguments are passed to `plot`

Details

A volcano plot is any plot which displays fold changes versus a measure of statistical significance of the change.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth

See Also

An overview of presentation plots following the fitting of a linear model in LIMMA is given in 06.LinearModels.

Examples

```
See lmFit examples
```
**Transform RNA-Seq Data Ready for Linear Modelling**

**Description**

Transform count data to log2-counts per million (logCPM), estimate the mean-variance relationship and use this to compute appropriate observation-level weights. The data are then ready for linear modelling.

**Usage**

```r
voom(counts, design = NULL, lib.size = NULL, normalize.method = "none", span = 0.5, plot = FALSE, save.plot = FALSE, ...)
```

**Arguments**

- `counts` a numeric matrix containing raw counts, or an `ExpressionSet` containing raw counts, or a `DGEList` object. Counts must be non-negative and NAs are not permitted.
- `design` design matrix with rows corresponding to samples and columns to coefficients to be estimated. Defaults to the unit vector meaning that samples are treated as replicates.
- `lib.size` numeric vector containing total library sizes for each sample. If `NULL` and `counts` is a `DGEList` then, the normalized library sizes are taken from `counts`. Otherwise library sizes are calculated from the columnwise counts totals.
- `normalize.method` normalization method to be applied to the logCPM values. Choices are as for the `method` argument of `normalizeBetweenArrays` when the data is single-channel.
- `span` width of the lowess smoothing window as a proportion.
- `plot` logical, should a plot of the mean-variance trend be displayed?
- `save.plot` logical, should the coordinates and line of the plot be saved in the output?
- `...` other arguments are passed to `lmFit`.

**Details**

This function is intended to process RNA-Seq or ChIP-Seq data prior to linear modelling in limma. `voom` is an acronym for mean-variance modelling at the observational level. The key concern is to estimate the mean-variance relationship in the data, then use this to compute appropriate weights for each observation. Count data almost show non-trivial mean-variance relationships. Raw counts show increasing variance with increasing count size, while log-counts typically show a decreasing mean-variance trend. This function estimates the mean-variance trend for log-counts, then assigns a weight to each observation based on its predicted variance. The weights are then used in the linear modelling process to adjust for heteroscedasticity.

`voom` performs the following specific calculations. First, the counts are converted to logCPM values, adding 0.5 to all the counts to avoid taking the logarithm of zero. The matrix of logCPM values is then optionally normalized. The `lmFit` function is used to fit row-wise linear models. The `lowess` function is then used to fit a trend to the square-root-standard-deviations as a function of average logCPM. The trend line is then used to predict the variance of each logCPM value as a function of its fitted value, and the inverse variances become the estimated precision weights.
Value

An \texttt{EList} object with the following components:

- \texttt{E} numeric matrix of normalized expression values on the log2 scale
- \texttt{weights} numeric matrix of inverse variance weights
- \texttt{design} design matrix
- \texttt{lib.size} numeric vector of total normalized library sizes
- \texttt{genes} dataframe of gene annotation extracted from \texttt{counts}
- \texttt{voom.xy} if \texttt{save.plot}, list containing x and y coordinates for points in mean-variance plot
- \texttt{voom.line} if \texttt{save.plot}, list containing coordinates of loess line in the mean-variance plot

Author(s)

Charity Law and Gordon Smyth

References


See Also

\texttt{voomWithQualityWeights}. \texttt{vooma} is similar to \texttt{voom} but for microarrays instead of RNA-seq.

A summary of functions for RNA-seq analysis is given in \texttt{11.RNAseq}.

---

\texttt{vooma} \hspace{1cm} \textit{Convert Mean-Variance Trend to Observation-specific Precision Weights for Microarray Data}

Description

Estimate the mean-variance relationship and use this to compute appropriate observational-level weights.

