Package ‘maftools’
April 26, 2017

Type Package
Title Summarize, Analyze and Visualize MAF Files
Version 1.2.0
Date 2015-12-14
Author Anand Mayakonda <anand_mt@hotmail.com>
Maintainer Anand Mayakonda <anand_mt@hotmail.com>
Description Analyze and visualize Mutation Annotation Format (MAF) files from large scale sequencing studies. This package provides various functions to perform most commonly used analyses in cancer genomics and to create feature rich customizable visualizations with minimal effort.

URL https://github.com/PoisonAlien/maftools

BugReports https://github.com/PoisonAlien/maftools/issues
License MIT + file LICENSE
LazyData TRUE
Depends R (>= 3.3)
Imports data.table, ggplot2(>= 2.0), cowplot, cometExactTest, RColorBrewer, NMF, ggrepel, methods, ComplexHeatmap, mclust, VariantAnnotation, Biostrings, Rsamtools, rjson, grid, DPpackage, wordcloud, grDevices, changepoint, gridExtra, survival

RoxygenNote 5.0.1
Suggests knitr, rmarkdown

VignetteBuilder knitr

biocViews DataRepresentation, DNASeq, Visualization, DriverMutation, VariantAnnotation, FeatureExtraction, Classification, SomaticMutation, Sequencing, FunctionalGenomics

NeedsCompilation no

R topics documented:

annovarToMaf .. 2
cOncoplot ... 4
extractSignatures .. 5
forestPlot ... 6
annovarToMaf

Converts annovar annotations into MAF.

Description

Converts variant annotations from Annovar into a basic MAF.
annovarToMaf

Usage

annovarToMaf(annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL, table = "refGene", basename = NULL, sep = "\t", MAFobj = FALSE)

Arguments

annovar
input annovar annotation file.
Center
Center field in MAF file will be filled with this value. Default NA.
refBuild
NCBI_Build field in MAF file will be filled with this value. Default hg19.
tsbCol
column name containing Tumor_Sample_Barcode or sample names in input file.
table
reference table used for gene-based annotations. Can be 'ensGene' or 'refGene'. Default 'refGene'
basename
If provided writes resulting MAF file to an output file.
sep
field separator for input file. Default tab seperated.
MAFobj
If TRUE, returns results as an MAF object.

Details

Annovar is one of the most widely used Variant Annotation tools in Genomics. Annovar output is generally in a tabular format with various annotation columns. This function converts such annovar output files into MAF. This function requires that annovar was run with gene based annotation as a first operation, before including any filter or region based annotations. Please be aware that this function performs no transcript prioritization.

e.g. table_annovar.pl example/ex1.avinput humandb/ -buildver hg19 -out myanno -remove -protocol (refGene),cytoBand,dbnsfp30a -operation (g),r,f -nastring NA

This function mainly uses gene based annotations for processing, rest of the annotation columns from input file will be attached to the end of the resulting MAF.

Value

MAF table.

References

Examples

var.annovar <- system.file("extdata", "variants.hg19_multianno.txt", package = "maftools")
var.annovar.maf <- annovarToMaf(annovar = var.annovar, Center = 'CSI-NUS', refBuild = 'hg19',
tsbCol = 'Tumor_Sample_Barcode', table = 'ensGene')
coOncoplot

Draw two oncplots side by side for cohort comparison.

Description
Draw two oncplots side by side for cohort comparison.

Usage
```
coOncoplot(m1, m2, genes = NULL, colors = NULL, removeNonMutated = TRUE,
           m1Name = NULL, m2Name = NULL)
```

Arguments
- **m1**: first MAF object
- **m2**: second MAF object
- **genes**: draw these genes. Default plots top 5 mutated genes from two cohorts.
- **colors**: named vector of colors for each Variant_Classification.
- **removeNonMutated**: Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.
- **m1Name**: optional name for first cohort
- **m2Name**: optional name for second cohort

Details
Draws two oncplots side by side to display difference between two cohorts.

