Package ‘mBPCR’

November 21, 2016

Version 1.28.0
Date 2012-21-07
Title Bayesian Piecewise Constant Regression for DNA copy number estimation
Author P.M.V. Rancoita <rancoita.paola@gmail.com>, with contributions from M. Hutter <marcus.hutter@anu.edu.au>
Maintainer P.M.V. Rancoita <rancoita.paola@gmail.com>
Description Estimates the DNA copy number profile using mBPCR to detect regions with copy number changes
Depends oligoClasses, SNPchip
Imports Biobase
Suggests xtable
License GPL (>= 2)
URL http://www.idsia.ch/~paola/mBPCR
LazyData yes
biocViews aCGH, SNP, Microarray, CopyNumberVariation
NeedsCompilation no

R topics documented:

computeMBPCR .. 2
estGlobParam ... 3
estProfileWithMBPCR 4
estProfileWithMBPCRforOligoSnpSet 6
importCNData ... 8
jekoChr11Array250Knsp 9
logAdd .. 10
plotEstProfile ... 10
rec10k .. 11
writeEstProfile ... 12

Index 14
computeMBPCR

Estimate the copy number profile

Description

Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a smoothing curve using either the Bayesian Regression Curve with \(K_2 \) (BRC with \(K_2 \)) or the Bayesian Regression Curve Averaging over \(k \) (BRCAk). It is also possible to choose the estimator of the variance of the levels \(\rho \text{Square} \) (i.e. either \(\hat{\rho}^2 \) or \(\hat{\rho}^2 \)) and by default \(\hat{\rho}^2 \) is used.

Usage

```r
computeMBPCR(y, kMax=50, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL)
```

Arguments

- `y`: array containing the log2ratio of the copy number data
- `kMax`: maximum number of segments
- `nu`: mean of the segment levels. If `nu=NULL`, then the algorithm estimates it on the sample.
- `rhoSquare`: variance of the segment levels. If `rhoSquare=NULL`, then the algorithm estimates it on the sample.
- `sigmaSquare`: variance of the noise. If `sigmaSquare=NULL`, then the algorithm estimates it on the sample.
- `typeEstRho`: choice of the estimator of \(\rho \text{Square} \). If `typeEstRho=1`, then the algorithm estimates \(\rho \text{Square} \) with \(\hat{\rho}^2 \), while if `typeEstRho=0`, it estimates \(\rho \text{Square} \) with \(\hat{\rho}^2 \).
- `regr`: choice of the computation of the regression curve. If `regr=NULL`, then the regression curve is not computed, if `regr="BRC"` the Bayesian Regression Curve with \(K_2 \) is computed (BRC with \(K_2 \)), if `regr="BRCAk"` the Bayesian Regression Curve Averaging over \(k \) is computed (BRCAk).

Details

By default, the function estimates the copy number profile with mBPCR and estimating \(\rho \text{Square} \) on the sample, using \(\hat{\rho}^2 \). It is also possible to use \(\hat{\rho}^2 \) as estimator of \(\rho \text{Square} \), by setting `typeEstRho=0`, or to directly set the value of the parameter.

The function gives also the possibility to estimate the profile with a Bayesian regression curve: if `regr="BRC"` the Bayesian Regression Curve with \(K_2 \) is computed (BRC with \(K_2 \)), if `regr="BRCAk"` the Bayesian Regression Curve Averaging over \(k \) is computed (BRCAk).

Value

A list containing:
- `estK`: the estimated number of segments
- `estBoundaries`: the estimated boundaries
- `estPC`: the estimated profile with mBPCR
estGlobParam

regrCurve the estimated bayesian regression curve. It is returned only if regr!=NULL.
nu
rhoSquare
sigmaSquare
postProbT for each probe, the posterior probability to be a breakpoint

References

See Also

estProfileWithMBPCR, plotEstProfile, writeEstProfile, estGlobParam

Examples

##import the 250K NSP data of chromosome 11 of cell line JEKO-1
data(jekoChr11Array250Knsp)

##first example
we select a part of chromosome 11
y <- jekoChr11Array250Knsp$log2ratio[6400:6900]
p <- jekoChr11Array250Knsp$PhysicalPosition[6400:6900]
##we estimate the profile using the global parameters estimated on the whole genome
##the profile is estimated with mBPCR and with the Bayesian Regression Curve
results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRC")
plot(p, y)
points(p, results$estPC, type='l', col='red')
points(p, results$regrCurve, type='l', col='green')