Usage

\texttt{vooma(y, design=NULL, correlation, block=NULL, plot=FALSE, span=NULL)}
\texttt{voomaByGroup(y, group, design=NULL, correlation, block=NULL, plot=FALSE, span=NULL, col=NULL, lwd=1, alpha=0.5, pch=16, cex=0.3, legend="topright")}
Arguments

- **y**: numeric matrix, EList object, or any similar object containing expression data that can be coerced to a matrix.
- **design**: design matrix with rows corresponding to samples and columns to coefficients to be estimated. Defaults to the unit vector meaning that samples are treated as replicates.
- **block**: vector or factor specifying a blocking variable on the arrays. Has length equal to the number of arrays.
- **correlation**: intra-block correlation
- **span**: width of the smoothing window, as a proportion of the data set.
- **plot**: logical value indicating whether a plot of mean-variance trend should be displayed.
- **group**: categorical vector or factor giving group membership of columns of y.
- **col**: vector of colors for plotting group trends
- **lwd**: line width for plotting group trends
- **pch**: plotting character. Default is integer code 16 which gives a solid circle. If a vector, then should be of length nrow(y).
- **cex**: numeric vector of plot symbol expansions. If a vector, then should be of length equal to number of groups.
- **alpha**: transparency of points, on scale from 0 for fully transparent to 1 for fully opaque.
- **legend**: character string giving position to place legend.

Details

vooma is an acronym for mean-variance modelling at the observational level for arrays.

vooma estimates the mean-variance relationship in the data, and uses this to compute appropriate weights for each observation. This done by estimating a mean-variance trend, then interpolating this trend to obtain a precision weight (inverse variance) for each observation. The weights can then used by other functions such as lmFit to adjust for heteroscedasticity.

voomaByGroup estimates precision weights separately for each group. In other words, it allows for different mean-variance curves in different groups.

Value

An EList object with the following components:

- **E**: numeric matrix of as input
- **weights**: numeric matrix of weights
- **design**: numeric matrix of experimental design
- **genes**: dataframe of gene annotation, only if counts was a DGEList object

Author(s)

Charity Law and Gordon Smyth

References

voomWithQualityWeights

Combining observational-level with sample-specific quality weights for RNA-seq analysis

Description

Combine voom observational-level weights with sample-specific quality weights in a designed experiment.

Usage

voomWithQualityWeights(counts, design=NULL, lib.size=NULL, normalize.method="none", plot=FALSE, span=0.5, var.design=NULL, method="genebygene", maxiter=50, tol=1e-10, trace=FALSE, col=NULL, ...)

Arguments

counts a numeric matrix containing raw counts, or an ExpressionSet containing raw counts, or a DGEList object.
design design matrix with rows corresponding to samples and columns to coefficients to be estimated. Defaults to the unit vector meaning that samples are treated as replicates.
lib.size numeric vector containing total library sizes for each sample. If NULL and counts is a DGEList then, the normalized library sizes are taken from counts. Otherwise library sizes are calculated from the columnwise counts totals.
normalize.method normalization method to be applied to the logCPM values. Choices are as for the method argument of normalizeBetweenArrays when the data is single-channel.
plot logical, should a plot of the mean-variance trend and sample-specific weights be displayed?
span width of the lowess smoothing window as a proportion.
var.design design matrix for the variance model. Defaults to the sample-specific model (i.e. each sample has a distinct variance) when NULL.
method character string specifying the estimating algorithm to be used. Choices are "genebygene" and "reml".
maxiter maximum number of iterations allowed.
tol convergence tolerance.
trace logical variable. If true then output diagnostic information at each iteration of the "reml" algorithm, or at every 1000th iteration of the "genebygene" algorithm.
col colours to use in the barplot of sample-specific weights (only used if plot=TRUE). If NULL, bars are plotted in grey.
... other arguments are passed to lmFit.
Details

This function is intended to process RNA-Seq data prior to linear modelling in limma. It combines observational-level weights from voom with sample-specific weights estimated using the arrayWeights function.

Value

An EList object similar to that from voom, but with one extra component: the sample.weights component containing the vector of sample quality factors. The weights component combines the sample weights and the usuall voom precision weights.

