Package ‘logicFS’

December 21, 2016

Title Identification of SNP Interactions
Version 1.44.0
Date 2013-09-12
Author Holger Schwender
Maintainer Holger Schwender <holger.schw@gmx.de>
Depends LogicReg, mcbiopi
Suggests genefilter, siggenes
Description Identification of interactions between binary variables using Logic Regression. Can, e.g., be used to find interesting SNP interactions. Contains also a bagging version of logic regression for classification.
License LGPL (>= 2)
biocViews SNP, Classification, Genetics

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.logicfs</td>
<td>2</td>
</tr>
<tr>
<td>getMatEval</td>
<td>2</td>
</tr>
<tr>
<td>logic.bagging</td>
<td>3</td>
</tr>
<tr>
<td>logic.oob</td>
<td>6</td>
</tr>
<tr>
<td>logic.pimp</td>
<td>7</td>
</tr>
<tr>
<td>logicFS</td>
<td>7</td>
</tr>
<tr>
<td>make.snp.dummy</td>
<td>11</td>
</tr>
<tr>
<td>mlogreg</td>
<td>12</td>
</tr>
<tr>
<td>plot.logicFS</td>
<td>13</td>
</tr>
<tr>
<td>predict.logicBagg</td>
<td>15</td>
</tr>
<tr>
<td>predict.mlogreg</td>
<td>16</td>
</tr>
<tr>
<td>print.logicFS</td>
<td>16</td>
</tr>
<tr>
<td>vim.approxPval</td>
<td>17</td>
</tr>
<tr>
<td>vim.chisq</td>
<td>18</td>
</tr>
<tr>
<td>vim.ebam</td>
<td>19</td>
</tr>
<tr>
<td>vim.input</td>
<td>21</td>
</tr>
<tr>
<td>vim.logicFS</td>
<td>23</td>
</tr>
<tr>
<td>vim.norm</td>
<td>24</td>
</tr>
<tr>
<td>vim.permSNP</td>
<td>26</td>
</tr>
<tr>
<td>vim.set</td>
<td>28</td>
</tr>
</tbody>
</table>

Index 31
Example Data of logicFS

data.logicfs contains two objects: a simulated matrix data.logicfs of 400 observations (rows) and 15 variables (columns) and a vector cl.logicfs of length 400 containing the class labels of the observations.

Each variable is categorical with realizations 1, 2 and 3. The first 200 observations are cases, the remaining are controls. If one of the following expression is TRUE, then the corresponding observation is a case:

SNP1 == 3
SNP2 == 1 AND SNP4 == 3
SNP3 == 3 AND SNP5 == 3 AND SNP6 == 1

where SNP1 is in the first column of data.logicfs, SNP2 in the second, and so on.

See Also

logic.bagging, logicFS

gomatEval

Evaluate Prime Implicants

description

Computes the values of prime implicants for observations for which the values of the variables composing the prime implicants are available.

Usage

gomatEval(data, vec.primes, check = TRUE)

Arguments

data a data frame in which each row corresponds to an observation, and each column to a binary variable.

vec.primes a character vector naming the prime implicants that should be evaluated. Each of the variables composing these prime implicants must be represented by one column of data.

check should some checks be done before the evaluation is performed? It is highly recommended not to change the default check = TRUE.

Value

a matrix in which each row corresponds to an observation (the same observations in the same order as in data, and each column to one of the prime implicants.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>
Description

A bagging and subsampling version of logic regression. Currently available for the classification, the linear regression, and the logistic regression approach of \texttt{logreg}. Additionally, an approach based on multinomial logistic regressions as implemented in \texttt{mlogreg} can be used if the response is categorical.

Usage

```r
## Default S3 method:
logic.bagging(x, y, B = 100, useN = TRUE, ntrees = 1, nleaves = 8,
glm.if.1tree = FALSE, replace = TRUE, sub.frac = 0.632,
anneal.control = logreg.anneal.control(), oob = TRUE,
onlyRemove = FALSE, prob.case = 0.5, importance = TRUE,
addMatImp = FALSE, fast = FALSE, rand = NULL, ...)
```

```r
## S3 method for class 'formula'
logic.bagging(formula, data, recdom = TRUE, ...)
```

Arguments

- `x`: a matrix consisting of 0’s and 1’s. Each column must correspond to a binary variable and each row to an observation. Missing values are not allowed.

- `y`: a numeric vector or a factor specifying the values of a response for all the observations represented in `x`, where no missing values are allowed in `y`. If a numeric vector, then `y` either contains the class labels (coded by 0 and 1) or the values of a continuous response depending on whether the classification or logistic regression approach of logic regression, or the linear regression approach, respectively, should be used. If the response is categorical, then `y` must be a factor naming the class labels of the observations.

- `B`: an integer specifying the number of iterations.

- `useN`: logical specifying if the number of correctly classified out-of-bag observations should be used in the computation of the importance measure. If FALSE, the proportion of correctly classified oob observations is used instead. Ignored if `importance = FALSE`.

- `ntrees`: an integer indicating how many trees should be used.

 For a binary response: If `ntrees` is larger than 1, the logistic regression approach of logic regression will be used. If `ntrees` is 1, then by default the classification approach of logic regression will be used (see \texttt{glm.if.1tree}).

 For a continuous response: A linear regression model with `ntrees` trees is fitted in each of the `B` iterations.

 For a categorical response: \texttt{n.lev} − 1 logic regression models with `ntrees` trees are fitted, where \texttt{n.lev} is the number of levels of the response (for details, see \texttt{mlogreg}).

- `nleaves`: a numeric value specifying the maximum number of leaves used in all trees combined. See the help page of the function \texttt{logreg} of the package LogicReg for details.
glm.if.1tree: if ntrees is 1 and glm.if.1tree is TRUE the logistic regression approach of logic regression is used instead of the classification approach. Ignored if ntrees is not 1 or the response is not binary.

replace: should sampling of the cases be done with replacement? If TRUE, a bootstrap sample of size \(\text{length}(cl) \) is drawn from the \(\text{length}(cl) \) observations in each of the B iterations. If FALSE, \(\text{ceiling}(\text{sub.frac} \times \text{length}(cl)) \) of the observations are drawn without replacement in each iteration.

sub.frac: a proportion specifying the fraction of the observations that are used in each iteration to build a classification rule if replace = FALSE. Ignored if replace = TRUE.

anneal.control: a list containing the parameters for simulated annealing. See the help page of logreg.anneal.control in the LogicReg package.

oob: should the out-of-bag error rate (classification and logistic regression) or the out-of-bag root mean square prediction error (linear regression), respectively, be computed?

onlyRemove: should in the single tree case the multiple tree measure be used? If TRUE, the prime implicants are only removed from the trees when determining the importance in the single tree case. If FALSE, the original single tree measure is computed for each prime implicant, i.e. a prime implicant is not only removed from the trees in which it is contained, but also added to the trees that do not contain this interaction. Ignored in all other than the classification case.

prob.case: a numeric value between 0 and 1. If the outcome of the logistic regression, i.e. the class probability, for an observation is larger than prob.case, this observation will be classified as case (or 1).

importance: should the measure of importance be computed?