###second example
we select a part of chromosome 11
#y <- jekoChr11Array250Knsp$log2ratio[10600:11600]
#p <- jekoChr11Array250Knsp$PhysicalPosition[10600:11600]
###we estimate the profile using the global parameters estimated on the whole genome
###the profile is estimated with mBPCR and with the Bayesian Regression Curve Ak
#results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRCAk")
#plot(p,y)
#points(p, results$estPC, type='l', col='red')
#points(p, results$regrCurve, type='l', col='green')

estGlobParam

Estimate global parameters of copy number data

Description

Function to estimate the global parameters of copy number data: the mean and the variance of the segment levels (called nu and rhoSquare, respectively), the variance of the noise (sigmaSquare). It is possible to choose the estimator of rhoSquare (i.e. either \(\hat{\rho}^2 \) or \(\hat{\rho}^2 \)) and by default \(\hat{\rho}^2 \) is used.
Usage

\texttt{estGlobParam(y, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1)}

Arguments

- **y**: array containing the log2ratio of the copy number data
- **nu**: mean of the segment levels. If \(\text{nu=NULL}\), then the algorithm estimates it on the sample.
- **rhoSquare**: variance of the segment levels. If \(\text{rhoSquare=NULL}\), then the algorithm estimates it on the sample.
- **sigmaSquare**: variance of the noise. If \(\text{sigmaSquare=NULL}\), then the algorithm estimates it on the sample.
- **typeEstRho**: choice of the estimator of \(\text{rhoSquare}\). If \(\text{typeEstRho=1}\), then the algorithm estimates \(\text{rhoSquare}\) with \(\hat{\rho}^2\), while if \(\text{typeEstRho=0}\), it estimates \(\text{rhoSquare}\) with \(\hat{\rho}^2\).

Value

A list containing:

- **nu**
- **rhoSquare**
- **sigmaSquare**

References

Examples

```r
# import the 10K data of cell line REC
data(rec10k)
# estimation of all the global parameters (the variance of the segment is estimated with \(\hat{\rho}^2\_1\))
estGlobParam(rec10k$log2ratio)
```

estProfileWithMBPCR

\textit{Estimate and print the copy number profile of some chromosomes of a sample}

Description

Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a smoothing curve, using either the Bayesian Regression Curve with \(K_2\) (BRC with \(K_2\)) or the Bayesian Regression Curve Averaging over \(k\) (BRCA\(k\)). It is also possible to choose the estimator of the variance of the levels \(\text{rhoSquare}\) (i.e. either \(\hat{\rho}^2_1\) or \(\hat{\rho}^2\)) and by default \(\hat{\rho}^2_1\) is used.
Usage

estProfileWithMBPCR(snpName, chr, position, logratio, chrToBeAnalyzed, maxProbeNumber, rhoSquare=NULL, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr= NULL)

Arguments

snpName array containing the name of each probe
chr array containing the name of the chromosome to which each of the probes belongs. The possible values of the elements of chr are: the integers from 1 to 22, 'X' and 'Y'.
position array containing the physical position of each probe
logratio array containing the log2ratio of the raw copy number data
chrToBeAnalyzed array containing the name of the chromosomes that the user wants to analyze. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'.
maxProbeNumber maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation needs the computation of an array of length $(\text{length(chromosome)} + 1) \times (\text{length(chromosome)} + 2)/2$. To be sure to have set this parameter correctly, try to create the array A <- array(1, dim=(maxProbeNumber+1)*(maxProbeNumber+2)/2), before starting with the estimation procedure.
rhoSquare variance of the segment levels. If rhoSquare=NULL, then the algorithm estimates it on the sample.
kMax maximum number of segments
nu mean of the segment levels. If nu=NULL, then the algorithm estimates it on the sample.
sigmaSquare variance of the noise. If sigmaSquare=NULL, then the algorithm estimates it on the sample.
typeEstRho choice of the estimator of rhoSquare. If typeEstRho=1, then the algorithm estimates rhoSquare with $\hat{\rho}^2$, while if typeEstRho=0, it estimates rhoSquare with $\hat{\rho}^2$.
regr choice of the computation of the regression curve. If regr=NULL, then the regression curve is not computed, if regr="BRC" the Bayesian Regression Curve is computed (BRC with K_2), if regr="BRCAk" the Bayesian Regression Curve Averaging over k is computed (BRCAk).