Author(s)

Matthew Ritchie and Cynthia Liu

References


See Also

voom, arrayWeights

A summary of functions for RNA-seq analysis is given in 11.RNAseq.

weighted.median

Weighted Median

Description

Compute a weighted median of a numeric vector.

Usage

weighted.median(x, w, na.rm = FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.
w a vector of weights the same length as x giving the weights to use for each element of x.
na.rm a logical value indicating whether NA values in x should be stripped before the computation proceeds.
Details

If \( w \) is missing then all elements of \( x \) are given the same weight.

Missing values in \( w \) are not handled.

The weighted median is the median of the discrete distribution with values given by \( x \) and probabilities given by \( w/\text{sum}(w) \).

Value

numeric value giving the weighted median

See Also

`median, weighted.mean`

Examples

```r
GPA from Siegel 1994
wt <- c(5, 5, 4, 1)/15
x <- c(3.7, 3.3, 3.5, 2.8)
xm <- weighted.median(x, wt)
```

---

**weightedLoess**

*Lowess fit with weighting*

Description

Fit robust lowess curves of degree 1 to weighted covariates and responses.

Usage

```r
weightedLowess(x, y, weights = rep(1, length(y)),
 delta=NULL, npts = 200, span = 0.3, iterations = 4)
```

Arguments

- `x` a numeric vector of covariates
- `y` a numeric vector of response values
- `weights` a numeric vector containing frequency weights for each covariate
- `delta` a numeric scalar specifying the maximum distance between adjacent points
- `npts` an integer scalar specifying the approximate number of points to use when computing `delta`
- `span` a numeric scalar specifying the width of the smoothing window as a proportion of the total weight
- `iterations` an integer scalar specifying the number of robustifying iterations
Details

This function extends the lowess algorithm to handle non-negative prior weights. These weights are used during span calculations such that the span distance for each point must include the specified proportion of all weights. They are also applied during weighted linear regression to compute the fitted value (in addition to the tricube weights determined by span). For integer weights, the prior weights are equivalent to using `rep(..., w)` on x and y prior to fitting.

For large vectors, running time is reduced by only performing locally weighted regression for several points. Fitted values for all points adjacent to the chosen points are computed by linear interpolation between the chosen points. For this purpose, the first and last points are always chosen. Note that the regression itself uses all (neighbouring) points.

Points are defined as adjacent to a chosen point if the distance to the latter is positive and less than `delta`. The first chosen point is that corresponding to the smallest covariate; the next chosen point is then the next non-adjacent point, and so on. By default, the smallest `delta` is chosen to obtain a number of chosen points approximately equal to the specified `npts`. Increasing `npts` or supplying a small `delta` will improve the accuracy of the fit (i.e. closer to the full lowess procedure) at the cost of running time.

Robustification is performed using the magnitude of the residuals. Residuals greater than 6 times the median residual are assigned weights of zero. Otherwise, Tukey’s biweight function is applied. Weights are then used for weighted linear regression. Greater values of `iterations` will provide greater robustness.

Value

A list of numeric vectors for the fitted responses, the residuals, the robustifying weights and the chosen delta.

Author(s)

Aaron Lun

References


See Also

`lowess`

Examples

```r
y <- rt(100, df=4)
x <- runif(100)
w <- runif(100)
out <- weightedLoess(x, y, w, span=0.7)
plot(x, y, cex=w)
o <- order(x)
lines(x[o], out$fitted[o], col="red")
```
**write.fit**

Write MArrayLM Object to a File

**Description**

Write a microarray linear model fit to a file.