addMatImp: should the matrix containing the improvements due to the prime implicants in each of the iterations be added to the output? (For each of the prime implicants, the importance is computed by the average over the B improvements.) Must be set to TRUE, if standardized importances should be computed using vim.norm, or if permutation based importances should be computed using vim.signperm.

fast: should a greedy search (as implemented in logreg) be used instead of simulated annealing?

rand: numeric value. If specified, the random number generator will be set into a reproducible state.

formula: an object of class formula describing the model that should be fitted.

data: a data frame containing the variables in the model. Each row of data must correspond to an observation, and each column to a binary variable (coded by 0 and 1) or a factor (for details, see recdom) except for the column comprising the response, where no missing values are allowed in data. The response must be either binary (coded by 0 and 1), categorical or continuous. If continuous, a linear model is fitted in each of the B iterations of logicFS. If categorical, the column of data specifying the response must be a factor. In this case, multinomial logic regressions are performed as implemented in mlogreg. Otherwise, depending on ntrees (and glm.if.1tree) the classification or the logistic regression approach of logic regression is used.

recdom: a logical value or vector of length \(\text{ncol}(\text{data}) \) comprising whether a SNP should be transformed into two binary dummy variables coding for a recessive and a dominant effect. If recdom is TRUE (and a logical value), then all factors/variables with three levels will be coded by two dummy variables as described in make.snp.dummy. Each level of each of the other factors (also factors specifying a SNP that shows...
only two genotypes) is coded by one indicator variable. If recdom is FALSE (and a logical value), each level of each factor is coded by an indicator variable. If recdom is a logical vector, all factors corresponding to an entry in recdom that is TRUE are assumed to be SNPs and transformed into two binary variables as described above. All variables corresponding to entries of recdom that are TRUE (no matter whether recdom is a vector or a value) must be coded either by the integers 1 (coding for the homozygous reference genotype), 2 (heterozygous), and 3 (homozygous variant), or alternatively by the number of minor alleles, i.e. 0, 1, and 2, where no mixing of the two coding schemes is allowed. Thus, it is not allowed that some SNPs are coded by 1, 2, and 3, and others are coded by 0, 1, and 2.

... for the formula method, optional parameters to be passed to the low level function logic.bagging.default. Otherwise, ignored.

Value

logic.bagging returns an object of class logicBagg containing

- logreg.model a list containing the B logic regression models,
- inbagg a list specifying the B Bootstrap samples,
- vim an object of class logicFS (if importance = TRUE),
- oob.error the out-of-bag error (if oob = TRUE),
- ... further parameters of the logic regression.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

predict.logicBagg, plot.logicBagg, logicFS

Examples

```r
## Not run:
# Load data.
data(data.logicfs)

# For logic regression and hence logic.bagging, the variables must
# be binary. data.logicfs, however, contains categorical data
# with realizations 1, 2 and 3. Such data can be transformed
# into binary data by
bin.snps<-make.snp.dummy(data.logicfs)

# To speed up the search for the best logic regression models
# only a small number of iterations is used in simulated annealing.
```
my.anneal<-logreg.anneal.control(start=2,end=-2,iter=10000)

Bagged logic regression is then performed by
bagg.out<-logic.bagging(bin.snps,cl.logicfs,B=20,nleaves=10,
 rand=123,anneal.control=my.anneal)

The output of logic.bagging can be printed
bagg.out

By default, also the importances of the interactions are
computed
bagg.out$vim

and can be plotted.
plot(bagg.out)

The original variable names are displayed in
plot(bagg.out,coded=FALSE)

New observations (here we assume that these observations are
in data.logicfs) are assigned to one of the classes by
predict(bagg.out,data.logicfs)

End(Not run)

logic.oob

<table>
<thead>
<tr>
<th>Prime Implicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Computes the out-of-bag error of the classification rule comprised by a logicBagg object.</td>
</tr>
</tbody>
</table>

Usage

```r
logic.oob(log.out, prob.case = 0.5)
```

Arguments

- `log.out` an object of class logicBagg, i.e. the output of logic.bagging.
- `prob.case` a numeric value between 0 and 1. If the logic regression models are logistic regression models, i.e. if in logic.bagging ntree is set to a value larger than 1, or glm.1tree is set to TRUE, then an observation will be classified as case (or more exactly, as 1) if the class probability is larger than `prob.case`.

Value

The out-of-bag error estimate.

Author(s)

Holger Schwender, `<holger.schwender@udo.edu>`

See Also

`logic.bagging`
logic.pimp

Prime Implicants

Description

Determines the prime implicants contained in the logic regression models comprised in an object of class logicBagg.

Usage

logic.pimp(log.out)

Arguments

log.out an object of class logicBagg, i.e. the output of logic.bagging.

Details

Since we are interested in all potentially interested interactions and not in a minimum set of them, logic.pimp and returns all prime implicants and not a minimum number of them.

Value

A list consisting of the prime implicants for each of the B logic regression models of log.out.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

See Also

logic.bagging, logicFS, prime.implicants

logicFS

Feature Selection with Logic Regression

Description

Identification of interesting interactions between binary variables using logic regression. Currently available for the classification, the linear regression and the logistic regression approach of logreg and for a multinomial logic regression as implemented in mlogreg.

Usage

Default S3 method:
logicFS(x, y, B = 100, useN = TRUE, ntrees = 1, nleaves = 8,
glm.if.1tree = FALSE, replace = TRUE, sub.frac = 0.632,
anneal.control = logreg.anneal.control(), onlyRemove = FALSE,
prob.case = 0.5, addMatImp = TRUE, fast = FALSE, rand = NULL, ...)

S3 method for class 'formula'
logicFS(formula, data, recdom = TRUE, ...)

R Code

```r
# Example usage

### For classification

library(logreg)

# Data

data(ovarian)

# Classification logic regression

logreg.ovarian <- logicFS(x = ovarian[, 1:8], y = ovarian[, 9])

# Prime implicants

prime.implicants(logreg.ovarian)

### For linear regression

library(logreg)

# Data

data(iris)

# Linear regression logic regression

logreg.iris <- logicFS(x = iris[, 1:4], y = iris[, 5])

# Prime implicants

prime.implicants(logreg.iris)

### For logistic regression

library(logreg)

# Data

data(ovarian)

# Logistic regression logic regression

logreg.ovarian <- logicFS(x = ovarian[, 1:8], y = ovarian[, 9])

# Prime implicants

prime.implicants(logreg.ovarian)

### For multinomial logic regression

library(mlogreg)

# Data

data(ovarian)

# Multinomial logic regression

mlogreg.ovarian <- mlogreg(x = ovarian[, 1:8], y = ovarian[, 9])

# Prime implicants

prime.implicants(mlogreg.ovarian)

### Example with formula

# Data

data(ovarian)

# Classification logic regression with formula

logreg.ovarian.formula <- logicFS(formula = ovarian[, 9] ~ ovarian[, 1:8], 
data = ovarian)

# Prime implicants

prime.implicants(logreg.ovarian.formula)

### Example with formula

# Data

data(ovarian)

# Classification logic regression with formula

logreg.ovarian.formula <- logicFS(formula = ovarian[, 9] ~ ovarian[, 1:8], 
data = ovarian)

# Prime implicants

prime.implicants(logreg.ovarian.formula)
```
Arguments

\(x\) a matrix consisting of 0’s and 1’s. Each column must correspond to a binary variable and each row to an observation. Missing values are not allowed.