Details

By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using $\hat{\rho}^2$. It is also possible to use $\hat{\rho}^2$ as estimator of rhoSquare, by setting typeEstRho=0, or to directly set the value of the parameter.

The function gives also the possibility to estimate the profile with a Bayesian regression curve: if regr="BRC" the Bayesian Regression Curve with K_2 is computed (BRC with K_2), if regr="BRCAk" the Bayesian Regression Curve Averaging over k is computed (BRCAk).

See function writeEstProfile, to have the results in nicer tables or to write them on files.
estProfileWithMBPCRforOligoSnSet

Estimate and print the copy number profile of some chromosomes of samples in an oligoSnSet object

Value

A list containing:

- estPC: an array containing the estimated profile with mBPCR
- estBoundaries: the list of estimated breakpoints for each of the analyzed chromosomes
- postProbT: the list of the posterior probability to be a breakpoint for each estimated breakpoint of the analyzed chromosomes
- regrCurve: an array containing the estimated Bayesian regression curve

estPC and regrCurve have the same length of logratio, hence their components, corresponding to the not analyzed chromosomes, are equal to NA.

References

See Also

plotEstProfile, writeEstProfile, computeMBPCR

Examples

```r
##import the 10K data of cell line REC
data(rec10k)
##estimation of the profile of chromosome 5
results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000)
##plot the estimated profile of chromosome 5
y <- rec10k$log2ratio[rec10k$Chromosome == 5]
p <- rec10k$PhysicalPosition[rec10k$Chromosome == 5]
plot(p, y)
points(p, results$estPC[rec10k$Chromosome == 5], type='l', col='red')

###for the estimation of the profile of all chromosomes
#results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=c(1:22, 'X'), maxProbeNumber=2000)
```

Description

Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a smoothing curve, using either the Bayesian Regression Curve with K_2 (BRC with K_2) or the Bayesian Regression Curve Averaging over k (BRCAk). It is also possible to choose the estimator of the variance of the levels rhoSquare (i.e. either $\hat{\rho}^2_1$ or $\hat{\rho}^2_2$) and by default $\hat{\rho}^2_1$ is used.
Usage

estProfileWithMBPCRforOligoSnpSet(sampleData, sampleToBeAnalyzed, chrToBeAnalyzed, maxProbeNumber, rhoSquare=NULL, kMax=50, nu=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL)

Arguments

sampleData object of type oligoSnpSet. The following fields must not be empty: assayData(sampleData)$copyNumber (it contains the raw copy number values with scale log2 multiplied by 100 and transformed as integers), featureNames(featureData(sampleData)) (it contains the names of the SNPs), featureData(sampleData)$chromosome (it contains the names of the chromosomes to which each of the SNPs belongs), featureData(sampleData)$position (it contains the physical positions of the SNPs).

sampleToBeAnalyzed vector containing the number of the columns corresponding to the samples the user wants to analyze.

chrToBeAnalyzed array containing the name of the chromosomes that the user wants to analyze. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'.

maxProbeNumber maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation needs the computation of an array of length \((\text{length(chromosome)} + 1) \times (\text{length(chromosome)} + 2)/2\). To be sure to have set this parameter correctly, try to create the array \(A <- \text{array(1, dim=(maxProbeNumber+1)\times(maxProbeNumber+2)/2)}\), before starting with the estimation procedure.

ifLogRatio denotes whether the original log2 data were centered at zero (i.e. they were in log2ratio scale) or not. By default, they are considered as derived by log2ratio data (ifLogRatio=1), otherwise (ifLogRatio=0) they are transformed in order to be derived from log2ratio data.

rhoSquare variance of the segment levels. If rhoSquare=NULL, then the algorithm estimates it on the sample.

kMax maximum number of segments

nu mean of the segment levels. If nu=NULL, then the algorithm estimates it on the sample.

sigmaSquare variance of the noise. If sigmaSquare=NULL, then the algorithm estimates it on the sample.

typeEstRho choice of the estimator of rhoSquare. If typeEstRho=1, then the algorithm estimates rhoSquare with \(\hat{\rho}^2\), while if typeEstRho=0, it estimates rhoSquare with \(\hat{\rho}^2\).

regr choice of the computation of the regression curve. If regr=NULL, then the regression curve is not computed. if regr="BRC" the Bayesian Regression Curve is computed (BRC with \(K_2\)), if regr="BRCak" the Bayesian Regression Curve Averaging over k is computed (BRCak).