**Usage**

```r
callwrite.fit(fit, results=NULL, file, digits=3, adjust="none", method="separate",
F.adjust="none", sep=\"\t\", ...)
```

**Arguments**

- **fit**: object of class MArrayLM containing the results of a linear model fit
- **results**: object of class TestResults
- **file**: character string giving name of file
- **digits**: integer indicating precision to be used
- **adjust**: character string specifying multiple-testing adjustment method for the t-statistic P-values, e.g., "BH". See `p.adjust` for the available options. If NULL or "none" then the P-values are not adjusted.
- **method**: character string specifying adjustment method for the F-statistic P-values.
- **sep**: the field separator string. Values in the output file will be separated by this string.
- **...**: other arguments are passed to `write.table`

**Details**

This function writes a tab-delimited text file containing for each gene (1) the average log-intensity, (2) the log-ratios, (3) moderated t-statistics, (4) t-statistic P-values, (5) F-statistic if available, (6) F-statistic P-values if available, (7) classification if available and (8) gene names and annotation.

**Value**

No value is produced but a file is written to the current working directory.

**Author(s)**

Gordon Smyth

**See Also**

- `write` in the base library.
- An overview of linear model functions in limma is given by `06.LinearModels`
**zscore**  

**Z-score Equivalents**

**Description**

Compute z-score equivalents of non-normal random deviates.

**Usage**

```r
zscore(q, distribution, ...)
zscoreGamma(q, shape, rate = 1, scale = 1/rate)
zscoreT(x, df, approx=FALSE)
tZscore(x, df)
zscoreHyper(q, m, n, k)
```

**Arguments**

- `q`, `x`: numeric vector or matrix giving deviates of a random variable
- `distribution`: character name of probability distribution for which a cumulative distribution function exists
- `...`: other arguments specify distributional parameters and are passed to the cumulative distribution function
- `shape`: gamma shape parameter (>0)
- `rate`: gamma rate parameter (>0)
- `scale`: gamma scale parameter (>0)
- `df`: degrees of freedom (>0 for `zscoreT` or >=1 for `tZscore`)
- `approx`: logical, if `TRUE` then a fast approximation is used to convert t-statistics into z-scores. If `FALSE`, z-scores will be exact.
- `m`: as for `qhyper`
- `n`: as for `qhyper`
- `k`: as for `qhyper`

**Details**

These functions compute the standard normal deviates which have the same quantiles as the given values in the specified distribution. For example, if `z <- zscoreT(x, df=df)` then `pnorm(z)` equals `pt(x, df=df)`.

*`zscore`* works for any distribution for which a cumulative distribution function (like `pnorm`) exists in R. The argument `distribution` is the name of the cumulative distribution function with the "p" removed.

*`zscoreGamma`, `zscoreT` and `zscoreHyper`* are specific functions for the gamma, t and hypergeometric distributions respectively.

*`tZscore`* is the inverse of `zscoreT`, and computes t-distribution equivalents for standard normal deviates.

The transformation to z-scores is done by converting to log tail probabilities, and then using `qnorm`. For numerical accuracy, the left or right tail is used, depending on which is likely to be smaller.

If `approx=TRUE`, then the approximation from Hill (1970) is used to convert t-statistics to z-scores directly without computing tail probabilities. Brophy (1987) showed this to be most accurate of a variety of possible closed-form transformations.
**zscore**

**Value**
Numeric vector giving equivalent deviates from the standard normal distribution. The exception is tZscore which gives deviates from the specified t-distribution.

**Author(s)**
Gordon Smyth

**References**


**See Also**
qnorm, pgamma, pt in the stats package.

**Examples**

```r
First three are equivalent
zscore(c(1,2.5), dist="gamma", shape=0.5, scale=2)
zscore(c(1,2.5), dist="chisq", df=1)
zscoreGamma(c(1,2.5), shape=0.5, scale=2)

zscoreT(2, df=3)
tZscore(2, df=3)
```
Index

*Topic IO
  controlStatus, 46
  getLayout, 74
  getSpacing, 76
  gridr, 82
  printorder, 159
  readGAL, 179
  readHeader, 180
  readSpotTypes, 182
  readTargets, 183
  write.fit, 223