Value
Returns nothing. Just draws plot.

Examples
```
# Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
## Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
## Plot
coOncoplot(m1 = primary.apl, m2 = relapse.apl, m1Name = "Primary APL", m2Name = "Relapse APL")
dev.off()
```
extractSignatures

Extract mutational signatures from trinucleotide context.

Description
Decompose a matrix of 96 substitution classes into n signatures.

Usage
extractSignatures(mat, n = NULL, nTry = 6, plotBestFitRes = FALSE, parallel = NULL)

Arguments
- **mat**: Input matrix of dimension nx96 generated by `trinucleotideMatrix`
- **n**: decompose matrix into n signatures. Default NULL. Tries to predict best value for n by running NMF on a range of values and chooses based on cophenetic correlation coefficient.
- **nTry**: tries up to this number of signatures before choosing best n. Default 6.
- **plotBestFitRes**: plots consensus heatmap for range of values tried. Default FALSE
- **parallel**: calls to .opt argument of `nmf`. e.g. 'P4' for using 4 cores. See note on `nmf` for MAC users.

Details
This function decomposes a non-negative matrix into n signatures. Extracted signatures are compared against 30 experimentally validated signatures by calculating cosine similarity. See http://cancer.sanger.ac.uk/cosmic/signatures for details.

Value
a list with decomposed scaled signatures, signature contributions in each sample and a cosine similarity table against validated signatures.

See Also
- `trinucleotideMatrix`
- `plotSignatures`

Examples
```r
## Not run:
# laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa', prefix = 'chr',
#     add = TRUE, useSyn = TRUE)
# laml.sign <- extractSignatures(mat = laml.tnm, plotBestFitRes = FALSE)
## End(Not run)
```
forestPlot

Description

Draw forest plot for differences between cohorts.

Usage

```r
ggplot2::ggplot2::forestPlot(mafCompareRes, pVal = 0.05, show = NULL, color = NULL, file = NULL, width = 5, height = 6)
```

Arguments

- `mafCompareRes`: results from `mafCompare`.
- `pVal`: p-value threshold. Default 0.05.
- `show`: can be either `stat` or `pval`.
- `color`: vector of colors for cohorts. Default NULL.
- `file`: basename for output file. Plot will saved to an output pdf.
- `width`: width of plot to be generated.
- `height`: height of plot to be generated.

Details

Plots results from `mafCompare` as a forest plot with x-axis as log10 converted odds ratio and differentially mutated genes on y-axis.

Value

`ggplot` object of the plot.

See Also

- `mafCompare`

Examples

```r
## Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")

## Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)

## Perform analysis and draw forest plot.
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary', m2Name = 'Relapse', minMut = 5)
forestPlot(mafCompareRes = pt.vs.rt, show = 'stat')
```
geneCloud

Plots word cloud of mutated genes or altered cytobands with size proportional to the event frequency.

Usage

```r
geneCloud(input, minMut = 3, col = NULL, top = NULL, genesToIgnore = NULL, ...)
```

Arguments

- `input`: an MAF or GISTIC object generated by `read.maf` or `readGistic`
- `minMut`: Minimum number of samples in which a gene is required to be mutated.
- `col`: vector of colors to choose from.
- `top`: Just plot these top n number of mutated genes.
- `genesToIgnore`: Ignore these genes.
- `...`: Other options passed to `wordcloud`

Value

nothing.

Examples

```r
laml.input <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.input, useAll = FALSE)
geneCloud(input = laml, minMut = 5)
```

genesToBarcodes

Extracts Tumor Sample Barcodes where the given genes are mutated.

Description

Extracts Tumor Sample Barcodes where the given genes are mutated.

Usage

```r
genesToBarcodes(maf, genes = NULL, justNames = FALSE)
```

Arguments

- `maf`: an MAF object generated by `read.maf`
- `genes`: Hogo_Symbol for which sample names to be extracted.
- `justNames`: if TRUE, just returns samples names instead of summarized tables.
getCytobandSummary

Value

list of data.tables with samples in which given genes are mutated.