Details

By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using \(\hat{\rho}^2\). It is also possible to use \(\hat{\rho}^2\) as estimator of rhoSquare, by setting typeEstRho=0, or to directly set the value of the parameter.
importCNData

The function gives also the possibility to estimate the profile with a Bayesian regression curve: if `regr="BRC"` the Bayesian Regression Curve with \(K_2 \) is computed (BRC with \(K_2 \)), if `regr="BRCAk"` the Bayesian Regression Curve Averaging over k is computed (BRCAk).

Value

A list containing:

- `estPC` an oligoSnpSet equal to sampleData apart from the field `assayData(estPC)$copyNumber`, which contains the estimated profile with mBPCR in scale log2ratio multiplied by 100
- `regrCurve` an oligoSnpSet equal to sampleData apart from the field `assayData(regrCurve)$copyNumber`, which contains the estimated bayesian regression curve in scale log2ratio multiplied by 100. This object is returned only if `regr!=NULL`.

The matrices `assayData(estPC)$copyNumber` and `assayData(regrCurve)$copyNumber` have the same dimension of `assayData(sampleData)$copyNumber`, hence their elements, corresponding to the not analyzed chromosomes and samples, are equal to `NA`.

References

See Also

`estProfileWithMBPCR`, `computeMBPCR`

Examples

```r
###import an example of oligoSnpSet data
data(oligoSetExample, package="oligoClasses")
##estimation of chromosome 2 in sample 1
#r <- estProfileWithMBPCRforOligoSnpSet(oligoSet, sampleToBeAnalyzed=1, chrToBeAnalyzed=2, maxProbeNumber=1000, ifLogRatio=0, rhoSquare=0.0889637)
##plot of the estimated chromosomes
#library(SNPchip)
#cc <- r$estPC
#cc1 <- cc[chromosome(cc) == "2",1]
#par(las=1)
#plot(position(cc1), copyNumber(cc1)/100, ylim=c(-0.23, 0.1), ylab="copy number", xaxt="n")
#plotIdiogram(2, build=genomeBuild(oligoSet), ylim=c(-0.225, -0.19), new=FALSE)
```

importCNData

Import the copy number data

Description

Function to import the raw copy number data from a tab delimited file.

Usage

```r
importCNData(path, NRowSkip, ifLogRatio=1)
```
Arguments

path path of the tab delimited file containing the copy number data. The file must contain a table, where in the first column there are the names of the probes (snpName), in the second one, the chromosome to which each probe belongs (the possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'), in the third one, the physical positions of the probes and in the forth one, the copy number data.

NRowSkip number of row to skip in the file, before the table. The names of the columns are to be skipped.

ifLogRatio denotes if the data are either the log2ratio of raw copy number data or raw copy number data. By default, they are considered as log2ratio data, otherwise (ifLogRatio=0) they are transformed in log2ratio data.

Value

A list containing:

- snpName an array containing the names of the probes
- chr an array containing the name of the chromosome to which each probe belongs
- position an array containing the physical position of each probe
- logratio an array containing the log2ratio of the raw copy number data

Examples

```r
###import the 10K data of cell line REC
path <- system.file("extdata", "rec10k.txt", package = "mBPCR")
rec10k <- importCNData(path, NRowSkip=1)
plot(rec10k$position[rec10k$chr == 3], rec10k$logratio[rec10k$chr == 3])
```

Description

Affymetrix GeneChip Mapping 250K NSP Array data of JEKO-1 cell line (chr. 11)

Usage

data(jekoChr11Array250Knsp)

Format

A data frame containing four variables: first is SNP name ('SNPname'), second is probe chromosome ('Chromosome'), third is probe position ('PhysicalPosition') and fourth is probe raw log2ratio ('log2ratio').

Source

Poretti, G. Rancoita, P.M.V. Kwee, I. Bertoni, F., unpublished
logAdd
Overflow-safe computation of the logarithm of a sum

Description

Function to compute the logarithm of a sum of small numbers, avoiding overflow.

Usage

```
logAdd(x)
```

Arguments

- `x` array or matrix containing the logarithm of the terms of the sum. If `x` is a matrix, the function returns the results by column.

Value

If `x` is an array, the function returns \(\log\left(\sum_i (e^{x[i]})\right) \), otherwise it returns an array containing the results by column.

