Package ‘maSigPro’

April 26, 2017

Type Package

Title Significant Gene Expression Profile Differences in Time Course Gene Expression Data

Version 1.48.0

Author Ana Conesa <aconesa@cipf.es>, Maria Jose Nueda <mj.nueda@ua.es>

Maintainer Maria Jose Nueda <mj.nueda@ua.es>

Description maSigPro is a regression based approach to find genes for which there are significant gene expression profile differences between experimental groups in time course microarray and RNA-Seq experiments.

Depends R (>= 2.3.1), stats, Biobase, MASS

Imports Biobase, graphics, grDevices, venn, mclust, stats, utils, MASS

URL http://bioinfo.cipf.es/

LazyLoad yes

License GPL (>= 2)

biocViews Microarray, RNA-Seq, Differential Expression, TimeCourse

NeedsCompilation no

R topics documented:

average.rows ... 2
data.abiotic ... 3
edesign.abiotic .. 4
edesignCT ... 5
edesignDR .. 6
get.siggenes ... 7
i.rank ... 10
make.design.matrix ... 11
maSigPro ... 12
maSigProUsersGuide ... 17
NBdata ... 17
NBdesign .. 18
p.vector .. 19
PlotGroups ... 21
PlotProfiles .. 23
position .. 25
average.rows

Average rows by match and index

Description

average.rows matches rownames of a matrix to a match vector and performs averaging of the rows by the index provided by an index vector.

Usage

`average.rows(x, index, match, r = 0.7)`

Arguments

- `x`: a matrix
- `index`: index vector indicating how rows must be averaged
- `match`: match vector for indexing rows
- `r`: minimal correlation value between rows to compute average

Details

rows will be averaged only if the pearson correlation coefficient between all rows of each given index is greater than `r`. If not, that group of rows is discarded in the result matrix.

Value

a matrix of averaged rows

Author(s)

Ana Conesa, aconesa@cipf.es

Examples

```r
## create data matrix for row averaging
x <- matrix(rnorm(30), nrow = 6,ncol = 5)
rownames(x) <- paste("ID", c(1, 2, 11, 12, 19, 20), sep = "")
i <- paste("g", rep(c(1:10), each = 2), sep = "") # index vector
m <- paste("ID", c(1:20), sep = "") # match vector
average.rows(x, i, m, r = 0)
```
data.abiotic

Description

data.abiotic contains gene expression of a time course microarray experiment where potato plants were submitted to 3 different abiotic stresses.

Usage

data(data.abiotic)

Format

A data frame with 1000 observations on the following 36 variables.

Control_3H_1 a numeric vector
Control_3H_2 a numeric vector
Control_3H_3 a numeric vector
Control_9H_1 a numeric vector
Control_9H_2 a numeric vector
Control_9H_3 a numeric vector
Control_27H_1 a numeric vector
Control_27H_2 a numeric vector
Control_27H_3 a numeric vector
Cold_3H_1 a numeric vector
Cold_3H_2 a numeric vector
Cold_3H_3 a numeric vector
Cold_9H_1 a numeric vector
Cold_9H_2 a numeric vector
Cold_9H_3 a numeric vector
Cold_27H_1 a numeric vector
Cold_27H_2 a numeric vector
Cold_27H_3 a numeric vector
Heat_3H_1 a numeric vector
Heat_3H_2 a numeric vector
Heat_3H_3 a numeric vector
Heat_9H_1 a numeric vector
Heat_9H_2 a numeric vector
Heat_9H_3 a numeric vector
Heat_27H_1 a numeric vector
Heat_27H_2 a numeric vector
Heat_27H_3 a numeric vector
edesign.abiotic

Salt_3H_1 a numeric vector
Salt_3H_2 a numeric vector
Salt_3H_3 a numeric vector
Salt_9H_1 a numeric vector
Salt_9H_2 a numeric vector
Salt_9H_3 a numeric vector
Salt_27H_1 a numeric vector
Salt_27H_2 a numeric vector
Salt_27H_3 a numeric vector

Details
This data set is part of a larger experiment in which gene expression was monitored in both roots and leaves using a 11K cDNA potato chip. This example data set contains a random subset of 1000 genes of the leave study.

References

Examples
data(data.abiotic)

edesign.abiotic

Experimental design potato abiotic stress

Description
edesign.abiotic contains experimental set up of a time course microarray experiment where potato plants were submitted to 3 different abiotic stresses.

Usage
data(edesign.abiotic)

Format
A matrix with 36 rows and 6 columns
rows [1:36] "Control 3h 1" "Control 3h 2" "Control 3h 3" "Control 9h 1" ...
columns [1:6] "Time" "Replicates" "Control" "Cold" "Heat" "Salt"
Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.
"Time" indicates the values that variable Time takes in each hybridization.
"Replicates" is an index indicating replicate hybridizations, i.e. hybridizations are numbered, giving replicates the same number.
"Control", "Cold", "Heat" and "Salt" columns indicate array assignment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Examples

data(edesignCT)

edesignCT Experimental design with a shared time

Description

edesignCT contains the experimental set up of a time course microarray experiment where there is a common starting point for the different experimental groups.

Usage

data(edesignCT)

Format

A matrix with 32 rows and 7 columns
rows [1:32] "Array1" "Array2" "Array3" "Array4" ...
columns [1:7] "Time" "Replicates" "Control" "Tissue1" "Tissue2" "Tissue3" "Tissue4"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.
"Time" indicates the values that variable Time takes in each hybridization. There are 4 time points, which allows an up to 3 degree regression polynome.
"Replicates" is an index indicating replicate hybridizations, i.e. hybridizations are numbered, giving replicates the same number.
"Control", "Tissue1", "Tissue2", "Tissue3" and "Tissue4" columns indicate array assignment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

Examples

data(edesignCT)
Experimental design with different replicates

Description

edianDR contains experimental set up of a replicated time course microarray experiment where rats were submitted to 3 different dosis of a toxic compound. A control and an placebo treatments are also present in the experiment.

Usage

`data(edianDR)`

Format

A matrix with 54 rows and 7 columns

rows [1:54] "Array1" "Array2" "Array3" "Array4" ...

columns [1:7] "Time" "Replicates" "Control" "Placebo" "Low" "Medium" "High"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.

"Time" indicates the values that variable Time takes in each hybridization.

"Replicates" is an index indicating replicate hybridizations, i.e. hybridizations are numbered, giving replicates the same number.