\(y\) a numeric vector or a factor specifying the values of a response for all the observations represented in \(x\), where missing values are not allowed in \(y\). If a numeric vector, then \(y\) either contains the class labels (coded by 0 and 1) or the values of a continuous response depending on whether the classification or logistic regression approach of logic regression, or the linear regression approach, respectively, should be used. If the response is categorical, then \(y\) must be a factor naming the class labels of the observations.

\(B\) an integer specifying the number of iterations.

\(useN\) logical specifying if the number of correctly classified out-of-bag observations should be used in the computation of the importance measure. If FALSE, the proportion of correctly classified oob observations is used instead.

\(ntrees\) an integer indicating how many trees should be used.

For a binary response: If \(ntrees\) is larger than 1, the logistic regression approach of logic regression will be used. If \(ntrees\) is 1, then by default the classification approach of logic regression will be used (see glm.if.1tree).

For a continuous response: A linear regression model with \(ntrees\) trees is fitted in each of the \(B\) iterations.

For a categorical response: \(n.lev - 1\) logic regression models with \(ntrees\) trees are fitted, where \(n.lev\) is the number of levels of the response (for details, see mlogreg).

\(nleaves\) a numeric value specifying the maximum number of leaves used in all trees combined. For details, see the help page of the function logreg of the package LogicReg.

\(glm.if.1tree\) if \(ntrees\) is 1 and glm.if.1tree is TRUE the logistic regression approach of logic regression is used instead of the classification approach. Ignored if \(ntrees\) is not 1, or the response is not binary.

\(replace\) should sampling of the cases be done with replacement? If TRUE, a Bootstrap sample of size \(\text{length(cl)}\) is drawn from the \(\text{length(cl)}\) observations in each of the \(B\) iterations. If FALSE, \(\text{ceiling(sub.frac} * \text{length(cl)}\)) of the observations are drawn without replacement in each iteration.

\(sub.frac\) a proportion specifying the fraction of the observations that are used in each iteration to build a classification rule if replace = FALSE. Ignored if replace = TRUE.

\(anneal.control\) a list containing the parameters for simulated annealing. See the help of the function logreg.anneal.control in the LogicReg package.

\(onlyRemove\) should in the single tree case the multiple tree measure be used? If TRUE, the prime implicants are only removed from the trees when determining the importance in the single tree case. If FALSE, the original single tree measure is computed for each prime implicant, i.e.\(a\) prime implicant is not only removed from the trees in which it is contained, but also added to the trees that do not contain this interaction. Ignored in all other than the classification case.

\(prob.case\) a numeric value between 0 and 1. If the outcome of the logistic regression, i.e.\(a\) the predicted probability, for an observation is larger than \(prob.case\) this observations will be classified as case (or 1).

\(addMatImp\) should the matrix containing the improvements due to the prime implicants in each of the iterations be added to the output? (For each of the prime implicants,
the importance is computed by the average over the B improvements.) Must be set to TRUE, if standardized importances should be computed using `vim.norm`, or if permutation based importances should be computed using `vim.signperm`.

fast
should a greedy search (as implemented in `logreg`) be used instead of simulated annealing?

rand
numeric value. If specified, the random number generator will be set into a reproducible state.

formula
an object of class `formula` describing the model that should be fitted.

data
a data frame containing the variables in the model. Each row of data must correspond to an observation, and each column to a binary variable (coded by 0 and 1) or a factor (for details, see `recdom`) except for the column comprising the response, where no missing values are allowed in data. The response must be either binary (coded by 0 and 1), categorical or continuous. If continuous, a linear model is fitted in each of the B iterations of `logicFS`. If categorical, the column of data specifying the response must be a factor. In this case, multinomial logic regressions are performed as implemented in `mlogreg`. Otherwise, depending on `ntrees` and `glm.if.1tree` the classification or the logistic regression approach of logic regression is used.

recdom
a logical value or vector of length `ncol(data)` comprising whether a SNP should be transformed into two binary dummy variables coding for a recessive and a dominant effect. If `recdom` is TRUE (and a logical value), then all factors/variables with three levels will be coded by two dummy variables as described in `make.snp.dummy`. Each level of each of the other factors (also factors specifying a SNP that shows only two genotypes) is coded by one indicator variable. If `recdom` is FALSE (and a logical value), each level of each factor is coded by an indicator variable. If `recdom` is a logical vector, all factors corresponding to an entry in `recdom` that is TRUE are assumed to be SNPs and transformed into two binary variables as described above. All variables corresponding to entries of `recdom` that are TRUE (no matter whether `recdom` is a vector or a value) must be coded either by the integers 1 (coding for the homozygous reference genotype), 2 (heterozygous), and 3 (homozygous variant), or alternatively by the number of minor alleles, i.e. 0, 1, and 2, where no mixing of the two coding schemes is allowed. Thus, it is not allowed that some SNPs are coded by 1, 2, and 3, and others are coded by 0, 1, and 2.

for the `formula` method, optional parameters to be passed to the low level function `logicFS.default`. Otherwise, ignored.

Value
An object of class `logicFS` containing

- **primes**: the prime implicants,
- **vim**: the importance of the prime implicants,
- **prop**: the proportion of logic regression models that contain the prime implicants,
- **type**: the type of model (1: classification, 2: linear regression, 3: logistic regression),
- **param**: further parameters (if `addInfo = TRUE`),
- **mat.imp**: the matrix containing the improvements if `addMatImp = TRUE`, otherwise, NULL,
- **measure**: the name of the used importance measure,
- **useN**: the value of `useN`,
- **threshold**: NULL,
- **mu**: NULL.
Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

`plot.logicFS, logic.bagging`

Examples

```r
## Not run:
# Load data.
data(data.logicfs)

# For logic regression and hence logic.fs, the variables must
# be binary. data.logicfs, however, contains categorical data
# with realizations 1, 2 and 3. Such data can be transformed
# into binary data by
bin.snps<-make.snp.dummy(data.logicfs)

# To speed up the search for the best logic regression models
# only a small number of iterations is used in simulated annealing.
my.anneal<-logreg.anneal.control(start=2,end=-2,iter=10000)

# Feature selection using logic regression is then done by
log.out<-logicFS(bin.snps,cl.logicfs,B=20,nleaves=10,
                 rand=123,anneal.control=my.anneal)

# The output of logic.fs can be printed
log.out

# One can specify another number of interactions that should be
# printed, here, e.g., 15.
print(log.out,topX=15)

# The variable importance can also be plotted.
plot(log.out)

# And the original variable names are displayed in
plot(log.out,coded=FALSE)

## End(Not run)
```
make.snp.dummy

Description

Transforms SNPs into binary dummy variables.

Usage

make.snp.dummy(data)

Arguments

- data: a matrix in which each column corresponds to a SNP and each row to an observation. The genotypes of all SNPs must be either coded by 1 (for the homozygous reference genotype), 2 (heterozygous), and 3 (homozygous variant) or by 0, 1, 2. It is not allowed that some SNPs following the 1, 2, 3 coding scheme and some SNPs the 0, 1, 2 coding. Missing values are allowed, but please note that neither logic.bagging nor logicFS can handle missing values so that the missing values need to be imputed (preferably before an application of make.snp.dummy).