*Topic algebra
  is.fullrank, 90

*Topic array
  as.data.frame, 21
  as.matrix, 22
  avedups, 26
  avereps, 27
  dim, 54
  dimnames, 55
  exprs.MA, 63
  uniquegenelist, 211
  unwrapdups, 212

*Topic background correction
  backgroundCorrect, 28
  detectionPValues, 52
  kooperberg, 92
  ma3x3, 103
  nec, 115
  propexpr, 162

*Topic character
  makeUnique, 105
  protectMetachar, 165
  removeExt, 185
  strsplit2, 197
  trimWhiteSpace, 211

*Topic classes
  as.MAList, 22
  EList-class, 62
  LargeDataObject-class, 93
  MAList-class, 105
  MArrayLM-class, 106
  PrintLayout, 158
  RGList-class, 187
  TestResults-class, 201

*Topic data
  as.MAList, 22
  LargeDataObject-class, 93
  MAList-class, 105
  PrintLayout, 158
  RGList-class, 187

*Topic distributions
  qqt, 166
  zscore, 224

*Topic documentation
  02.Classes, 6
  03.ReadingData, 7
  04.Background, 8
  05.Normalization, 9
  06.LinearModels, 10
  07.SingleChannel, 12
  08.Tests, 12
  09.Diagnostics, 13
  10.GeneSetTests, 14
  11.RNAseq, 15
  changeLog, 41
  limmaUsersGuide, 94

*Topic file
  readGAL, 179
  readHeader, 180
  readImaGeneHeader, 181
  removeExt, 185

*Topic gene annotation
  alias2Symbol, 16

*Topic gene set test
  camera, 37
  geneSetTest, 71
  goana, 78
  ids2indices, 85
  roast, 188
  romer, 191
  topGO, 203
INDEX

*Topic **rna-seq**
diffSplice, 53
plotExons, 136
plotSplice, 152
topSplice, 205
voom, 216
voomWithQualityWeights, 219