"Control", "Placebo", "Low", "Medium" and "High" columns indicate array assigment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Examples

`data(edianDR)`
get.siggenes

Extract significant genes for sets of variables in time series gene expression experiments

Description

This function creates lists of significant genes for a set of variables whose significance value has been computed with the `T.fit` function.

Usage

```r
get.siggenes(tstep, rsq = 0.7, add.IDs = FALSE, IDs = NULL, matchID.col = 1,
             only.names = FALSE, vars = c("all", "each", "groups"),
             significant.intercept = "dummy",
             groups.vector = NULL, trat.repl.spots = "none",
             index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col],
             r = 0.7)
```

Arguments

- `tstep`: a `T.fit` object
- `rsq`: cut-off level at the R-squared value for the stepwise regression fit. Only genes with R-squared more than `rsq` are selected
- `add.IDs`: logical indicating whether to include additional gene id’s in the result
- `IDs`: matrix containing additional gene id information (required when `add.IDs` is `TRUE`)
- `matchID.col`: number of matching column in matrix IDs for adding genes ids
- `only.names`: logical. If `TRUE`, expression values are omitted in the results
- `vars`: variables for which to extract significant genes (see details)
- `significant.intercept`: experimental groups for which significant intercept coefficients are considered (see details)
- `groups.vector`: required when `vars` is "groups".
- `trat.repl.spots`: treatment given to replicate spots. Possible values are "none" and "average"
- `index`: argument of the `average.rows` function to use when `trat.repl.spots` is "average"
- `match`: argument of the `average.rows` function to use when `trat.repl.spots` is "average"
- `r`: minimum pearson correlation coefficient for replicated spots profiles to be averaged
Details

There are 3 possible values for the vars argument:

"all": generates one single matrix or gene list with all significant genes.

"each": generates as many significant genes extractions as variables in the general regression model. Each extraction contains the significant genes for that variable.

"groups": generates a significant genes extraction for each experimental group.

The difference between "each" and "groups" is that in the first case the variables of the same group (e.g. "TreatmentA" and "time*TreatmentA") will be extracted separately and in the second case jointly.

When add.IDs is TRUE, a matrix of gene ids must be provided as argument of IDs, the matchID.col column of which having same levels as in the row names of sig.profiles. The option only.names is TRUE will generate a vector of significant genes or a matrix when add.IDs is set also to TRUE.

When trat.repl.spots is "average", match and index vectors are required for the average.rows function. In gene expression data context, the index vector would contain geneIDs and indicate which spots are replicates. The match vector is used to match these genesIDs to rows in the significant genes matrix, and must have the same levels as the row names of sig.profiles.

The argument significant.intercept modulates the treatment for intercept coefficients to apply for selecting significant genes when vars equals "groups". There are three possible values: "none", no significant intercept (differences) are considered for significant gene selection, "dummy", includes genes with significant intercept differences between control and experimental groups, and "all" when both significant intercept coefficient for the control group and significant intercept differences are considered for selecting significant genes.

add.IDs = TRUE and trat.repl.spots = "average" are not compatible argument values. add.IDs = TRUE and only.names = TRUE are compatible argument values.

Value

summary a vector or matrix listing significant genes for the variables given by the function parameters

sig.genes a list with detailed information on the significant genes found for the variables given by the function parameters. Each element of the list is also a list containing:

sig.profiles: expression values of significant genes
coefficients: regression coefficients of the adjusted models
 groups.coeffs: regression coefficients of the implicit models of each experimental group
 sig.pvalues: p-values of the regression coefficients for significant genes
 g: number of genes
...: arguments passed by previous functions

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

get.siggenes

Examples

GENERATE TIME COURSE DATA

```r
# one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r, 
  var11 = 0.01, var12 = 0.01, var13 = 0.01, 
  var21 = 0.01, var22 = 0.01, var23 = 0.01, 
  var31 = 0.01, var32 = 0.01, var33 = 0.01, 
  var41 = 0.01, var42 = 0.01, var43 = 0.01, 
  a1 = 0, a2 = 0, a3 = 0, a4 = 0, 
  b1 = 0, b2 = 0, b3 = 0, b4 = 0, 
  c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
  tc.dat <- NULL
  for (i in 1:n) {
    Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
    Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
    Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
    Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
    gene <- c(Ctl, Tr1, Tr2, Tr3)
    tc.dat <- rbind(tc.dat, gene)
  }
  tc.dat
}
## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE(n = 10, r = 3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = ")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = ")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

#### CREATE EXPERIMENTAL DESIGN

Time <- rep(c(rep(c(1:3), each = 3)), 4)
Repli <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Repli, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)

## This will obtain significant genes per experimental group
## which have a regression model Rsquared > 0.9
tc.sigs <- get.siggenes (tc.tstep, rsq = 0.9, vars = "groups")

## This will obtain all significant genes regardless the Rsquared value.
## Replicated genes are averaged.
IDs <- rbind(paste("feature", c(1:300), sep = ""),
             rep(paste("gene", c(1:150), sep = ""), each = 2))
tc.sigs.ALL <- get.siggenes (tc.tstep, rsq = 0, vars = "all", IDs = IDs)
tc.sigs.groups <- get.siggenes (tc.tstep, rsq = 0, vars = "groups", significant.intercept="dummy")

---

i.rank

Ranks a vector to index

Description
Ranks the values in a vector to successive values. Ties are given the same value.

Usage
i.rank(x)

Arguments
x vector

Value
Vector of ranked values

Author(s)
Ana Conesa, aconesa@cipf.es

See Also
rank, order

Examples
i.rank(c(1, 1, 1, 3, 3, 5, 7, 7, 7))
**make.design.matrix**

**Make a design matrix for regression fit of time series gene expression experiments**

**Description**

`make.design.matrix` creates the design matrix of dummies for fitting time series microarray gene expression experiments.

**Usage**