Examples

getCytobandSummary(laml.gistic)

Description

extract cytoband summary from GISTIC object

Usage

getcytobandSummary(x)

Arguments

x An object of class GISTIC

Value

summarized gistic results by altered cytobands.

Examples

getCytobandSummary(all.lesions, amp.genes, del.genes, laml.gistic)
getFields

Description
extract available fields from MAF object

Usage
```r
getFields(x)
```

S4 method for signature 'MAF'
```r
getFields(x)
```

Arguments

- `x` An object of class MAF

Value
Field names in MAF file

Examples
```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getFields(x = laml)
```

getGeneSummary

Description
extract gene summary from MAF or GISTIC object

Usage
```r
getGeneSummary(x)
```

S4 method for signature 'MAF'
```r
getGeneSummary(x)
```

S4 method for signature 'GISTIC'
```r
getGeneSummary(x)
```

Arguments

- `x` An object of class MAF or GISTIC
getSampleSummary

Value

gene summary table

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getGeneSummary(laml)
```

getSampleSummary

extract sample summary from MAF or GISTIC object

Description

extract sample summary from MAF or GISTIC object

Usage

```r
getSampleSummary(x)
```

```r
## S4 method for signature 'MAF'
getSampleSummary(x)
```

```r
## S4 method for signature 'GISTIC'
getSampleSummary(x)
```

Arguments

- `x` An object of class MAF or GISTIC

Value

sample summary table

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
getSampleSummary(x = laml)
```
GISTIC-class

Class GISTIC

Description

S4 class for storing summarized MAF.

Slots

data data.table of summarized GISTIC file.
cnv.summary table containing alterations per sample
cytoband.summary table containing alterations per cytoband
gene.summary table containing alterations per gene
cnMatrix character matrix of dimension n*m where n is number of genes and m is number of samples
numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of samples
summary table with basic GISTIC summary stats
classCode mapping between numeric values in numericMatrix and copy number events.

See Also

getGeneSummary getSampleSummary getCytobandSummary

gisticPlot

Plot gistic results.

Description

takes output generated by readGistic and draws a plot similar to oncoplot.

Usage

gisticPlot(gistic, top = NULL, showTumorSampleBarcodes = FALSE,
annotation = NULL, bandsToIgnore = NULL, removeNonAltered = FALSE,
colors = NULL, fontSize = 10)

Arguments

gistic an GISTIC object generated by readGistic
top how many top cytobands to be drawn. defaults to all.
showTumorSampleBarcodes logical to include sample names.
annotation data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.
bandsToIgnore do not show these bands in the plot Default NULL.
icgcSimpleMutationToMAF

Converts ICGC Simple Somatic Mutation format file to MAF

Description

Converts ICGC Simple Somatic Mutation format file to Mutation Annotation Format. Basic fields are converted as per MAF specifications, rest of the fields are retained as in the input file. Ensemble gene IDs are converted to HGNC Symbols. Note that by default Simple Somatic Mutation format contains all affected transcripts of a variant resulting in multiple entries of the same variant in same sample. It is hard to choose a single affected transcript based on annotations alone and by default this program removes repeated variants as duplicated entries. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

Usage

icgcSimpleMutationToMAF(icgc, basename = NA, MAFobj = FALSE, removeDuplicatedVariants = TRUE, addHugoSymbol = FALSE)
inferHeterogeneity

Arguments

icgc
Input data in ICGC Simple Somatic Mutation format. Can be gz compressed.

basename
If given writes to output file with basename.

MAFobj
If TRUE returns results as an MAF object.

removeDuplicatedVariants
removes repeated variants in a particular sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE.

addHugoSymbol
If TRUE replaces ensemble gene IDs with Hugo_Symbols. Default FALSE.

Details

ICGC Simple Somatic Mutation format specification can be found here: http://docs.icgc.org/submission/guide/icgc-simple-somatic-mutation-format/

Value

tab delimited MAF file.