Details

make.snp.dummy assumes that the homozygous dominant genotype is coded by 1, the heterozygous genotype by 2, and the homozygous recessive genotype by 3. Alternatively, the three genotypes can be coded by the number of minor alleles, i.e. by 0, 1, and 2. For each SNP, two dummy variables are generated:

- **SNP.1** At least one of the bases explaining the SNP are of the recessive type.
- **SNP.2** Both bases are of the recessive type.

Value

A matrix with 2*ncol(data) columns containing 2 dummy variables for each SNP.

Note

See the R package scrime for more general functions for recoding SNPs.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>
mlogreg

Multinomial Logic Regression

Description

Performs a multinomial logic regression for a nominal response by fitting a logic regression model (with logit as link function) for each of the levels of the response except for the level with the smallest value which is used as reference category.

Usage

S3 method for class 'formula'
mlogreg(formula, data, recdom = TRUE, ...)

Default S3 method:
mlogreg(x, y, ntrees = 1, nleaves = 8, anneal.control = logreg.anneal.control(), select = 1, rand = NA, ...)

Arguments

- **formula**: an object of class formula describing the model that should be fitted.
- **data**: a data frame containing the variables in the model. Each column of data must correspond to a binary variable (coded by 0 and 1) or a factor (for details on factors, see recdom) except for the column comprising the response, and each row to an observation. The response must be a categorical variable with less than 10 levels. This response can be either a factor or of type numeric or character.
- **recdom**: a logical value or vector of length ncol(data) comprising whether a SNP should be transformed into two binary dummy variables coding for a recessive and a dominant effect. If TRUE (logical value), then all factors (variables) with three levels will be coded by two dummy variables as described in make.snp.dummy. Each level of each of the other factors (also factors specifying a SNP that shows only two genotypes) is coded by one indicator variable. If FALSE (logical value), each level of each factor is coded by an indicator variable. If recdom is a logical vector, all levels of each factor corresponding to an entry in recdom that is TRUE are assumed to be SNPs and transformed into the two binary variables described above. Each variable that corresponds to an entry of recdom that is TRUE (no matter whether recdom is a vector or a value) must be coded by the integers 1 (coding for the homozygous reference genotype), 2 (heterozygous), and 3 (homozygous variant).
- **x**: a matrix consisting of 0’s and 1’s. Each column must correspond to a binary variable and each row to an observation.
- **y**: either a factor or a numeric or character vector specifying the values of the response. The length of y must be equal to the number of rows of x.
- **ntrees**: an integer indicating how many trees should be used in the logic regression models. For details, see logreg in the LogicReg package.
- **nleaves**: a numeric value specifying the maximum number of leaves used in all trees combined. See the help page of the function logreg in the LogicReg package for details.
anneal.control a list containing the parameters for simulated annealing. For details, see the help page of logreg.anneal.control in the LogicReg package.

select numeric value. Either 0 for a stepwise greedy selection (corresponds to select = 6 in logreg) or 1 for simulated annealing.

rand numeric value. If specified, the random number generator will be set into a reproducible state.

... for the formula method, optional parameters to be passed to the low level function mlogreg.default. Otherwise, ignored.

Value

An object of class mlogreg composed of

model a list containing the logic regression models,
data a matrix containing the binary predictors,
cl a vector comprising the class labels,
ntrees a numeric value naming the maximum number of trees used in the logic regressions,
nleaves a numeric value comprising the maximum number of leaves used in the logic regressions,
fast a logical value specifying whether the faster search algorithm, i.e. the greedy search, has been used.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

predict.mlogreg, logic.bagging, logicFS

Description

Generates a dotchart of the importance of the most important interactions for an object of class logicFS or logicBegg.
Usage

```r
## S3 method for class 'logicFS'
plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, show.prop = FALSE,
     force.topX = FALSE, coded = TRUE, add.thres = TRUE, thres = NULL,
     include0 = TRUE, add.v0 = TRUE, v0.col = "grey50", main = NULL, ...)
```

```r
## S3 method for class 'logicBagg'
plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, show.prop = FALSE,
     force.topX = FALSE, include0 = TRUE, add.v0 = TRUE,
     v0.col = "grey50", main = NULL, ...)
```

Arguments

- `x`: an object of either class `logicFS` or `logicBagg`.
- `topX`: integer specifying how many interactions should be shown. If `topX` is larger than the number of interactions contained in `x` all the interactions are shown. For further information, see `force.topX`.
- `cex`: a numeric value specifying the relative size of the text and symbols.
- `pch`: specifies the used symbol. See the help of `par` for details.
- `col`: the color of the text and the symbols. See the help of `par` for how colors can be specified.
- `show.prop`: if `TRUE` the proportions of models that contain the interactions of interest are shown. If `FALSE` (default) the importances of the interactions are shown.
- `force.topX`: if `TRUE` exactly `topX` interactions are shown. If `FALSE` (default) all interactions up to the `topX`th most important one and all interactions having the same importance as the `topX`th most important one are shown.
- `coded`: should the coded variable names be displayed? Might be useful if the actual variable names are pretty long. The coded variable name of the `j`-th variable is `Xj`.
- `add.thres`: should a vertical line marking the threshold for a prime implicant to be called important be drawn in the plot? If `TRUE`, this vertical line will be drawn at `NULL`.
- `thres`: non-negative numeric value specifying the threshold for a prime implicant to be called important. If `NULL` and `add.thres = TRUE`, the suggested threshold from `x` will be used.
- `include0`: should the x-axis include zero regardless whether the importances of the shown interactions are much higher than 0?
- `add.v0`: should a vertical line be drawn at `x = 0`? Ignored if `include0 = FALSE` and all importances are larger than zero.
- `v0.col`: the color of the vertical line at `x = 0`. See the help page of `par` for how colors can be specified.
- `main`: character string naming the title of the plot. If `NULL`, the name of the importance measure is used.
- `...`: Ignored.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>
predict.logicBagg

Predict Method for logicBagg objects

Description
Prediction for test data using an object of class logicBagg.

Usage
```r
## S3 method for class 'logicBagg'
predict(object, newData, prob.case = 0.5,
        type = c("class", "prob"), ...)
```

Arguments
- **object**: an object of class logicBagg.
- **newData**: a matrix or data frame containing new data. If omitted `object$data`, i.e. the original training data, are used. Each row of `newData` must correspond to a new observation. Each row of `newData` must contain the same variable as the corresponding column of the data matrix used in logic.bagging, i.e. `x` if the default method of logic.bagging has been used, or `data` without the column containing the response if the formula method has been used.
- **prob.case**: a numeric value between 0 and 1. A new observation will be classified as case (or more exactly, as 1) if the class probability, i.e. the average of the predicted probabilities of the models (if the logistic regression approach of logic regression has been used), or the percentage of votes for class 1 (if the classification approach of logic regression has been used) is larger than `prob.case`. Ignored if `type = "prob"` or the response is quantitative.
- **type**: character vector indicating the type of output. If "class", a numeric vector of zeros and ones containing the predicted classes of the observations (using the specification of `prob.case`) will be returned. If "prob", the class probabilities or percentages of votes for class 1, respectively, for all observations are returned. Ignored if the response is quantitative.
- **...**: Ignored.