*Topic **smooth**
tricubeMovingAverage, 209

*Topic **univar**
weighted.median, 220
[.EList (subsetting), 198
[.EListRaw (subsetting), 198
[.MAList (subsetting), 198
[.MArrayLM (subsetting), 198
[.RGList (subsetting), 198
01. Introduction, 5, 7–15, 41
02. Classes, 6, 6, 7–15, 21–23, 26–28, 55, 56, 63, 74, 93, 106, 107, 158, 187, 198, 199, 201
03. ReadingData, 6, 7, 7, 8–15, 20, 40, 47, 53, 75, 76, 109, 160, 165, 170, 178, 180–184, 186, 197, 211
04. Background, 6–8, 8, 9–15, 30, 93, 103, 116, 131, 132, 134, 135
05. Normalization, 6–9, 9, 10–15, 102, 114, 116, 119, 121–124, 126, 127, 129, 185
06. LinearModels, 6–10, 10, 11–15, 19, 21, 24, 34, 44, 45, 58, 61, 78, 96, 97, 104, 113, 115, 139, 161, 194, 196, 208, 214, 215, 223
07. SingleChannel, 6–12, 12, 13–15, 51, 90, 99, 201
08. Tests, 6–12, 12, 13–15, 43, 51, 164, 169, 201
10. GeneSetTests, 6–14, 14, 15, 17, 32, 39, 73, 81, 86, 191, 193, 203, 204
11. RNAseq, 6–15, 15, 54, 137, 152, 205, 217, 220
alias2Symbol, 13, 15, 16, 79, 80
alias2SymbolTable, 13, 15
alias2SymbolTable (alias2Symbol), 16
anova, 13, 18, 36
anova.MAList, 37
anova.MAList (anova.MAList-method), 17
anova.MAList-method, 17
array2channel (targetsA2C), 200
arrayWeights, 13, 18, 20, 219, 220
arrayWeightsQuick, 20
arrayWeightsSimple (arrayWeights), 18
as.data.frame, 6, 21, 21
as.MAList, 7, 22
as.matrix, 22, 23
asMatrixWeights, 23
auROC, 13, 24
avearrays, 25, 28
avedups, 26, 28
avereps, 26, 27, 27
backgroundCorrect, 8, 28, 128, 135
backgroundCorrect.matrix, 8
barcodeplot, 13, 15, 30, 73, 209
beadCountWeights, 33
bg.parameters, 131
blockDiag, 35
bwss, 13, 36, 37
bwss.matrix, 13, 18, 36, 36
camera, 14, 32, 37, 72, 73, 86, 189, 193
cbind, 8, 40, 40, 109
changeLog, 5, 41
classifyTests, 41
classifyTestsF, 12, 107, 201
classifyTestsP, 12, 201
classifyTests2 (classifyTests), 41
classifyTests2P, 12, 201
classifyTests2T (classifyTests), 41
classifyTests2T (classifyTests), 41
cmbscale, 147
coerce, RGList, exprSet2-method
(RGList-class), 187
combined, 6, 62, 106, 187
ccontrastsAsCoef, 43
ccontrasts.fit, 10, 38, 44, 70, 104, 157, 189
cprotStatus, 8, 46, 154
covest, 13
covest (propTrueNull), 163
coolmap, 47
cumOverlap, 48
decideTests, 12, 42, 49, 83, 107, 201, 213
density, 136
design2A (design2M), 51
design2M, 51
detectionPValues, 7, 52, 172
diffSplice, 15, 53, 152, 205
dim, 54, 55, 62, 106, 107, 187
dimnames, 55, 56
dimnames<-.EList (dimnames), 55
dimnames<-.EListRaw (dimnames), 55
dimnames<-.MAList (dimnames), 55
dimnames <- .RGList (dimnames), 55
dist, 48
duplicateCorrelation, 10, 78
duplicateCorrelation (duplicateCorrelation), 56
eBayes, 11, 38, 65, 70, 106, 107, 137, 157, 189, 202, 207
eBayes (eBayes), 59
eBayes (ebay), 65, 63, 196
EList, 6, 40, 109, 217, 220
EList-class, 62
EListRaw, 6, 28, 40, 109, 117, 177
EListRaw-class (EList-class), 62
estimate.m0 (propTrueNull), 163
ExpressionSet, 63
exprs, 23
exprs.MA, 63
Extract, 198
fitFDist, 209
fitFDistRobustly (fitFDist), 64
fitGammaIntercept, 65
fitmixture, 66
fitted, 68
fitted.MArrayLM, 68
fry, 14, 39
fry (roast), 188
FStat (classifyTests), 41
genas, 11, 13, 66, 69
genSetTest, 13, 15, 32, 39, 71
getDupSpacing (getLayout), 74
getEAMP, 37, 39, 73, 96, 97, 184
geneKEGGLinks (goana), 78
goEGGPathwayNames (goana), 78
getLayout, 7, 74, 138
getLayout2 (getLayout), 74
getsSpacing, 7, 76
gls.series, 10, 77
goana, 15, 78, 203
gridc, 7, 14
gridc (gridr), 82
gridr, 7, 14, 82
hclust, 48
heatDiagram, 12, 201
heatDiagram (heatdiagram), 83