Examples

```r
esca.icgc <- system.file("extdata", "simple_somatic_mutation.open.ESCA-CN.sample.tsv.gz", package = "maftools")
esca.maf <- icgcSimpleMutationToMAF(icgc = esca.icgc)
```

Description

Clusters variants based on Variant Allele Frequencies (VAF).

takes output generated by read.maf and clusters variants to infer tumor heterogeneity. This function requires VAF for clustering and density estimation. VAF can be on the scale 0-1 or 0-100. Optionally if copy number information is available, it can be provided as a segmented file (e.g, from Circular Binary Segmentation). Those variants in copy number altered regions will be ignored.

Usage

```r
inferHeterogeneity(maf, tsb = NULL, top = 5, vafCol = NULL, dirichlet = FALSE, segFile = NULL, ignChr = NULL, minVaf = 0, maxVaf = 1)
```

Arguments

maf
an MAF object generated by read.maf

tsb
specify sample names (Tumor_Sample_Barcodes) for which clustering has to be done.

top
if tsb is NULL, uses top n number of most mutated samples. Defaults to 5.

vafCol
manually specify column name for vafs. Default looks for column 't_vaf'

dirichlet
If TRUE uses nonparametric dirichlet process for clustering. Default FALSE, uses finite mixture models.
segFile

path to CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).

ignChr

ignore these chromosomes from analysis. e.g, sex chromosomes chrX, chrY. Default NULL.

minVaf

filter low frequency variants. Low vaf variants maybe due to sequencing error. Default 0. (on the scale of 0 to 1)

maxVaf

filter high frequency variants. High vaf variants maybe due to copy number alterations or impure tumor. Default 1. (on the scale of 0 to 1)

Details

This function clusters variants based on VAF to estimate univariate density and cluster classification. There are two methods available for clustering. Default using parametric finite mixture models and another method using nonparametric infinite mixture models (Dirichlet process).

Value

list of clustering tables.

References

See Also

plotClusters

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA.AB.2972', vafCol = 'i_TumorVAF_WU')

lollipopPlot

Draws lollipop plot of amino acid changes on to Protein structure.

Description

Draws lollipop plot of amino acid changes.
lollipopPlot

Usage

lollipopPlot(maf, gene = NULL, AACol = NULL, labelPos = NULL, showMutationRate = TRUE, fn = NULL, showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, repel = FALSE, collapsePosLabel = TRUE, legendTxtSize = 10, labPosSize = 2, labPosAngle = 0, domainLabelSize = 2.5, printCount = FALSE, colors = NULL, domainColors = NULL, labelOnlyUniqueDoamins = TRUE, defaultYaxis = TRUE)

Arguments

maf an MAF object generated by read.maf
gene HGNC symbol for which protein structure to be drawn.
AACol manually specify column name for amino acid changes. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. Changes can be of any format i.e, can be a numeric value or HGVSp annotations (e.g; p.P459L, p.L2195Pfs*30 or p.Leu2195ProfsTer30)
labelPos Amino acid positions to label. If 'all', labels all variants.
showMutationRate Default TRUE
fn basename for plot file to be saved. If provided a pdf will be generated. Default NULL.
showDomainLabel Label domains within the plot. Default TRUE. If FALSE they will be annotated in legend.
cBioPortal Adds annotations similar to cBioPortals MutationMapper and collapse Variants into Truncating and rest.
refSeqID RefSeq transcript identifier for gene if known.
proteinID RefSeq protein identifier for gene if known.
repel If points are too close to each other, use this option to repel them. Default FALSE. Warning: naive method, might make plot ugly in case of too many variants!
collapsePosLabel Collapses overlapping labels at same position. Default TRUE
legendTxtSize Text size for legend. Default 10
labPosSize Text size for labels. Default 2
labPosAngle angle for labels. Defaults to horizontal 0 degree labels. Set to 90 for vertical; 45 for diagonal labels.
domainLabelSize text size for domain labels. Default 2.
printCount If TRUE, prints number of summarized variants for the given protein.
colors named vector of colors for each Variant_Classification. Default NULL.
domainColors Manual colors for protein domains
labelOnlyUniqueDoamins Default TRUE only labels unique doamins.
defaultYaxis If FALSE, just labels min and maximum y values on y axis.
Details

This function by default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change' in maf file. One can also manually specify field name containing amino acid changes.