Value
A numeric vector containing the predicted classes (if `type = "class"`) or the class probabilities (if `type = "prob"`) of the new observations if the classification or the logistic regression approach of logic regression is used. If the response is quantitative, the predicted value of the response for all observations in the test data set is returned.

Author(s)
Holger Schwender, <holger.schwender@udo.edu>

See Also
- logicFS, logic.bagging
predict.mlogreg

Predict Method for mlogreg Objects

Description
Prediction for test data using an object of class `mlogreg`.

Usage
```r
## S3 method for class 'mlogreg'
predict(object, newData, type = c("class", "prob"), ...)
```

Arguments
- `object`: an object of class `mlogreg`, i.e., the output of the function `mlogreg`.
- `newData`: a matrix or data frame containing new data. If omitted `object$data`, i.e., the original training data, are used. Each row of `newData` must correspond to a new observation. Each row of `newData` must contain the same variable as the corresponding column of the data matrix used in `mlogreg`, i.e., `x` if the default method of `mlogreg` has been used, or `data` without the column containing the response if the `formula` method has been used.
- `type`: character vector indicating the type of output. If "class", a vector containing the predicted classes of the observations will be returned. If "prob", the class probabilities for each level and all observations are returned.
- `...`: Ignored.

Value
A numeric vector containing the predicted classes (if `type = "class"`), or a matrix composed of the class probabilities (if `type = "prob"`).

Author(s)
Holger Schwender, <holger.schwender@udo.edu>

See Also
- `mlogreg`

print.logicFS

Print a logicFS object

Description
Prints an object of class `logicFS`.

Usage
```r
## S3 method for class 'logicFS'
print(x, topX = 5, show.prop = TRUE, coded = FALSE, digits = 2, ...)
```
vim.approxPval

Arguments

- **x**: an object of either class `logicFS`.
- **topX**: integer indicating how many interactions should be shown. Additionally to the topX most important interactions, any interaction having the same importance as the topX most important one are also shown.
- **show.prop**: should the proportions of models containing the interactions of interest also be shown?
- **coded**: should the coded variable names be displayed? Might be useful if the actual variable names are pretty long. The coded variable name of the j-th variable is X_j.
- **digits**: number of digits used in the output.
- **...**: Ignored.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

See Also

`logicFS`, `vim.logicFS`

vim.approxPval

Approximate P-Value Based Importance Measure

Description

Computes the importances based on an approximation to a t- or F-distribution.

Usage

```r
vim.approxPval(object, version = 1, adjust = "bonferroni")
```

Arguments

- **object**: an object of class `logicFS` which contains the values of standardized importances. Only in the linear regression case, the importances in `object` are allowed to be non-standardized.
- **version**: either 1 or 2. If 1, then the importance measure is computed by $1 - \text{padj}$, where padj is the adjusted p-value. If 2, the importance measure is determined by $-\log_{10}(\text{padj})$, where a raw p-value equal to 0 is set to $1 / (10 \times n_perm)$ to avoid infinitive importances.
- **adjust**: character vector naming the method with which the raw permutation based p-values are adjusted for multiplicity. If "qvalue", the function `qvalue.cal` from the package `siggenes` is used to compute q-values. Otherwise, `p.adjust` is used to adjust for multiple comparisons. See `p.adjust` for all other possible specifications of `adjust`. If "none", the raw p-values will be used.
Value

An object of class logicFS containing the same object as object except for

- `vim`: the values of the importance measure based on an approximation to the t- or F-distribution,
- `measure`: the name of the used importance measure,
- `threshold`: 0.95 if `version = 1`, and -log10(0.05) if `version = 2`.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

logic.bagging, logicFS, vim.input, vim.set, vim.permSet

vim.chisq

ChiSquare Based Importance

Description

Determining the importance of interactions found by logic.bagging or logicFS by Pearson’s ChiSquare Statistic. Only available for the classification and the logistic regression approach of logic regression.

Usage

`vim.chisq(object, data = NULL, cl = NULL)`

Arguments

- `object`: either an object of class logicFS or the output of an application of logic.bagging with importance = TRUE.
- `data`: a data frame or matrix consisting of 0’s and 1’s in which each column corresponds to one of the explanatory variables used in the original analysis with logic.bagging or logicFS, and each row corresponds to an observation. Must be specified if `object` is an object of class logicFS, or `cl` is specified. If `object` is an object of class logicBagg and neither `data` nor `cl` is specified, `data` and `cl` stored in `object` is used to compute the ChiSquare statistics. It is, however, highly recommended to use new data to test the interactions contained in `object`, as they have been found using the data stored in `object`, and it is very likely that most of them will show up as interesting if they are tested on the same data set.
- `cl`: a numeric vector of 0’s and 1’s specifying the class labels of the observations in `data`. Must be specified either if `object` is an object of class logicFS, or if `data` is specified.
Details

Currently Pearson’s ChiSquare statistic is computed without continuity correction. Contrary to vim.logicFS (and vim.norm and vim.signperm), vim.chisq does neither take the logic regression models into account nor uses the out-of-bag observations for computing the importances of the identified interactions. It “just” tests each of the found interactions on the whole data set by calculating Pearson’s ChiSquare statistic for each of these interactions. It is, therefore, highly recommended to use an independent data set for specifying the importances of these interactions with vim.chisq.

Value

An object of class logicFS containing

primes	the prime implicants
vim	the values of Pearson’s ChiSquare statistic,
prop	NULL,
type	NULL,
param	further parameters (if object is the output of logicFS or vim.logicFS with addInfo = TRUE),
mat.imp	NULL,
measure	“ChiSquare Based”,
threshold	the 1 - 0.05/m quantile of the ChiSquare distribution with one degree of freedom,
mu	NULL.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

See Also

logic.bagging, logicFS, vim.logicFS, vim.norm, vim.ebam

Description

Determines the importance of interactions found by logic.bagging or logicFS by an Empirical Bayes Analysis of Microarrays (EBAM). Only available for the classification and the logistic regression approach of logic regression.

Usage

vim.ebam(object, data = NULL, cl = NULL, storeEBAM = FALSE, ...)

vim.ebam

EBAM Based Importance

Usage

vim.ebam(object, data = NULL, cl = NULL, storeEBAM = FALSE, ...)
Arguments

object either an object of class logicFS or the output of an application of logic.bagging with importance = TRUE.

data a data frame or matrix consisting of 0’s and 1’s in which each column corresponds to one of the explanatory variables used in the original analysis with logic.bagging or logicFS, and each row corresponds to an observation. Must be specified if object is an object of class logicFS, or cl is specified. If object is an object of class logicBagg and neither data nor cl is specified, data and cl stored in object is used to compute the ChiSquare statistics. It is, however, highly recommended to use new data to test the interactions contained in object, as they have been found using the data stored in object, and it is very likely that most of them will show up as interesting if they are tested on the same data set.

cl a numeric vector of 0’s and 1’s specifying the class labels of the observations in data. Must be specified either if object is an object of class logicFS, or if data is specified.

storeEBAM logical specifying whether the output of the EBAM analysis should be stored in the output of vim.ebam.