```r
make.design.matrix(eds, degree = 2, time.col = 1,
 repl.col = 2, group.cols = 3:ncol(eds))
```

**Arguments**

- `eds`: matrix describing experimental design. Rows must be arrays and columns experiment descriptors.
- `degree`: the degree of the regression fit polynomial. `degree = 1` returns linear regression, `degree = 2` returns quadratic regression, etc.
- `time.col`: column number in `eds` containing time values. Default is first column.
- `repl.col`: column number in `eds` containing coding for replicate arrays. Default is second column.
- `group.cols`: column numbers in `eds` indicating the coding for each experimental group (treatment, tissue, ...). See details.

**Details**

Row names of `eds` object should contain the arrays naming (i.e. `array1`, `array2`, ...). Column names of `eds` must contain the names of experiment descriptors (i.e. "Time", "Replicates", "Treatment A", "Treatment B", etc.). For each experimental group a different column must be present in `eds`, coding with 1 and 0 whether each array belongs to that group or not.

`make.design.matrix` returns a design matrix where rows represent arrays and column variables of time, dummies and their interactions for up to the `degree` given. Dummies show the relative effect of each experimental group related to the first one. Single dummies indicate the abscissa component of each group. `$Time*dummy$` variables indicate slope changes, `$Time^2*dummy$` indicates curvature changes. Higher grade values could model complex responses. In case experimental groups share a common state (i.e. common time 0), no single dummies are modeled.

**Value**

- `ds`: design matrix of dummies for fitting time series
- `groups.vector`: vector coding the experimental group to which each variable belongs to
- `eds`: `eds` value passed as argument

**Author(s)**

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es
References


Examples

data(edesign.abiotic, edesignCT)
make.design.matrix(edesign.abiotic)  # quadratic model
make.design.matrix(edesignCT, degree = 3)  # cubic model with common starting time point

maSigPro

Wrapping function for identifying significant differential gene expression profiles in microarray time course experiments

Description

maSigPro performs a whole maSigPro analysis for a times series gene expression experiment. The function successively calls the functions make.design.matrix(optional), p.vector, T.fit, get.siggenes and see.genes.

Usage

maSigPro(data, edesign, matrix = "AUTO", groups.vector = NULL, degree = 2, time.col = 1, repl.col = 2, group.cols = c(3:ncol(edesign)), Q = 0.05, alfa = Q, nvar.correction = FALSE, step.method = "backward", rsq = 0.7, min.obs = 3, vars = "groups", significant.intercept = "dummy", cluster.data = 1, add.IDs = FALSE, IDs = NULL, matchID.col = 1, only.names = FALSE, k = 9, cluster.method = "hclust", distance = "cor", agglo.method = "ward.D", iter.max = 500, summary.mode = "median", color.mode = "rainbow", trat.repl.spots = "none", index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col], rs = 0.7, show.fit = TRUE, show.lines = TRUE, pdf = TRUE, cexlab = 0.8, legend = TRUE, main = NULL, ...)

Arguments

data
matrix with normalized gene expression data. Genes must be in rows and arrays in columns. Row names must contain geneIDs (argument of p.vector)

edesign
matrix of experimental design. Row names must contain arrayIDs (argument of make.design.matrix and see.genes)

matrix
design matrix for regression analysis. By default design is calculated with make.design.matrix (argument of p.vector and T.fit, by default computed by make.design.matrix)

groups.vector
vector indicating experimental group of each variable (argument of get.siggenes and see.genes, by default computed by make.design.matrix)

degree
the degree of the regression fit polynomial. degree = 1 returns linear regression, degree = 2 returns quadratic regression, etc... (argument of make.design.matrix)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time.col</td>
<td>Column in edesign containing time values. Default is first column. (argument of <code>make.design.matrix</code> and <code>see.genes</code>)</td>
</tr>
<tr>
<td>repl.col</td>
<td>Column in edesign containing coding for replicates arrays. Default is second column. (argument of <code>make.design.matrix</code> and <code>see.genes</code>)</td>
</tr>
<tr>
<td>group.cols</td>
<td>Columns in edesign indicating the coding for each group of the experiment (argument of <code>make.design.matrix</code>).</td>
</tr>
<tr>
<td>Q</td>
<td>Level of false discovery rate (FDR) control. (argument of <code>p.vector</code>)</td>
</tr>
<tr>
<td>alfa</td>
<td>Significance level used for variable selection in the stepwise regression. (argument of <code>T.fit</code>)</td>
</tr>
<tr>
<td>nvar.correction</td>
<td>Logical for indicating correcting of stepwise regression significance level.  (argument of <code>T.fit</code>)</td>
</tr>
<tr>
<td>step.method</td>
<td>Argument to be passed to the step function. Can be either &quot;backward&quot;, &quot;forward&quot;, &quot;two.ways.backward&quot; or &quot;two.ways.forward&quot;.</td>
</tr>
<tr>
<td>rsq</td>
<td>Cut-off level at the R-squared value for the stepwise regression fit. Only genes with R-squared greater than rsq are selected.</td>
</tr>
<tr>
<td>min.obs</td>
<td>Genes with less than this number of true numerical values will be excluded from the analysis. (argument of <code>p.vector</code> and <code>T.fit</code>)</td>
</tr>
<tr>
<td>vars</td>
<td>Variables for which to extract significant genes. (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>significant.intercept</td>
<td>Experimental groups for which significant intercept coefficients are considered. (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>cluster.data</td>
<td>Type of data used by the cluster algorithm. (argument of <code>see.genes</code>)</td>
</tr>
<tr>
<td>add.IDs</td>
<td>Logical indicating whether to include additional gene id’s in the significant genes result. (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>IDs</td>
<td>Matrix containing additional gene id information (required when add.IDs is TRUE). (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>matchID.col</td>
<td>Number of matching column in matrix IDs for adding genes ids. (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>only.names</td>
<td>Logical. If TRUE, expression values are omitted in the significant genes result. (argument of <code>get.siggenes</code>)</td>
</tr>
<tr>
<td>k</td>
<td>Number of clusters (argument of <code>see.genes</code>)</td>
</tr>
<tr>
<td>cluster.method</td>
<td>Clustering method for data partitioning. (argument of <code>see.genes</code>)</td>
</tr>
<tr>
<td>distance</td>
<td>Distance measurement function used when cluster.method is &quot;hclust&quot;. (argument of <code>see.genes</code>)</td>
</tr>
</tbody>
</table>
maSigPro finds and display genes with significant profile differences in time series gene expression experiments. The main, compulsory, input parameters for this function are a matrix of gene expression data (see \texttt{p.vector} for details) and a matrix describing experimental design (see \texttt{make.design.matrix} or \texttt{p.vector} for details). In case extended gene ID information is wanted to be included in the result of significant genes, a third IDs matrix containing this information will be required (see \texttt{get.siggenes} for details).

Basically in the function calls subsequent steps of the maSigPro approach which is:

- Make a general regression model with dummies to indicate different experimental groups.
- Select significant genes on the basis of this general model, applying fdr control.
- Find significant variables for each gene, using stepwise regression.
- Extract and display significant genes for any set of variables or experimental groups.
maSigPro

Value

- **summary**: a vector or matrix listing significant genes for the variables given by the function parameters
- **sig.genes**: a list with detailed information on the significant genes found for the variables given by the function parameters. Each element of the list is also a list containing:
  - **sig.profiles**: expression values of significant genes. The cluster assignment of each gene is given in the last column
  - **coefficients**: regression coefficients for significant genes
  - **t.score**: value of the t statistics of significant genes
  - **sig.pvalues**: p-values of the regression coefficients for significant genes

- **g**: number of genes
- **...**: arguments passed by previous functions

- **input.data**: input analysis data
- **G**: number of input genes
- **edesign**: matrix of experimental design
- **dis**: regression design matrix
- **min.obs**: imputed value for minimal number of true observations
- **p.vector**: vector containing the computed p-values of the general regression model for each gene
- **variables**: variables in the general regression model
- **g**: number of significant genes
- **p.vector.alfa**: p-value at FDR = Q control
- **step.method**: imputed step method for stepwise regression
- **Q**: imputed value for false discovery rate (FDR) control
- **step.alfa**: inputed significance level in stepwise regression
- **influ.info**: data frame of genes containing influential data

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References


See Also

- `make.design.matrix`, `p.vector`, `T.fit`, `get.siggenes`, `see.genes`

Examples