Value

ggplot object of the plot, which can be further modified.

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')
```

MAF-class

Class MAF

Description

S4 class for storing summarized MAF.

Slots

data data.table of original MAF file.
variants.per.sample table containing variants per sample
variant.type.summary table containing variant types per sample
variant.classification.summary table containing variant classification per sample
gene.summary table containing variant classification per gene
oncoMatrix character matrix of dimension n*m where n is number of genes and m is number of variants
numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of variants
summary table with basic MAF summary stats
classCode mapping between numeric values in numericMatrix and Variant Classification
maf.silent subset of main MAF containing only silent variants

See Also

geneSummary getSampleSummary getFields
mafCompare

compare two cohorts (MAF).

Description

compare two cohorts (MAF).

Usage

mafCompare(m1, m2, m1Name = NULL, m2Name = NULL, minMut = 5)

Arguments

m1
first MAF object

m2
second MAF object

m1Name
optional name for first cohort

m2Name
optional name for second cohort

minMut
Consider only genes with minimum this number of samples mutated in atleast one of the cohort for analysis. Helpful to ignore single mutated genes. Default 5.

Details

Performs fisher test on 2x2 contingency table generated from two cohorts to find differentially mutated genes.

Value

result list

See Also

forestPlot

Examples

primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',
m2Name = 'Relapse', minMut = 5)
mafSurvival

Performs survival analysis

Description

Performs survival analysis by grouping samples from maf based on mutation status of given genes.

Usage

mafSurvival(maf, clinicalData, genes = NULL, time = "Time", Status = "Status", showConfInt = TRUE, addInfo = TRUE, col = c("maroon", "royalblue"), isTCGA = FALSE, textSize = 7, fn = NULL, width = 6, height = 6)

Arguments

maf an MAF object generated by read.maf
clinicalData data containing events and time to events.
genes gene names for which survival analysis needs to be performed.
time column name contining time in clinicalData
Status column name containing status of patients in clinicalData. e.g, Dead or Alive, 1 or 0.
showConfInt TRUE. Whether to show confidence interval in KM plot.
addInfo TRUE. Whether to show survival info in the plot.
col colors for plotting.
isTCGA FALSE. If data is from TCGA.
textSize Text size for surv table. Default 7.
fn NULL. If provided saves pdf plot with basename fn.
width width of plot to be saved. Default 6
height height of plot to be saved. Default 6

Details

This function takes MAF file and groups them based on mutation status associated with given gene(s) and performs survival analysis. Requires dataframe containing survival status and time to event. Make sure sample names match to Tumor Sample Barcodes from MAF file.

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.surv <- read.delim(system.file("extdata", "laml_survival.tsv", package = "maftools"))
mafSurvival(maf = laml, clinicalData = laml.surv, genes = 'DNMT3A', time = 'days_to_last_followup', Status =
math.score

Description

Calculates MATH scores from variant allele frequencies. Mutant-Allele Tumor Heterogeneity (MATH) score is a measure of intra-tumor genetic heterogeneity. High MATH scores are related to lower survival rates. This function requires vafs.

Usage

```r
def math.score(maf, plotFile = NULL, vafCol = NULL, sampleName = NULL, vafCutOff = 0.075)
```

Arguments

- `maf`: an MAF object generated by `read.maf`
- `plotFile`: file name for output plot.
- `vafCol`: manually specify column name for vafs. Default looks for column `t_vaf`.
- `sampleName`: sample name for which MATH score to be calculated. If NULL, calculates for all samples.
- `vafCutOff`: minimum vaf for a variant to be considered for score calculation. Default 0.075

Value

data.table with MATH score for every Tumor_Sample_Barcode

References

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.math <- math.score(maf = laml, vafCol = "TumorVAF_WU", sampleName = c("TCGA.AB.3009", "TCGA.AB.2849", "TCGA.AB.3002", "TCGA.AB.2972"))
```
mutExclusive

Performs exact test for mutual exclusive events.