Examples

```r
x <- log(c(0.0001, 0.0003, 0.000006))
y <- logAdd(x)
## verification that the computation is correct
z <- sum(c(0.0001, 0.0003, 0.000006))
z
exp(y)
```

plotEstProfile
Plot the estimated profile of copy number data

Description

Function to plot the estimated profiles of copy number data.

Usage

```
plotEstProfile(sampleName='', chr, position, logratio, chrToBePlotted, estPC, maxProbeNumber, legendPosition='bottomleft', regrCurve=NULL, regr=NULL)
```
Arguments

sampleName
name of the sample, if the user wants to put it in the title of the graph

chr
array containing the name of the chromosome to which each probe belongs. The possible values of the elements of chr are: the integers from 1 to 22, 'X' and 'Y'.

position
array containing the physical position of each probe

logratio
array containing the log2ratio of the raw copy number data

chrToBePlotted
array containing the name of the estimated chromosomes, that the user wants to plot. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'.

estPC
array containing the estimated copy number profile as a piecewise constant function. If estPC=NULL, only the estimated Bayesian regression curve is plotted.

maxProbeNumber
maximum number of probes that a chromosome (or arm of a chromosome) can have to be analyzed. The procedure of profile estimation needs the computation of an array of length \((\text{length(chromosome)} + 1) \times (\text{length(chromosome)} + 2)/2\). To be sure to have set this parameter correctly, try to create the array \(A <- \text{array(1, dim=(maxProbeNumber+1)*(maxProbeNumber+2)/2)}\), before starting with the estimation procedure.

legendPosition
string containing the position of the legend in the plot. The possible values are the same used in the function `plot`.

regrCurve
array containing the estimated regression curve. If regrCurve=NULL, then the estimated Bayesian regression curve is not plotted. If regrCurve!=NULL and also estPC!=NULL both estimated profiles are plotted on the same graph.

regr
choice of the computation of the regression curve. If regr=NULL, then the regression curve was not computed (then the estimated Bayesian regression curve is not plotted), if regr="BRC" the Bayesian Regression Curve was computed (mBRC with \(K_2\)), if regr="BRCAk" the Bayesian Regression Curve Averaging over \(k\) was computed (BRCAk).

Details

The function plots the estimated profiles of the chromosomes of chrToBePlotted, separately.

Examples

```r
##import the 10K data of cell line REC
data(rec10k)
##estimation of chromosomes 3 and 5
results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=c(3,5), maxProbeNumber=2000)
##plot the corresponding estimated profiles
plotEstProfile(sampleName='rec10k', rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBePlotted=c(3,5), results$estPC, maxProbeNumber=2000)
```

rec10k
Affymetrix GeneChip Mapping 10K Array data of REC-1 cell line

Description

Affymetrix GeneChip Mapping 10K Array data of REC-1 cell line taken from the reference below.
Usage

data(rec10k)

Format

A data frame containing five variables: first is SNP name ("SNPname"), second is probe chromosome ("Chromosome"), third is probe position ("PhysicalPosition"), fourth is probe raw log2ratio ("log2ratio") and fifth are is probe genotype ("call").

Source

Rinaldi et al. (2006), Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma, *British Journal of Haematology*, 132, 303-316

writeEstProfile

Write the estimated profile of copy number data

Description

Function to write nicely the results of the copy number profile estimation. The function either writes the tables directly on a tab delimited file or returns the corresponding tables.

Usage

```
writeEstProfile(path='', sampleName='', snpName, chr, position, logratio, chrToBeWritten, estPC, estBoundaries=NULL, postProbT=NULL, regrCurve=NULL, regr=NULL)
```

Arguments

- **path**: path of the folder where the user wants to write the results of the estimation (it must end with \\ in windows, or // in linux). If path='', they will be written in the working directory. If path=NULL, the tables will not be written on a file, but only returned by the function.
- **sampleName**: name of the sample. If the name of the sample if provided, it is used to named the files.
- **snpName**: array containing the name of each probe
- **chr**: array containing the name of the chromosome to which each probe belongs. The possible values of the elements of chr are: the integers from 1 to 22, 'X' and 'Y'.
- **position**: array containing the physical position of each probe
- **logratio**: array containing the log2ratio of the raw copy number data
- **chrToBeWritten**: array containing the name of the estimated chromosomes, of which the user wants to write the results. The possible values of the chromosomes are: the integers from 1 to 22, 'X' and 'Y'.
- **estPC**: array containing the estimated copy number profile as a piecewise constant function
writeEstProfile

- **estBoundaries** list containing the vectors of the estimated breakpoints, for each of the chromosomes mentioned in `chrToBeWritten`. If `estBoundaries=NULL`, then this information is not written.