```r
GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.
```
tc.GENE <- function(n, r,
    var11 = 0.01, var12 = 0.01, var13 = 0.01,
    var21 = 0.01, var22 = 0.01, var23 = 0.01,
    var31 = 0.01, var32 = 0.01, var33 = 0.01,
    var41 = 0.01, var42 = 0.01, var43 = 0.01,
    a1 = 0, a2 = 0, a3 = 0, a4 = 0,
    b1 = 0, b2 = 0, b3 = 0, b4 = 0,
    c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}

## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE(n = 10, r = 3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA[sample(c(1:(300*36)), 300)] <- NA # introduce missing values

#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

#### RUN maSigPro
tc.test <- maSigPro (tc.DATA, edesign, degree = 2, vars = "groups", main = "Test")
tc.test$g # gives number of total significant genes
tc.test$ssummary # shows significant genes by experimental groups
tc.test$sig.genes$Treat1$sig.pvalues # shows pvalues of the significant coefficients
    # in the regression models of the significant genes
    # for Control.vs.Treat1 comparison
**maSigProUsersGuide**

View *maSigPro* User's Guide

**Description**

Finds the location of the *maSigPro* User's Guide and opens it.

**Usage**

maSigProUsersGuide(view=TRUE)

**Arguments**

view  
logical, to specify if the document is opened using the PDF document reader.

**Details**

The function `vignette("maSigPro")` will find the short *maSigPro* Vignette which describes how to obtain the *maSigPro* User's Guide. The User's Guide is not itself a true vignette because it is not automatically generated using Sweave during the package build process. This means that it cannot be found using vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by `Sys.getenv("R_PDFVIEWER")`. The PDF viewer can be changed using `Sys.putenv(R_PDFVIEWER=)`.

**Value**

If `vignette(view=TRUE)`, the PDF document reader is started and the User's Guide is opened. If `vignette(view=FALSE)`, returns the file location.

**Examples**

maSigProUsersGuide()
maSigProUsersGuide(view=FALSE)

**NBdata**

*RNA-Seq dataset example*

**Description**

NBdata contains a subset of a bigger normalized negative binomial simulated dataset.

**Usage**

data(NBdata)

**Format**

A data frame with 100 observations on 36 numeric variables.
Details

This dataset is part of a larger simulated and normalized dataset with 2 experimental groups, 6 time-points and 3 replicates. Simulation has been done by using a negative binomial distribution. The first 20 genes are simulated with changes among time.

Examples

data(NBdata)

| NBdesign | Experimental design for RNA-Seq example |

Description

NBdesign contains a subset of a bigger normalized negative binomial simulated dataset.

Usage

data(NBdesign)

Format

A matrix with 36 rows and 4 columns
rows [1:36] "G1.T1.1" "G1.T1.2" "G1.T1.3" "G1.T2.1" ...
columns [1:6] [1] "Time" "Replicates" "Group.1" "Group.2"

Details

Samples are given in rows and experiment descriptors are given in columns. Row names contain sample names.

"Time" indicates the values that variable Time takes in each experimental condition. There are 6 time points.

"Replicates" is an index indicating the same experimental condition.

"Group.1" and "Group.2" columns indicate assignment to experimental groups, coding with 1 and 0 whether each sample belongs to that group or not.

Examples

data(NBdesign)
p.vector  

Make regression fit for time series gene expression experiments

Description

p.vector performs a regression fit for each gene taking all variables present in the model given by a regression matrix and returns a list of FDR corrected significant genes.

Usage

p.vector(data, design, Q = 0.05, MT.adjust = "BH", min.obs = 6, counts=FALSE, family=NULL, theta=10, epsilon=0.00001)

Arguments

data  matrix containing normalized gene expression data. Genes must be in rows and arrays in columns

design design matrix for the regression fit such as that generated by the make.design.matrix function

Q  significance level

MT.adjust  argument to pass to p.adjust function indicating the method for multiple testing adjustment of p.value

min.obs genes with less than this number of true numerical values will be excluded from the analysis. Minimum value to estimate the model is (degree+1)xGroups+1. Default is 6.

counts  a logical indicating whether your data are counts

family the distribution function to be used in the glm model. It must be specified as a function: gaussian(), poisson(), negative.binomial(theta)... If NULL family will be negative.binomial(theta) when counts=TRUE or gaussian() when counts=FALSE

theta  theta parameter for negative.binomial family

epsilon  argument to pass to glm.control, convergence tolerance in the iterative process to estimate the glm model

Details

rownames(design) and colnames(data) must be identical vectors and indicate array naming.
rownames(data) should contain unique gene IDs.

colnames(design) are the given names for the variables in the regression model.

Value

SELEC  matrix containing the expression values for significant genes

p.vector  vector containing the computed p-values

G  total number of input genes

g  number of genes taken in the regression fit

FDR  p-value at FDR  Q control when Benajamini & Holderberg (BH) correction is used
i  number of significant genes

dis  design matrix used in the regression fit

dat  matrix of expression value data used in the regression fit
...

additional values from input parameters

Author(s)
Ana Conesa, <aconesa@cipf.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

See Also
T.fit, lm

Examples

#### GENERATE TIME COURSE DATA
## generates n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.