Description

Performs statistical test between given set of genes for mutual exclusiveness.

Usage

```r
mutExclusive(maf, genes = NULL, top = 10)
```

Arguments

- `maf`: an MAF object generated by `read.maf`
- `genes`: A pair of genes between which test should be performed. If its null, test will be performed between all combinations of top ten genes.
- `top`: check for exclusiveness among top ‘n’ number of genes. Defaults to top 10 genes.

Value

Table with number of events in all possible combinations and p-value. Column header describes mutation status of gene1 and gene2 respectively. n.00 number of samples where both gene1 and gene2 are not mutated c.01 number of samples where gene1 is not mutated but gene2 is mutated and so on.

References

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
mutExclusive(maf = laml, top = 5)
```

oncodrive

Detect cancer driver genes based on positional clustering of variants.

Description

Clusters variants based on their position to detect disease causing genes.

Usage

```r
oncodrive(maf, AACol = NULL, minMut = 5, pvalMethod = "zscore", nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL)
```
oncodrive

Arguments

maf

an MAF object generated by \texttt{read.maf}

AACol

manually specify column name for amino acid changes. Default looks for field 'AAChange'

minMut

minimum number of mutations required for a gene to be included in analysis. Default 5.

pvalMethod

either zscore (default method for oncodriveCLUST), poisson or combined (uses lowest of the two pvalues).

nBgGenes

minimum number of genes required to estimate background score. Default 100. Do not change this unless its necessary.

bgEstimate

If FALSE skips background estimation from synonymous variants and uses predefined values estimated from COSMIC synonymous variants.

ignoreGenes

Ignore these genes from analysis. Default NULL. Helpful in case data contains large number of variants belonging to polymorphic genes such as mucins and TTN.

Details

This is the re-implimentation of algorithm defined in OncodriveCLUST article. Concept is based on the fact that most of the variants in cancer causing genes are enriched at few specific loci (aka hotspots). This method takes advantage of such positions to identify cancer genes. Cluster score of 1 means, a single hotspot hosts all observed variants. If you use this function, please cite OncodriveCLUST article.

Value

data table of genes ordered according to p-values.

References

See Also

\texttt{plotOncodrive}

Examples

\begin{verbatim}
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)
\end{verbatim}
oncoplot

draw an oncoplot

Description

takes output generated by read.maf and draws an oncoplot (aka waterfall plot).

Usage

oncoplot(maf, writeMatrix = FALSE, top = 20, genes = NULL, drawRowBar = TRUE, drawColBar = TRUE, showTumorSampleBarcodes = FALSE, annotation = NULL, annotationColor = NULL, genesToIgnore = NULL, removeNonMutated = TRUE, colors = NULL, fontSize = 10, sortByMutation = FALSE, sortByAnnotation = FALSE)

Arguments

maf an MAF object generated by read.maf
writeMatrix writes character coded matrix used to generate the plot to an output file. This can be used as an input for ComplexHeatmap oncoPrint function if you wish to customize the plot.
top how many top genes to be drawn. defaults to 20.
genes Just draw oncoplot for these genes. defaults to NULL.
drawRowBar logical plots barplot for each gene.
drawColBar logical plots barplot for each sample.
showTumorSampleBarcodes logical to include sample names.
annotation data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.
annotationColor list of colors to use for annotation. Default NULL.
genesToIgnore do not show these genes in Oncoplot. Default NULL.
removeNonMutated Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.
colors named vector of colors for each Variant_Classification.
sortByMutation Helpful in case of MAF was read along with copy number data. Default FALSE.
sortByAnnotation logical sort oncomatrix by provided annotations. Defaults to FALSE. This is mutually exclusive with sortByMutation.

Details

Takes maf file as input and plots it as a matrix. Any desired annotations can be added at the bottom of the oncoplot by providing annotation. Oncoplot can be sorted either by mutations or annotations using arguments sortByMutation and sortByAnnotation respectively.

Thanks to Ryan Morin for sortByAnnotation code.
oncostrip

Value
None.

See Also
oncostrip

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
oncoplot(maf = laml, top = 3)
```