- **postProbT** list containing the vectors of the posterior probabilities to be a breakpoint of the estimated breakpoints, for each of the chromosomes mentioned in `chrToBeWritten`. If `postProbT=NULL`, then this information is not written in the file containing the estimated breakpoints.

- **regrCurve** array containing the estimated regression curve. If `regrCurve=NULL`, then the file containing this information is not written.

- **regr** choice of the computation of the regression curve. If `regr=NULL`, then the regression curve was not computed (then the file containing this information is not written), if `regr="BRC"` the Bayesian Regression Curve with K_2 was computed (BRC with K_2), if `regr="BRCAk"` the Bayesian Regression Curve Averaging over k was computed (BRCAk).

Details

The function writes or returns at maximum three tables:

- one containing the estimated profile with mBPCR (the columns are: 'SNPname', 'chromosome', 'position', 'rawLog2ratio', 'mBPCRestimate')

- one containing a summary about the estimated profile with mBPCR (the columns are: 'SNPname(start)', 'SNPname(end)', 'chromosome', 'position(start)', 'position(end)', 'nProbes', 'mBPCRestimate' and, eventually, 'breakpointPostProb'). This table is not created if `estBoundaries=NULL`.

- one containing the estimated profile with a regression curve (the columns are: 'SNPname', 'chromosome', 'position', 'rawLog2ratio' and the name of the regression curve used). This table is not created if `regrCurve=NULL`.

Examples

```r
##import the 10K data of cell line REC
data(rec10k)
##estimation of chromosome 5
results <- estProfileWithMBPCR(rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeAnalyzed=5, maxProbeNumber=2000)
##write the estimated profile of chromosome 5 in a file in the working directory
writeEstProfile(path="\Var\Var", sampleName="\Var\Var rec10k\Var\Var", rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, results$estPC, results$estBoundaries, results$postProbT)

#### the same result can be obtained in the following way, by using the function computeMBPCR for the estimation
# #estimation of the global parameters
#param <- estGlobParam(rec10k$log2ratio)
#estimation of chromosome 5
#results <- computeMBPCR(rec10k$log2ratio[rec10k$Chromosome == 5], nu=param$nu, rhoSquare=param$rhoSquare, sigmaSquare=param$sigmaSquare)
#write the estimated profile of chromosome 5 in a file in the working directory
#estPC <- array(dim=length(rec10k$SNPname))
#estBoundaries <- list(dim=1)
#postProbT <- list(dim=1)
#estPC[rec10k$Chromosome == 5] <- results$estPC
#estBoundaries[[1]] <- results$estBoundaries
#postProbT[[1]] <- c(results$postProbT[results$estBoundaries[-results$estK]],1)
#writeEstProfile(path="\Var\Var", sampleName='rec10k', rec10k$SNPname, rec10k$Chromosome, rec10k$PhysicalPosition, rec10k$log2ratio, chrToBeWritten=5, estPC, estBoundaries, postProbT)
```
Index

*Topic **datasets**
 jekoChr11Array250Knsp, 9
 rec10k, 11
*Topic **file**
 importCNData, 8
 writeEstProfile, 12
*Topic **hplot**
 plotEstProfile, 10
*Topic **math**
 logAdd, 10
*Topic **print**
 plotEstProfile, 10
*Topic **regression**
 computeMBPCR, 2
 estProfileWithMBPCR, 4
 estProfileWithMBPCRforOligoSnpSet, 6
*Topic **smooth**
 computeMBPCR, 2
 estProfileWithMBPCR, 4
 estProfileWithMBPCRforOligoSnpSet, 6
*Topic **univar**
 estGlobParam, 3
 computeMBPCR, 2, 6, 8
 estGlobParam, 3, 3
 estProfileWithMBPCR, 3, 4, 8
 estProfileWithMBPCRforOligoSnpSet, 6
 importCNData, 8
 jekoChr11Array250Knsp, 9
 logAdd, 10
 plotEstProfile, 3, 6, 10
 rec10k, 11
 writeEstProfile, 3, 6, 12