```r
tc.GENE <- function(n, r,
 var11 = 0.01, var12 = 0.01, var13 = 0.01,
 var21 = 0.01, var22 = 0.01, var23 = 0.01,
 var31 = 0.01, var32 = 0.01, var33 = 0.01,
 var41 = 0.01, var42 = 0.01, var43 = 0.01,
 a1 = 0, a2 = 0, a3 = 0, a4 = 0,
 b1 = 0, b2 = 0, b3 = 0, b4 = 0,
 c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{

tc.dat <- NULL
for (i in 1:n) {
 Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
 Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
 Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
 Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
 gene <- c(Ctl, Tr1, Tr2, Tr3)
 tc.dat <- rbind(tc.dat, gene)
}

tc.dat
}
```

## Create 270 flat profiles
```r
flat <- tc.GENE(n = 270, r = 3)
```

## Create 10 genes with profile differences between Ctl and Tr1 groups
```r
twodiff <- tc.GENE(n = 10, r = 3, b2 = 0.5, c2 = 1.3)
```

## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
```r
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
```

## Create 10 genes with profile differences between Ctl and Tr2 and different variance
```r
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c2 = 1.3, var32 = 0.03, var33 = 0.03)
```
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA[sample(c(1:(300*36)), 300)] <- NA # introduce missing values

#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.05)
tc.p$i # number of significant genes
tc.p$SELEC # expression value of significant genes
tc.p$FDR # p.value at FDR control
tc.p$p.adjusted # adjusted p.values

---

**PlotGroups**

*Function for plotting gene expression profile at different experimental groups*

### Description

This function displays the gene expression profile for each experimental group in a time series gene expression experiment.

### Usage

```r
PlotGroups(data, edesign = NULL, time = edesign[,1], groups = edesign[,c(3:ncol(edesign))], repvect = edesign[,2], show.fit = FALSE, dis = NULL, step.method = "backward", min.obs = 2, alfa = 0.05, nvar.correction = FALSE, summary.mode = "median", show.lines = TRUE, xlab = "Time", ylab = "Expression value", cex.xaxis = 1, ylim = NULL, main = NULL, cexlab = 0.8, legend = TRUE, sub = NULL)
```

### Arguments

- **data**: vector or matrix containing the gene expression data
- **edesign**: matrix describing experimental design. Rows must be arrays and columns experiment descriptors
- **time**: vector indicating time assignment for each array
- **groups**: matrix indicating experimental group to which each array is assigned
- **repvect**: index vector indicating experimental replicates
- **show.fit**: logical indicating whether regression fit curves must be plotted
- **dis**: regression design matrix
- **step.method**: stepwise regression method to fit models for cluster mean profiles. It can be either "backward", "forward", "two.ways.backward" or "two.ways.forward"
min.obs  minimal number of observations for a gene to be included in the analysis
alfa     significance level used for variable selection in the stepwise regression
nvar.correction argument for correcting stepwise regression significance level. See T.fit
summary.mode the method to condensate expression information when more than one gene is present in the data. Possible values are "representative" and "median"
show.lines logical indicating whether a line must be drawn joining plotted data points for each group
groups.vector vector indicating experimental group to which each variable belongs
xlab      label for the x axis
ylab      label for the y axis
cex.xaxis graphical parameter magnification to be used for x axis in plotting functions
ylim      range of the y axis
main      plot main title
cexlab    graphical parameter magnification to be used for x axis label in plotting functions
legend    logical indicating whether legend must be added when plotting profiles
sub       plot subtitle

Details

To compute experimental groups either a edesign object must be provided, or separate values must be given for the time, repvect and groups arguments.

When data is a matrix, the average expression value is displayed.

When there are array replicates in the data (as indicated by repvect), values are averaged by repvect.

PlotGroups plots one single expression profile for each experimental group even if there are more than one genes in the data set. The way data is condensated for this is given by summary.mode. When this argument takes the value "representative", the gene with the lowest distance to all genes in the cluster will be plotted. When the argument is "median", then median expression value is computed.

When show.fit is TRUE the stepwise regression fit for the data will be computed and the regression curves will be displayed.

If data is a matrix of genes and summary.mode is "median", the regression fit will be computed for the median expression value.

Value

Plot of gene expression profiles by-group.

Author(s)

Ana Conesa, <aconesa@cipf.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

## Examples

#### GENERATE TIME COURSE DATA

```r
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
 var11 = 0.01, var12 = 0.01, var13 = 0.01,
 var21 = 0.01, var22 = 0.01, var23 = 0.01,
 var31 = 0.01, var32 = 0.01, var33 = 0.01,
 var41 = 0.01, var42 = 0.01, var43 = 0.01,
 a1 = 0, a2 = 0, a3 = 0, a4 = 0,
 b1 = 0, b2 = 0, b3 = 0, b4 = 0,
 c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
 tc.dat <- NULL
 for (i in 1:n) {
 Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
 Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
 Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
 Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
 gene <- c(Ctl, Tr1, Tr2, Tr3)
 tc.dat <- rbind(tc.dat, gene)
 }
 tc.dat
}
```

```r
create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups

tc.DATA <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
```

#### CREATE EXPERIMENTAL DESIGN

```r
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Ctl <- c(rep(1, 9), rep(0, 27))
Tr1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Tr2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Tr3 <- c(rep(0, 27), rep(1, 9))

PlotGroups(tc.DATA, time = Time, repvect = Replicates, groups = cbind(Ctl, Tr1, Tr2, Tr3))
```

---

**PlotProfiles**

*Function for visualization of gene expression profiles*

**Description**

*PlotProfiles* displays the expression profiles of a group of genes.
Usage

```r
PlotProfiles(data, cond, main = NULL, cex.xaxis = 0.5, ylim = NULL,
 repvect, sub = NULL, color.mode = "rainbow")
```

Arguments

- `data`: a matrix containing the gene expression data
- `cond`: vector for x axis labeling, typically array names
- `main`: plot main title
- `cex.xaxis`: graphical parameter magnification to be used for x axis in plotting functions
- `ylim`: index vector indicating experimental replicates
- `repvect`: index vector indicating experimental replicates
- `sub`: plot subtitle
- `color.mode`: color scale for plotting profiles. Can be either "rainbow" or "gray"

Details

The `repvect` argument is used to indicate with vertical lines groups of replicated arrays.

Value

Plot of experiment-wide gene expression profiles.

Author(s)

Ana Conesa, aconesa@cipf.es, Maria Jose Nueda, mj.nueda@ua.es

References


See Also

`PlotGroups`

Examples