doncostrip

draw an oncostrip similar to cBioportal oncoprinter output.

Description
draw an oncostrip similar to cBioportal oncoprinter output.

Usage

```r
oncostrip(maf, genes = NULL, sort = TRUE, sortByAnnotation = FALSE,
annotation = NULL, annotationColor = NULL, removeNonMutated = TRUE,
top = 5, showTumorSampleBarcodes = FALSE, colors = NULL)
```

Arguments

- `maf`: an MAF object generated by `read.maf`
- `genes`: draw oncoprint for these genes. default NULL. Plots top 5 genes.
- `sort`: logical sort oncomatrix for enhanced visualization. Defaults to TRUE.
- `sortByAnnotation`: logical sort oncomatrix by provided annotations. Defaults to FALSE. This is mutually exclusive with `sort`.
- `annotation`: data.frame with first column containing Tumor_Sample_Barcodes and rest of columns with annotations.
- `annotationColor`: list of colors to use for annotation. Default NULL.
- `removeNonMutated`: Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.
- `top`: how many top genes to be drawn. defaults to 5.
- `showTumorSampleBarcodes`: logical to include sample names.
- `colors`: named vector of colors for each Variant_Classification.

Value
None.
oncotate

Annotates given variants using oncotator api.

Description

Takes variants as input and annotates them using Broad’s oncotator api (http://www.broadinstitute.org/oncotator/). Output is a dataframe of annotated variants in maf format.

Input should be a five column file with chr, start, end, ref_allele, alt_allele (and so on, but only first five will used, rest will be attached to resulting maf file). Note: Time consuming if input is huge. Try to include necessary columns such as Tumor_Sample_Barcode along with above 5 fields.

Usage

oncotate(maflite, header = FALSE, basename = NULL)

Arguments

maflite input tsv file with chr, start, end, ref_allele, alt_allele columns. (rest of the columns, if present will be attached to the output maf)
header logical. Whether input has a header line. Default is FALSE.
basename NULL. if basename is given, annotations will be written to <basename>.maf file.

Value

returns a dataframe in maf format.

Examples

```r
sample.var = data.frame(chromosome = c('chr4', 'chr15'), Start = c(55589774, 41961117), end = c(55589774, 41961117), ref = c('A', 'TGGCTAA'), alt = c('G', '-'), Tumor_Sample_Barcode = c('fake_1', 'fake2'))
write.table(sample.var, 'sampleVars.txt', sep='\t',quote = FALSE, row.names = FALSE)
##var.maf <- oncotate(maflite = 'sampleVars.txt', header = TRUE)
```
Description

Takes MutSig results and compares them against PanCancer results.

Usage

```r
pancanComparision(mutsigResults, qval = 0.1, cohortName = "input", 
                  inputSampleSize = NULL, label = 1, normSampleSize = FALSE, 
                  file = NULL, width = 6, height = 6, pointSize = 3, labelSize = 3)
```

Arguments

- `mutsigResults`: MutSig results (usually sig_genes.txt). Can be gz compressed.
- `qval`: qvalue threshold to define SMG. Default 0.1
- `cohortName`: Input cohort name.
- `inputSampleSize`: Sample size from MAF file used to generate mutSig results. Optional.
- `label`: Default 1. Can be 1, 2 or 3.
- `normSampleSize`: normalizes gene sizes to draw bubble plot. Requires inputSampleSize. i.e, bubble sizes proportional to fraction of samples in which the gene is mutated.
- `file`: basename for output file (both raw data and plot are saved)
- `width`: width of the file to be saved.
- `height`: height of the file to be saved.
- `pointSize`: size for scatter plot. Default 1.
- `labelSize`: label text size. Default 3

Details

This function takes MutSig results and compares them against panCancer cohort (~5000 tumor samples from 21 cancer types). This analysis can reveal novel genes exclusively mutated in input cohort.