... further arguments of ebam and cat.ebam. For details, see the help files of these functions from the package siggenes.

Details

For each interaction found by logic.bagging or logicFS, the posterior probability that this interaction is significant is computed using the Empirical Bayes Analysis of Microarrays (EBAM). These posterior probabilities are used as the EBAM based importances of the interactions.

The test statistic underlying this EBAM analysis is Pearson’s ChiSquare statistic. Currently, the value of this statistic is computed without continuity correction.

Contrary to vim.logicFS (and vim.norm and vim.signperm), vim.ebam does neither take the logic regression models into account nor uses the out-of-bag observations for computing the importances of the identified interactions. It “just” tests each of the found interactions on the whole data set by calculating Pearson’s ChiSquare statistic for each of these interactions and performing an EBAM analysis. It is, therefore, highly recommended to use an independent data set for specifying the importances of these interactions with vim.ebam.

Value

An object of class logicFS containing

primes the prime implicants,

vim the posterior probabilities of the interactions,

prop NULL,

type NULL,

param further parameters (if object is the output of logicFS or vim.logicFS with addInfo = TRUE),

mat.imp NULL,

measure "EBAM Based",

threshold the value of delta used in the EBAM analysis (see help files for ebam); by default: 0.9,
vim.input

mu NULL,

ebam an object of class EBAM (only available if storeEBAM = TRUE).

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

logic.bagging, logicFS, vim.logicFS, vim.norm, vim.chisq

vim.input *VIM for Inputs*

Description

Quantifies the importance of each input variable occurring in at least one of the logic regression models found in the application of logic.bagging.

Usage

```r
vim.input(object, useN = NULL, iter = NULL, prop = TRUE, standardize = NULL, mu = 0, addMatImp = FALSE, prob.case = 0.5, rand = NA)
```

Arguments

- **object**: an object of class logicBagg, i.e. the output of logic.bagging
- **useN**: logical specifying if the number of correctly classified out-of-bag observations should be used in the computation of the importance measure. If FALSE, the proportion of correctly classified oob observations is used instead. If NULL (default), then the specification of useN in object is used.
- **iter**: integer specifying the number of times the values of the considered variable are permuted in the computation of its importance. If NULL (default), the values of the variable are not permuted, but the variable is removed from the model.
- **prop**: should the proportion of logic regression models containing the respective variable also be computed?
- **standardize**: should a standardized version of the importance measure for a set of variables be returned? By default, standardize = TRUE is used in the classification and the (multinomial) logistic regression case, and standardize is set to FALSE in the linear regression case. For details, see mu.
- **mu**: a non-negative numeric value. Ignored if standardize = FALSE. Otherwise, a t-statistic for testing the null hypothesis that the importance of the respective variable is equal to mu is computed.
addMatImp should the matrix containing the improvements due to each of the variables in each of the logic regression models be added to the output?

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic regression has been used in logic.bagging, then an observation will be classified as a case (or more exactly, as 1), if the class probability of this observation is larger than prob.case. Otherwise, prob.case is ignored.

rand an integer for setting the random number generator in a reproducible case.

Value

An object of class logicFS containing

vim the importances of the variables,
prop the proportion of logic regression models containing the respective variable (if prop = TRUE) or NULL (if prop = FALSE),
primes the names of the variables,
type the type of model (1: classification, 2: linear regression, 3: logistic regression),
param further parameters (if addInfo = TRUE in the previous call of logic.bagging),
mat.imp either a matrix containing the improvements due to the variables for each of the models (if addMatImp = TRUE), or NULL (if addMatImp = FALSE),
measure the name of the used importance measure,
useN the value of useN,
threshold NULL if standardize = FALSE, otherwise the 1 − 0.05/m quantile of the t-distribution with B − 1 degrees of freedom, where m is the number of variables and B is the number of logic regression models composing object,
mu mu (if standardize = TRUE), or NULL (otherwise),
iter iter.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

logic.bagging, logicFS, vim.logicFS, vim.set, vim.ebam, vim.chisq
vim.logicFS

Importance Measures

Description

Computes the value of the single or the multiple tree measure, respectively, for each prime implicant contained in a logic bagging model to specify the importance of the prime implicant for classification, if the response is binary. If the response is quantitative, the importance is specified by a measure based on the log2-transformed mean square prediction error.

Usage

vim.logicFS(log.out, useN = TRUE, onlyRemove = FALSE, prob.case = 0.5, addInfo = FALSE, addMatImp = TRUE)

Arguments

log.out: an object of class logicBagg, i.e. the output of logic.bagging.
useN: logical specifying if the number of correctly classified out-of-bag observations should be used in the computation of the importance measure. If FALSE, the proportion of correctly classified oob observations is used instead.
onlyRemove: should in the single tree case the multiple tree measure be used? If TRUE, the prime implicants are only removed from the trees when determining the importance in the single tree case. If FALSE, the original single tree measure is computed for each prime implicant, i.e. a prime implicant is not only removed from the trees in which it is contained, but also added to the trees that do not contain this interaction. Ignored in all other than the classification case.
prob.case: a numeric value between 0 and 1. If the logistic regression approach of logic regression is used (i.e. if the response is binary, and in logic.bagging ntree is set to a value larger than 1, or glm.if.1tree is set to TRUE), then an observation will be classified as a case (or more exactly as 1), if the class probability of this observation estimated by the logic bagging model is larger than prob.case.
addInfo: should further information on the logic regression models be added?
addMatImp: should the matrix containing the improvements due to the prime implicants in each of the iterations be added to the output? (For each of the prime implicants, the importance is computed by the average over the B improvements.) Must be set to TRUE, if standardized importances should be computed using vim.norm, or if permutation based importances should be computed using vim.signperm.

Value

An object of class logicFS containing

primes: the prime implicants,

vim: the importance of the prime implicants,

prop: the proportion of logic regression models containing the prime implicants,

type: the type of model (1: classification, 2: linear regression, 3: logistic regression),

param: further parameters (if addInfo = TRUE),
vim.norm

mat.imp the matrix containing the improvements if addMatImp = TRUE, otherwise, NULL,
measure the name of the used importance measure,
useN the value of useN,
threshold NULL,
mu NULL.

Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

`logic.bagging`, `logicFS`, `vim.norm`, `vim.signperm`

vim.norm

Standardized and Sign-Permutation Based Importance Measure

Description

Computes a standarized or a sign-permutation based version of either the Single Tree Measure, the Quantitative Response Measure, or the Multiple Tree Measure.

Usage

```r
vim.norm(object, mu = 0)
```

```r
vim.signperm(object, mu = 0, n.perm = 10000, n.subset = 1000,
version = 1, adjust = "bonferroni", rand = NA)
```

Arguments

- **object** either the output of `logicFS` or `vim.logicFS` with addMatImp = TRUE, or the output of `logic.bagging` with importance = TRUE and addMatImp = TRUE.
- **mu** a non-negative numeric value against which the importances are tested. See Details.
- **n.perm** the number of sign permutations used in `vim.signperm`.
- **n.subset** an integer specifying how many permutations should be considered at once.
- **version** either 1 or 2. If 1, then the importance measure is computed by 1 - padj, where padj is the adjusted p-value. If 2, the importance measure is determined by -log10(padj), where a raw p-value equal to 0 is set to 1 / (10 * n.perm) to avoid infinitive importances.
adjust character vector naming the method with which the raw permutation based p-values are adjusted for multiplicity. If "qvalue", the function qvalue.cal from the package siggens is used to compute q-values. Otherwise, p.adjust is used to adjust for multiple comparisons. See p.adjust for all other possible specifications of adjust. If "none", the raw p-values will be used. For more details, see Details.

rand an integer for setting the random number generator in a reproducible case.