heatdiagram, 12, 83
heatmap, 2, 48
helpMethods, 85
ids2indices, 14, 37, 39, 85, 189, 192, 193
image, 84, 87
imageplot, 13, 86
imageplot3by2, 13, 88
interGeneCorrelation (camera), 37
intraspotCorrelation, 12, 89, 99
is.fullrank, 90
is.numeric, 91
isNumeric, 91
kegga, 15, 203
kegga (goana), 78
kooperberg, 8, 30, 92
LARGEDataObject, 6, 62, 106, 187
LARGEDataObject-class, 93
legend, 136, 153
length.EList (dim), 54
length.EListRaw (dim), 54
length.MAList (dim), 54
length.MArrayLM (dim), 54
length.RGList (dim), 54
limma (01.Introduction), 5
LIMMA User's Guide, 9, 136
limma-package (01.Introduction), 5
limmaUsersGuide, 5, 94
lm.fit, 96, 99
lm.series, 10, 95
lmFit, 10, 38, 45, 70, 77, 90, 95, 96, 106, 114, 137, 157, 184, 189
lmscFit, 12, 97, 99
locfit.raw, 102
loess, 102
loessByCol, 209
loessFit, 9, 100, 128
logcosh, 102
lowess, 102, 222
MA.RG, 9, 105
MA.RG (normalizeWithinArrays), 127
ma3x3, 103
ma3x3.matrix, 8
ma3x3.spottedarray, 8
make.names, 104
make.unique, 105
makeContrasts, 10, 104
makeUnique, 8, 105
MAList, 6, 22, 40, 57, 89, 99, 109, 117, 118, 127, 128
MAList-class, 105
MAArrayLM, 6, 10, 44, 45, 97, 99
MAArrayLM-class, 106
Math, 91
merge, 8, 109, 109
merge.RGList, 105
merged, 187
mergeScans, 110
mergeScansRG (mergeScans), 110
mixedModel2Fit, 58
model.matrix, 10, 44, 51, 113
modelMatrix, 10, 35, 112
modifyWeights, 9, 24, 113
mrlm, 10, 114
mroast, 14, 86
mroast (roast), 188
ncol, 62, 106, 107, 187
nc, 115, 132, 134
neqc, 8, 9, 30, 53, 117, 119, 172, 174
neqc (neqc), 115
nlmnb, 130
nonEstimable (is.fullrank), 90
normalize.loess, 121
normalizeBetweenArrays, 9, 62, 106, 117, 124, 129, 187
normalizeCyclicLoess, 9, 117, 119
normalizeForPrintorder, 9, 106, 121, 160, 187
normalizeMedianAbsValues, 9, 123
normalizeMedianValues
(normalizeMedianAbsValues), 123
normalizeQuantiles, 9, 124
normalizeRobustSpline, 9, 125, 128
normalizeVSN, 9, 119, 126
normalizeWithinArrays, 9, 29, 105, 106, 126, 127, 187
normexp.fit, 8, 29, 117, 129, 132, 134, 135
normexp.fit.control, 8, 116, 131, 131, 132–134, 174
normexp.fit.detection.p, 116, 131, 132, 132
normexp.signal, 8, 116, 131, 132, 134, 134
nrow, 62, 106, 107, 187
openPDF, 94
openVignette, 94
p.adjust, 42, 50, 189, 206–208, 223
par, 87
pgamma, 225
plotDensities, 14, 135
plotExons, 15, 136
plotFB, 13, 138
plotlines, 11, 139
plotMA, 14, 106, 140, 143, 154
plotMA3by2, 14, 142
plotMD, 14, 108, 141, 143, 154
plotMDS, 14, 146
plotPrintorder, 14
plotPrintorder
(normalizeForPrintorder), 121
plotPrintTipLoess, 14, 106, 148
plotRLDF, 149
plotSA, 14, 151
plotSplice, 15, 54, 137, 152, 205
plotWithHighlights, 14, 108, 140, 141, 144, 145, 153
points, 138, 146, 149, 151, 154
poolVar, 154
predFCm, 156
printHead, 6, 157
PrintLayout, 106, 158, 178, 187
PrintLayout-class (PrintLayout), 158
printorder, 7, 122, 159
printtipWeights, 160
printtipWeightsSimple
(printtipWeights), 160
propexpr, 162, 172, 174
propTrueNull, 156, 163
protectMetachar, 165
pt, 225
qhyper, 224
qnorm, 225
qqf (qqt), 166
qqnorm, 166
qqt, 166
QualityWeights, 7, 167, 177
rankSumTestWithCorrelation, 39, 168
rbind, 8
rbind.EList (cbind), 40
rbind.EListRaw (cbind), 40
rbind.MAList (cbind), 40
rbind.RGList (cbind), 40
read.columns, 7, 169, 173, 178
read.idat, 7, 53, 171
read.ilmn, 7, 116, 163, 171, 172, 173, 174–176, 178
read.ilmn.targets, 174, 174
read.imagene, 7, 182
read.imagene (read.maimages), 175
read.maimages, 7, 62, 170, 175, 181, 187
read.table, 170, 178, 183
INDEX