```r
GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
 var11 = 0.01, var12 = 0.01, var13 = 0.01,
 var21 = 0.01, var22 = 0.01, var23 = 0.01,
 var31 = 0.01, var32 = 0.01, var33 = 0.01,
 var41 = 0.01, var42 = 0.01, var43 = 0.01,
 a1 = 0, a2 = 0, a3 = 0, a4 = 0,
 b1 = 0, b2 = 0, b3 = 0, b4 = 0,
 c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
 tc.dat <- NULL
```
for (i in 1:n) {
  Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
  Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
  Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
  Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
  gene <- c(Ctl, Tr1, Tr2, Tr3)
  tc.dat <- rbind(tc.dat, gene)
}
tc.dat

## create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
PlotProfiles(tc.DATA, cond = colnames(tc.DATA), main = "Time Course",
            repvect = rep(c(1:12), each = 3))

---

**position**

*Column position of a variable in a data frame*

**Description**

Finds the column position of a character variable in the column names of a data frame.

**Usage**

position(matrix, vari)

**Arguments**

- **matrix**: matrix or data.frame with character column names
- **vari**: character variable

**Value**

numerical. Column position for the given variable.

**Author(s)**

Ana Conesa, aconesa@cipf.es

**Examples**

```r
x <- matrix(c(1, 1, 2, 2, 3, 3), ncol = 3, nrow = 2)
rownames(x) <- c("one", "two", "three")
position(x, "one")
```
**reg.coeffs**

*Calculate true variables regression coefficients*

**Description**

`reg.coeffs` calculates back regression coefficients for true variables (experimental groups) from dummy variables regression coefficients.

**Usage**

```r
reg.coeffs(coefficients, indepen = groups.vector[nchar(groups.vector)==min(nchar(groups.vector))][1], groups.vector, group)
```

**Arguments**

- `coefficients`: vector of regression coefficients obtained from a regression model with dummy variables
- `indepen`: independent variable of the regression formula
- `groups.vector`: vector indicating the true variable of each variable in `coefficients`
- `group`: true variable for which regression coefficients are to be computed

**Details**

Regression coefficients in `coefficients` vector should be ordered by polynomial degree in a regression formula, i.e.: intercept, $x$ term, $x^2$ term, $x^3$ term, and so on...

**Value**

`reg.coeff` vector of calculated regression coefficients

**Author(s)**

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

**References**


**Examples**

```r
groups.vector <- c("CT", "T1vsCT", "T2vsCT", "CT", "T1vsCT", "T2vsCT", "CT", "T1vsCT", "T2vsCT")
coefficients <- c(0.1, 1.2, -0.8, 1.7, 3.3, 0.4, 0.0, 2.1, -0.9)
calculate true regression coefficients for variable "T1"
reg.coeffs(coefficients, groups.vector = groups.vector, group = "T1")
```
Wrapper function for visualization of gene expression values of time course experiments

Description

This function provides visualization tools for gene expression values in a time course experiment. The function first calls the heatmap function for a general overview of experiment results. Next a partitioning of the data is generated using a clustering method. The results of the clustering are visualized both as gene expression profiles extended along all arrays in the experiment, as provided by the plot.profiles function, and as summary expression profiles for comparison among experimental groups.

Usage

```r
see.genes(data, edesign = data$edesign, time.col = 1, repl.col = 2,
 group.cols = c(3:ncol(edesign)), names.groups = colnames(edesign)[3:ncol(edesign)],
 cluster.data = 1, groups.vector = data$groups.vector, k = 9, k.mclust=FALSE,
 cluster.method = "hclust", distance = "cor", agglo.method = "ward.D",
 show.fit = FALSE, dis = NULL, step.method = "backward", min.obs = 3,
 alfa = 0.05, nvar.correction = FALSE, show.lines = TRUE, iter.max = 500,
 summary.mode = "median", color.mode = "rainbow", cexlab = 1, legend = TRUE,
 newX11 = TRUE, ylim = NULL, main = NULL, ...)
```

Arguments

data either matrix or a list containing the gene expression data, typically a `get.siggenes` object
edesign matrix of experimental design
time.col column in edesign containing time values. Default is first column
repl.col column in edesign containing coding for replicates arrays. Default is second column
group.cols columns indicating the coding for each group (treatment, tissue,...) in the experiment (see details)
names.groups names for experimental groups
cluster.data type of data used by the cluster algorithm (see details)
groups.vector vector indicating the experimental group to which each variable belongs
k number of clusters for data partitioning
k.mclust TRUE for computing the optimal number of clusters with Mclust algorithm
cluster.method clustering method for data partitioning. Currently "hclust", "kmeans" and "Mclust" are supported
distance distance measurement function when cluster.method is `hclust`
agglo.method aggregation method used when cluster.method is `hclust`
show.fit logical indicating whether regression fit curves must be plotted
dis regression design matrix
step.method stepwise regression method to fit models for cluster mean profiles. Can be either "backward", "forward", "two.ways.backward" or "two.ways.forward"
min.obs  minimal number of observations for a gene to be included in the analysis
alfa    significance level used for variable selection in the stepwise regression
nvar.correction  argument for correcting T.fit significance level. See T.fit
show.lines  logical indicating whether a line must be drawn joining plotted data points for each group
iter.max    maximum number of iterations when cluster.method is kmeans
summary.mode the method PlotGroups takes to condensate expression information when more than one gene is present in the data. Possible values are "representative" and "median"
color.mode  color scale for plotting profiles. Can be either "rainbow" or "gray"
cexlabel    graphical parameter magnification to be used for x labels in plotting functions
legend      logical indicating whether legend must be added when plotting profiles
main        plot title
ylim        range of the y axis to be used by PlotProfiles and PlotGroups
newX11      when TRUE, plot each type of plot in a different graphical device
...         other graphical function argument

Details

Data can be provided either as a single data matrix of expression values, or a get.siggenes object. In the later case the other argument of the function can be taken directly from data.

Data clustering can be done on the basis of either the original expression values, the regression coefficients, or the t.scores. In case data is a get.siggenes object, this is given by providing the element names of the list c("sig.profiles","coefficients","t.score") of their list position (1,2 or 3).

Value

Experiment wide gene profiles and by group profiles plots are generated for each data cluster in the graphical device.

cut        vector indicating gene partitioning into clusters
c.algo.used clustering algorithm used for data partitioning
groups     groups matrix used for plotting functions

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References


See Also

PlotProfiles, PlotGroups
### GENERATE TIME COURSE DATA

#### Function to generate time course data