Details

In both \textit{vim.norm} and \textit{vim.signperm}, a paired t-statistic is computed for each prime implicant, where the numerator is given by $VIM - \mu$ with VIM being the single or the multiple tree importance, and the denominator is the corresponding standard error computed by employing the B improvements of the considered prime implicant in the B logic regression models, where VIM is the mean over these B improvements.

Note that in the case of a quantitative response, such a standardization is not necessary. Thus, \textit{vim.norm} returns a warning when the response is quantitative, and \textit{vim.signperm} does not divide $VIM - \mu$ by its sample standard error.

Using $\mu = 0$ might lead to calling a prime implicant important, even though it actually shows only improvements of 1 or 0. When considering the prime implicants, it might be therefore be helpful to set μ to a value slightly larger than zero.

In \textit{vim.norm}, the value of this t-statistic is returned as the standardized importance of a prime implicant. The larger this value, the more important is the prime implicant. (This applies to all importance measures – at least for those contained in this package.) Assuming normality, a possible threshold for a prime implicant to be considered as important is the $1 - 0.05/m$ quantile of the t-distribution with $B - 1$ degrees of freedom, where m is the number of prime implicants.

In \textit{vim.signperm}, the sign permutation is used to determine n_{perm} permuted values of the one-sample t-statistic, and to compute the raw p-values for each of the prime implicants. Afterwards, these p-values are adjusted for multiple comparisons using the method specified by adjust. The permutation based importance of a prime implicant is then given by $1 -$ these adjusted p-values. Here, a possible threshold for calling a prime implicant important is 0.95.

Value

An object of class \texttt{logicFS} containing

\begin{itemize}
 \item \texttt{primes} the prime implicants,
 \item \texttt{vim} the respective importance of the prime implicants,
 \item \texttt{prop} \texttt{NULL},
 \item \texttt{type} the type of model (1: classification, 2: linear regression, 3: logistic regression),
 \item \texttt{param} further parameters (if \texttt{addInfo = TRUE}),
 \item \texttt{mat.imp} \texttt{NULL},
 \item \texttt{measure} the name of the used importance measure,
 \item \texttt{useN} the value of \texttt{useN} from the original analysis with, e.g., \texttt{logicFS},
 \item \texttt{threshold} the threshold suggested in Details,
 \item \texttt{mu} μ.
\end{itemize}

Author(s)

Holger Schwender, <holger.schwender@udo.edu>
References

See Also
logic.bagging, logicFS, vim.logicFS, vim.chisq, vim.ebam

vim.permSNP

Permutation Based Importance Measures

Description
Computes the importances of input variables, SNPs, or sets of SNPs, respectively, based on permutations of the response. Currently only available for the classification and the logistic regression approach of logic regression.

Usage

```r
vim.permInput(object, n.perm = NULL, standardize = TRUE, rebuild = FALSE, prob.case = 0.5, useAll = FALSE, version = 1, adjust = "bonferroni", addMatPerm = FALSE, rand = NA)

vim.permSNP(object, n.perm = NULL, standardize = TRUE, rebuild = FALSE, prob.case = 0.5, useAll = FALSE, version = 1, adjust = "bonferroni", addMatPerm = FALSE, rand = NA)

vim.permSet(object, set = NULL, n.perm = NULL, standardize = TRUE, rebuild = FALSE, prob.case = 0.5, useAll = FALSE, version = 1, adjust = "bonferroni", addMatPerm = FALSE, rand = NA)
```

Arguments

- **object**
 - an object of class `logicBagg`, i.e., the output of `logic.bagging`.

- **set**
 - either a list or a character or numeric vector.
 - If NULL (default), then it will be assumed that data, i.e., the data set used in the application of `logic.bagging`, has been generated using `make.snp.dummy` or similar functions for coding variables by binary variables, i.e., with a function that splits a variable, say SNPx, into the dummy variables SNPx.1, SNPx.2, ... (where the "." can also be any other sign, e.g., an underscore).
 - If a character or a numeric vector, then the length of `set` must be equal to the number of variables used in `object`, i.e., the number of columns of data in the `logicBagg` object, and must specify the set to which a variable belongs either by an integer between 1 and the number of sets, or by a set name. If a variable should not be included in any of the sets, set the corresponding entry of `set` to `NA`. Using this specification of `set` it is not possible to assign a variable to more than one sets. For such a case, set `set` to a list (as follows).
 - If `set` is a list, then each object in this list represents a set of variables. Therefore, each object must be either a character or a numeric vector specifying either the names of the variables that belongs to the respective set or the columns of
data that contains these variables. If names(set) is NULL, generic names will be employed as names for the sets. Otherwise, names(set) are used.

n.perm number of permutations used in the computation of the importances. By default (i.e., if n.perm = NULL), 100 permutations are used if rebuild = TRUE and the regression approach of logic regression has been used in logic.bagging (by setting ntrees to an integer larger than 1, or glm.if.1tree = TRUE). Otherwise, 1000 permutation are employed. Note that actually much more permutations should be used.

standardize should the standardized importance measure be used?

rebuild logical indicating whether the logic regression models should be rebuild (i.e., the parameters β of the generalized linear models should be recomputed) after removing a variable or a set of variables from the logic trees and for each permutation of the response. Note that setting rebuild = TRUE increases the computation time substantially.

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic regression has been used in logic.bagging, then an observation will be classified as a case (or more exactly, as 1), if the class probability of this observation is larger than prob.case. Otherwise, prob.case is ignored.

useAll logical indicating whether all $m \times n.perm$ permuted values should be used in the computation of the permutation based p-values, where m is the number of variables or sets of variables, respectively. If FALSE, the $n.perm$ permuted values corresponding to the respective variable (or set of variables) are employed in the determination of the p-value of this variable (or set of variables).

version either 1 or 2. If 1, then the importance measure is computed by $1 - padj$, where padj is the adjusted p-value. If 2, the importance measure is determined by $-\log_{10}(padj)$, where a raw p-value equal to 0 is set to $1 / (10 \times n.perm)$ to avoid infinitive importances.

adjust character vector naming the method with which the raw permutation based p-values are adjusted for multiplicity. If "qvalue", the function qvalue.cal from the package siggenes is used to compute q-values. Otherwise, p.adjust is used to adjust for multiple comparisons. See p.adjust for all other possible specifications of adjust. If "none", the raw p-values will be used.

addMatPerm should the $(n.perm + 1) \times m$ matrix containing the original values (first column) and the permuted values (the remaining columns) of the importance measure for the m variables or m sets of variables be added to the output?

rand an integer for setting the random number generator in a reproducible state.