readGAL, 7, 46, 179
readGenericHeader, 7
readGenericHeader (readHeader), 180
readGPRHeader, 7
readGPRHeader (readHeader), 180
readHeader, 180
readImaGeneHeader, 7, 181
readSMDHeader (readHeader), 180
readSpotTypes, 8, 182
readTargets, 7, 174, 175, 183, 200
remlscore, 90
removeBatchEffect, 9, 184
removeExt, 7, 185
residuals, 187
residuals.MArrayLM, 186
RG.MA, 14
RG.MA (normalizeWithinArrays), 127
RGList, 6, 28, 40, 109, 117, 126, 177
RGList-class, 187
rlm, 115
roast, 13, 14, 32, 38, 39, 72, 73, 188, 193
Roast-class (roast), 188
roast.default (roast), 188
romer, 13, 14, 32, 39, 73, 86, 189, 191, 204
rowsum, 28
selectModel, 11, 12, 194
show, LargeDataObject-method
 (LargeDataObject-class), 93
show, MDS-method (plotMDS), 146
show, Roast-method (roast), 188
show, TestResults-method
 (TestResults-class), 201
d showMethods, 85
d show (gridr), 82
d spotr, 7
strct (gridr), 82
strct (gridr), 82
strsplit, 197
strsplit2, 8, 197
subsetListOfArrays (subsetting), 198
subsetted, 6, 62, 106, 187
subsetting, 90, 198
summary, 199, 199
summary, TestResults
 (TestResults-class), 201
Sweave, 94
Sys.getenv, 94
Sys.putenv, 94
targetsA2C, 12, 200
TestResults, 6, 12, 50
TestResults-class, 201
text, 147
tmixture, 202
tmixture.matrix, 11, 61
tmixture.vector, 11
topGO, 15, 81, 203
topKEGG, 15, 81
topKEGG (topGO), 203
topRomer, 13, 14, 193, 204
topSplice, 15, 54, 152, 205
topTable, 11
topTable (toptable), 206
topTable, 11, 206
topTableF, 11
topTableF (toptable), 206
topTreat, 60
topTreat (toptable), 206
treat, 11, 65, 207
treat (ebayes), 59
tricubeMovingAverage, 32, 80, 209
trigamma, 210
trigammaInverse, 65, 210
trimWhiteSpace, 211
tZscore (zscore), 224
uniqueGenelist, 8, 211
uniqueTargets (modelMatrix), 112
unwrapdups, 10, 212, 212
venn, 213
vennCounts, 12, 201
vennCounts (venn), 213
vennDiagram, 12, 201
vennDiagram (venn), 213
vignette, 94
volcanopplot, 11, 214
vom, 15, 62, 216, 219, 220
vom, 217, 217
vomByGroup (vomma), 217
vomWithQualityWeights, 15, 19, 217, 219
vsn, 127
vsnMatrix, 127
weighted.mean, 221
weighted.median, 220
weightedLoess, 221
weightedLowess, 102
weightedLoess (weightedLoess), 221
wilcox.test, 73, 169
wilcoxGST, 13, 15, 193
wilcoxGST (geneSetTest), 71
write, 207, 223
write.fit, 11, 12, 201, 207, 223
wtarea (QualityWeights), 167
wtflags (QualityWeights), 167
wtIgnore.Filter (QualityWeights), 167

zscore, 224
zscoreGamma, 11
zscoreGamma (zscore), 224
zscoreHyper (zscore), 224
zscoreT, 11
zscoreT (zscore), 224