```r
tc.GENE <- function(n, r,
 var11 = 0.01, var12 = 0.01, var13 = 0.01,
 var21 = 0.01, var22 = 0.01, var23 = 0.01,
 var31 = 0.01, var32 = 0.01, var33 = 0.01,
 var41 = 0.01, var42 = 0.01, var43 = 0.01,
 a1 = 0, a2 = 0, a3 = 0, a4 = 0,
 b1 = 0, b2 = 0, b3 = 0, b4 = 0,
 c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
 tc.dat <- NULL
 for (i in 1:n) {
 Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
 Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
 Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
 Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
 gene <- c(Ctl, Tr1, Tr2, Tr3)
 tc.dat <- rbind(tc.dat, gene)
 }
 tc.dat
}
```

#### Function to create time course data

```r
Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE(n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN

Function to create experimental design

```r
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
```

Function to visualize experimental design

```r
see.genes(tc.DATA, edesign = edesign, k = 4, main = "Time Course")
```

This will show the regression fit curve
dise <- make.design.matrix(edesign)

Examples

```r
# This will show the regression fit curve
dise <- make.design.matrix(edesign)
```
stepback

Fitting a linear model by backward-stepwise regression

Description

stepback fits a linear regression model applying a backward-stepwise strategy.

Usage

```r
stepback(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001 )
```

Arguments

- `y` : dependent variable
- `d` : data frame containing by columns the set of variables that could be in the selected model
- `alfa` : significance level to decide if a variable stays or not in the model
- `family` : the distribution function to be used in the glm model
- `epsilon` : argument to pass to `glm.control`, convergence tolerance in the iterative process to estimate de glm model

Details

The strategy begins analysing a model with all the variables included in `d`. If all variables are statistically significant (all variables have a p-value less than `alfa`) this model will be the result. If not, the less statistically significant variable will be removed and the model is re-calculated. The process is repeated up to find a model with all the variables statistically significant.

Value

stepback returns an object of the class `lm`, where the model uses `y` as dependent variable and all the selected variables from `d` as independent variables.

The function `summary` are used to obtain a summary and analysis of variance table of the results. The generic accessor functions `coefficients, effects, fitted.values` and `residuals` extract various useful features of the value returned by `lm`.

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

See Also

`lm, step, stepfor, two.ways.stepback, two.ways.stepfor`
Examples

```r
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(rep(c(1:12), each = 3))
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

## expression vector
y <- c(0.082, 0.021, 0.010, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
      -0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
      -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)
s.fit <- stepback(y = y, d = dis)
summary(s.fit)
```

Description

`stepfor` fits a linear regression model applying forward-stepwise strategy.

Usage

```r
stepfor(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001 )
```

Arguments

- **y**: dependent variable
- **d**: data frame containing by columns the set of variables that could be in the selected model
- **alfa**: significance level to decide if a variable stays or not in the model
- **family**: the distribution function to be used in the glm model
- **epsilon**: argument to pass to glm.control, convergence tolerance in the iterative process to estimate glm model

Details

The strategy begins analysing all the possible models with only one of the variables included in d. The most statistically significant variable (with the lowest p-value) is included in the model and then it is considered to introduce in the model another variable analysing all the possible models with two
stepfor

variables (the selected variable in the previous step plus a new variable). Again the most statistically significant variable (with lowest p-value) is included in the model. The process is repeated till there are no more statistically significant variables to include.

Value

stepfor returns an object of the class lm, where the model uses y as dependent variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

See Also

lm, step, stepback, two.ways.stepback, two.ways.stepfor

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(rep(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.013, 0.077, 0.042, -0.056, -0.232, -0.014, -0.040,
 -0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
 -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- stepfor(y = y, d = dis)
summary(s.fit)
Description

suma2Venn transforms a matrix or a data frame with characters into a list to draw and display a Venn diagram with up to 7 sets

Usage

suma2Venn(x, size = 30, cexil = 0.9, cexsn = 1, zcolor = heat.colors(ncol(x)), ...)

Arguments

x matrix or data frame of character values
size Plot size, in centimeters
cexil Character expansion for the intersection labels
cexsn Character expansion for the set names
zcolor A vector of colors for the custom zones
... Additional plotting arguments for the venn function

Details

suma2Venn creates a list with the columns of a matrix or a data frame of characters which can be taken by the venn to generate a Venn Diagram

Value

suma2Venn returns a Venn Plot such as that created by the venn function

Author(s)

Maria J. Nueda, mj.nueda@ua.es

See Also

venn

Examples

A <- c("a","b","c", "d", "e", NA, NA)
B <- c("a","b","f", NA, NA, NA, NA)
C <- c("a","b","e","f", "h", "i", "j", "k")
x <- cbind(A, B, C)
suma2Venn(x)
T.fit

Makes a stepwise regression fit for time series gene expression experiments

Description

T.fit selects the best regression model for each gene using stepwise regression.

Usage

```r
t.fit(data, design = data$dis, step.method = "backward", min.obs = data$min.obs, alfa = data$Q, nvar.correction = FALSE, family = gaussian(), epsilon=0.00001)
```

Arguments

- **data**
 can either be a `p.vector` object or a matrix containing expression data with the same requirements as for the `p.vector` function
- **design**
 design matrix for the regression fit such as that generated by the `make.design.matrix` function. If data is a `p.vector` object, the same design matrix is used by default
- **step.method**
 argument to be passed to the step function. Can be either "backward", "forward", "two.ways.backward" or "two.ways.forward"
- **min.obs**
 genes with less than this number of true numerical values will be excluded from the analysis
- **alfa**
 significance level used for variable selection in the stepwise regression
- **nvar.correction**
 argument for correcting `T.fit` significance level. See details
- **family**
 the distribution function to be used in the glm model. It must be the same used in `p.vector`
- **epsilon**
 argument to pass to `glm.control`, convergence tolerance in the iterative process to estimate de glm model

Details

In the maSigPro approach `p.vector` and `T.fit` are subsequent steps, meaning that significant genes are first selected on the basis of a general model and then the significant variables for each gene are found by step-wise regression.