Value

An object of class logicFS containing

- `vim` the values of the importance measure for the input variables, the SNPs, or the sets of SNPs, respectively,
- `prop` NULL,
- `primes` the names of the inputs, SNPs, or sets of variables, respectively,
- `type` the type of model (1: classification, 3: logistic regression),
- `param` NULL,
- `mat.imp` NULL,
- `measure` the name of the used importance measure,
threshold 0.95, i.e. the suggested threshold for calling an input, SNP or set of SNPs, respectively, important (this is just used as default value when plotting the importances, see argument thres of plot.logicFS).
mu NULL,
useN TRUE,
name either "Variable", "SNP", or "Set",
mat.perm if addMatPerm = FALSE, NULL; otherwise, a matrix containing the original and the permuted values of the respective importance measure.

Author(s)
Holger Schwender, <holger.schwender@udo.edu>

References

See Also
logic.bagging, vim.input, vim.set, vim.signperm

vim.set

VIM for SNPs and Sets of Variables

Description
Quantifies the importances of SNPs or sets of variables, respectively, contained in a logic bagging model.

Usage
```
vim.snp(object, useN = NULL, iter = NULL, standardize = NULL,
       mu = 0, addMatImp = FALSE, prob.case = 0.5, rand = NA)
```
```
vim.set(object, set = NULL, useN = NULL, iter = NULL, standardize = NULL,
        mu = 0, addMatImp = FALSE, prob.case = 0.5, rand = NA)
```

Arguments
- **object**: an object of class `logicBagg`, i.e. the output of `logic.bagging`.
- **set**: either a list or a character or numeric vector.

If NULL (default), then it will be assumed that data, i.e. the data set used in the application of `logic.bagging`, has been generated using `make.snp.dummy` or similar functions for coding variables by binary variables, i.e. with a function that splits a variable, say SNPx, into the dummy variables SNPx.1, SNPx.2, ... (where the "." can also be any other sign, e.g., an underscore).

If a character or a numeric vector, then the length of set must be equal to the number of variables used in object, i.e. the number of columns of data in the `logicBagg` object, and must specify the set to which a variable belongs either...
by an integer between 1 and the number of sets, or by a set name. If a variable
should not be included in any of the sets, set the corresponding entry of set to
NA. Using this specification of set it is not possible to assign a variable to more
than one sets. For such a case, set set to a list (as follows).

If set is a list, then each object in this list represents a set of variables. Therefore,
each object must be either a character or a numeric vector specifying either
the names of the variables that belongs to the respective set or the columns of
data that contains these variables. If names(set) is NULL, generic names will
be employed as names for the sets. Otherwise, names(set) are used.

useN logical specifying if the number of correctly classified out-of-bag observations
should be used in the computation of the importance measure. If FALSE, the pro-
portion of correctly classified oob observations is used instead. If NULL (default),
then the specification of useN in object is used.

iter integer specifying the number of times the values of the variables in the respec-
tive set are permuted in the computation of the importance of this set. If NULL
(default), the values of the variables are not permuted, but all variables belong-
ing to the set are removed from the model

standardize should a standardized version of the importance measure for a set of variables
be returned? By default, standardize = TRUE is used in the classification and the
(multinomial) logistic regression case, and standarize is set to FALSE in
the linear regression case. For details, see mu.

mu a non-negative numeric value. Ignored if standardize = FALSE. Otherwise, a
t-statistic for testing the null hypothesis that the importance of the respective set
is equal to mu is computed.

addMatImp should the matrix containing the improvements due to each of the sets in each
of the logic regression models be added to the output?

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic
regression has been used in logic.bagging, then an observation will be classi-
fied as a case (or more exactly, as 1), if the class probability of this observation
is larger than prob.case. Otherwise, prob.case is ignored.

rand an integer for setting the random number generator in a reproducible state.

Value

An object of class logicFS containing

vim the importances of the sets of variables,
prop NULL,
primes the names of the sets of variables,
type the type of model (1: classification, 2: linear regression, 3: logistic regression),
param further parameters (if addInfo = TRUE in the previous call of logic.bagging),
or NULL (otherwise),
mat.imp either a matrix containing the improvements due to the sets of variables for each
of the models (if addMatImp = TRUE), or NULL (if addMatImp = FALSE),
measure the name of the used importance measure,
threshold NULL if standardize = FALSE, otherwise the $1 - 0.05/m$ quantile of the t-
distribution with $B - 1$ degrees of freedom, where m is the number of sets and
B is the number of logic regression models composing object,
mu mu (if standardize = TRUE), or NULL (otherwise),
iter iter.
Author(s)

Holger Schwender, <holger.schwender@udo.edu>

References

See Also

`logic.bagging, logicFS, vim.logicFS, vim.input, vim.ebam, vim.chisq`
Index

*Topic datasets
data.logicfs, 2

*Topic hplot
plot.logicFS, 13

*Topic htest
logic.oob, 6
glm.approxPval, 17
glm.chisq, 18
glm.input, 21
glm.logicFS, 23
glm.norm, 24
glm.permSNP, 26
glm.set, 28

*Topic logic
logic.pimp, 7
glm.approxPval, 17
glm.chisq, 18
glm.ebam, 19
glm.input, 21
glm.logicFS, 23
glm.norm, 24
glm.permSNP, 26
glm.set, 28

*Topic manip
make.snp.dummy, 11

*Topic multivariate
glmFS, 7

*Topic print
glm.logicFS, 16

*Topic regression
glm.bagging, 3
glmFS, 7
mlogreg, 12
predict.glmBagg, 15
predict.mlogreg, 16

*Topic tree
glm.bagging, 3
glmFS, 7
mlogreg, 12

*Topic utilities
glm.approxPval, 2
glm.oob, 6

logic.pimp, 7
c1.logicfs (data.logicfs), 2
data.logicfs, 2
glm.approxPval, 2
glm.bagging, 2, 3, 6, 7, 10, 11, 13, 15, 18, 19, 21, 22, 24, 26–28, 30
glm.oob, 6
glm.pimp, 7
glmFS, 2, 5, 7, 7, 11, 13, 15, 17–19, 21, 22, 24–26, 30
make.snp.dummy, 4, 9, 11, 12, 26, 28
mlogreg, 3, 4, 8, 9, 12, 16

plot.glmBagg, 5
plot.glmBagg (plot.glmFS), 13
plot.glmFS, 10, 13, 28
predict.glmBagg, 5, 15
predict.mlogreg, 13, 16
prime.implicants, 7
print.glmBagg (glm.bagging), 3
print.glmFS, 16
print.mlogreg (mlogreg), 12

glm.approxPval, 17
glm.chisq, 18, 21, 22, 26, 30
glm.ebam, 19, 19, 22, 26, 30
glm.individual (glm.input), 21
glm.input, 18, 21, 28, 30
glm.logicFS, 17, 19–22, 23, 24, 26, 30
glm.norm, 4, 9, 19–21, 23, 24, 24
glm.permInput (glm.permSNP), 26
glm.permSet, 18
glm.permSet (glm.permSNP), 26
glm.permSNP, 26
glm.set, 18, 22, 28, 28
glm.signperm, 4, 9, 19, 20, 23, 24, 28
glm.signperm (glm.norm), 24
glm.snp (glm.set), 28