The step regression can be "backward" or "forward" indicating whether the step procedure starts from the model with all or none variables. With the "two.ways.backward" or "two.ways.forward" options the variables are both allowed to get in and out. At each step the p-value of each variable is computed and variables get in/out the model when this p-value is lower or higher than given threshold alfa. When nva.correction is TRUE the given significance level is corrected by the number of variables in the model

Value

- **sol**
 matrix for summary results of the stepwise regression. For each selected gene the following values are given:
 - p-value of the regression ANOVA
 - R-squared of the model
• p-value of the regression coefficients of the selected variables

sig.profiles expression values for the genes contained in sol

coefficients matrix containing regression coefficients for the adjusted models

groups.coeffs matrix containing the coefficients of the implicit models of each experimental group

variables variables in the complete regression model

G total number of input genes

g number of genes taken in the regression fit

dat input analysis data matrix

dis regression design matrix

step.method imputed step method for stepwise regression

edesign matrix of experimental design

influ.info data frame of genes containing influential data

Author(s)

Ana Conesa, <aconesa@cipf.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

See Also

p.vector, *step*

Examples

GENERATE TIME COURSE DATA

generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
 var11 = 0.01, var12 = 0.01, var13 = 0.01,
 var21 = 0.01, var22 = 0.01, var23 =0.01,
 var31 = 0.01, var32 = 0.01, var33 = 0.01,
 var41 = 0.01, var42 = 0.01, var43 = 0.01,
 a1 = 0, a2 = 0, a3 = 0, a4 = 0,
 b1 = 0, b2 = 0, b3 = 0, b4 = 0,
 c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
 tc.dat <- NULL
 for (i in 1:n) {
 Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
 Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
 Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
 Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
 gene <- c(Ctl, Tr1, Tr2, Tr3)

 tc.dat <- NULL
}
two.ways.stepback

Fitting a linear model by backward-stepwise regression

two.ways.stepback fits a linear regression model applying backward-stepwise strategy.

Usage

two.ways.stepback(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments

y dependent variable
two.ways.stepback

d data frame containing by columns the set of variables that could be in the selected model
alfa significance level to decide if a variable stays or not in the model
family the distribution function to be used in the glm model
epsilon argument to pass to glm.control, convergence tolerance in the iterative process to estimate glm model

Details

The strategy begins analysing a model with all the variables included in d. If all the variables are statistically significant (all the variables have a p-value less than alfa) this model will be the result. If not, the less statistically significant variable will be removed and the model is re-calculated. The process is repeated up to find a model with all the variables statistically significant (p-value < alpha). Each time that a variable is removed from the model, it is considered the possibility of one or more removed variables to come in again.

Value

two.ways.stepback returns an object of the class \texttt{lm}, where the model uses y as dependent variable and all the selected variables from d as independent variables.

The function \texttt{summary} are used to obtain a summary and analysis of variance table of the results. The generic accessor functions \texttt{coefficients, effects, fitted.values} and \texttt{residuals} extract various useful features of the value returned by \texttt{lm}.

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

See Also

\texttt{lm, step, stepfor, stepback, two.ways.stepfor}

Examples

```r
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

## expression vector
```
two.ways.stepfor

y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.042, -0.056, -0.232, -0.014, -0.040, -0.055, 0.150, -0.027, 0.064, -0.108, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931, -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- two.ways.stepback(y = y, d = dis)
summary(s.fit)

two.ways.stepfor

Fitting a linear model by forward-stepwise regression

Description
two.ways.stepfor fits a linear regression model applying forward-stepwise strategy.

Usage
two.ways.stepfor(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments
y dependent variable
d data frame containing by columns the set of variables that could be in the selected model
alfa significance level to decide if a variable stays or not in the model
family the distribution function to be used in the glm model
epsilon argument to pass to glm.control, convergence tolerance in the iterative process to estimate de glm model

Details
The strategy begins analysing all the possible models with only one of the variables included in d. The most statistically significant variable (with the lowest p-value) is included in the model and then it is considered to introduce in the model another variable analysing all the possible models with two variables (the selected variable in the previous step plus a new variable). Again the most statistically significant variable (with lowest p-value) is included in the model. The process is repeated till there are no more statistically significant variables to include. Each time that a variable enters the model, the p-values of the current model variables is recalculated and non significant variables will be removed.

Value
two.ways.stepfor returns an object of the class lm, where the model uses y as dependent variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by lm.

Author(s)
Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es
References

See Also

lm, step, stepback, stepfor, two.ways.stepback

Examples

```r
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

## expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.042, -0.056, -0.232, -0.014, -0.040, -0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931, -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)
s.fit <- two.ways.stepfor(y = y, d = dis)
summary(s.fit)
```
Index

*Topic **UsersGuide**
 * UsersGuide, maSigProUsersGuide, 17

*Topic **aplot**
 * PlotGroups, 21
 * PlotProfiles, 23
 * see.genes, 27
 * suma2Venn, 33

*Topic **arith**
 * average.rows, 2
 * i.rank, 10
 * position, 25

*Topic **datasets**
 * data.abiotic, 3
 * edesign.abiotic, 4
 * edesignCT, 5
 * edesignDR, 6
 * NBdata, 17
 * NBdesign, 18

*Topic **design**
 * make.design.matrix, 11

*Topic **manip**
 * get.siggenes, 7
 * maSigPro, 12
 * see.genes, 27

*Topic **misc**
 * reg.coeffs, 26

*Topic **models**
 * maSigPro, 12
 * T.fit, 34

*Topic **regression**
 * make.design.matrix, 11
 * p.vector, 19
 * stepback, 30
 * stepfor, 31
 * T.fit, 34
 * two.ways.stepback, 36
 * two.ways.stepfor, 38

 * average.rows, 2, 7, 8, 14
 * coefficients, 30, 32, 37, 38
 * data.abiotic, 3
 * edesign.abiotic, 4
 * edesignCT, 5
 * edesignDR, 6
 * effects, 30, 32, 37, 38
 * fitted.values, 30, 32, 37, 38
 * get.siggenes, 7, 12–15, 27, 28
 * hclust, 27
 * i.rank, 10
 * kmeans, 28
 * lm, 20, 30, 32, 37–39
 * make.design.matrix, 11, 12–15, 19, 34
 * maSigPro, 12
 * maSigProUsersGuide, 17
 * NBdata, 17
 * NBdesign, 18
 * order, 10
 * p.vector, 12–15, 19, 34, 35
 * PlotGroups, 14, 21, 24, 28
 * PlotProfiles, 14, 23, 23, 28
 * position, 25
 * rank, 10
 * reg.coeffs, 26
 * residuals, 30, 32, 37, 38
 * see.genes, 12–15, 27
 * step, 30, 32, 35, 37, 39
 * stepback, 30, 32, 37, 39
 * stepfor, 30, 31, 37, 39
 * suma2Venn, 33
 * summary, 30, 32, 37, 38
 * T.fit, 12, 13, 15, 20, 22, 28, 34, 34
 * two.ways.stepback, 30, 32, 36, 39
 * two.ways.stepfor, 30, 32, 37, 38
 * venn, 33