References

Examples

```r
laml.mutsig <- system.file("extdata", "LAML_sig_genes.txt.gz", package = "maftools")
pancanComparision(mutsigResults = laml.mutsig, qval = 0.1, cohortName = 'LAML', inputSampleSize = 200, label = 1)
```
pfamDomains

pfam domain annotation and summarization.

Description
Summarizes amino acid positions and annotates them with pfam domain information.

Usage
```
pfamDomains(maf = NULL, AACol = NULL, summarizeBy = "AAPos", top = 5,
            baseName = NULL, varClass = "nonSyn")
```

Arguments
- `maf`: an MAF object generated by `read.maf`
- `AACol`: manually specify column name for amino acid changes. Default looks for field 'AAChange'
- `summarizeBy`: Summarize domains by amino acid position or conversions. Can be "AAPos" or "AAChange"
- `top`: How many top mutated domains to label in the scatter plot. Defaults to 5.
- `baseName`: If given writes the results to output file. Default NULL.
- `varClass`: which variants to consider for summarization. Can be nonSyn, Syn or all. Default nonSyn.

Value
returns a list two tables summarized by amino acid positions and domains respectively. Also plots top 5 most mutated domains as scatter plot.

Examples
```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
pfamDomains(maf = laml, AACol = "Protein_Change")
```

plotCBSsegments

Plots segmented copy number data.

Description
Plots segmented copy number data.

Usage
```
plotCBSsegments(cbsFile = NULL, maf = NULL, tsb = NULL, chr = NULL,
                savePlot = FALSE, width = 6, height = 3, labelAll1 = FALSE,
                genes = NULL, ref.build = "hg19", writeTable = FALSE,
                removeXY = FALSE, color = NULL)
```
plotClusters

Arguments

cbsFile CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).

maf optional MAF

tsb If segmentation file contains many samples (as in gistic input), specify sample name here. Default plots all samples. If you are mapping maf, make sure sample names in Sample column of segmentation file matches to those Tumor_Sample_Barcodes in MAF.

chr Just plot this chromosome.

savePlot If true plot is saved as pdf.

width width of plot

height height of plot

labelAll If true and if maf object is specified, maps all mutations from maf onto segments. Default FALSE, maps only variants on copy number altered regions.

genes highlight only these variants

ref.build Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19.

writeTable If true and if maf object is specified, writes plot data with each variant and its corresponding copynumber to an output file.

removeXY don not plot sex chromosomes.

color Manually specify color scheme for chromosomes. Default NULL.

Details

this function takes segmented copy number data and plots it. If MAF object is specified, all mutations are highlighted on the plot.

Value

ggplot object

Examples

tcga.ab.009.seg <- system.file("extdata", "TCGA.AB.3009.hg19.seg.txt", package = "maftools")
plotCBSsegments(cbsFile = tcga.ab.009.seg)

plotClusters

Plot density plots from clutering results.

Description

Plots results from inferHeterogeneity.

Usage

plotClusters(clusters, tsb = NULL, genes = NULL, showCNvars = FALSE, savePlot = FALSE, width = 6, height = 5, colors = NULL)
Arguments

clusters clustering results from inferHeterogeneity
tsb sample to plot from clustering results. Default plots all samples from results.
genes genes to highlight on the plot. Can be a vector of gene names, CN_altered to label copy number altered varinats. or all to label all genes. Default NULL.
showCNvars show copy numbered altered variants on the plot. Default FALSE.
savePlot If TRUE saves plot to output pdf
width plot width. Default 6.
height plot height. Default 5.
colors manual colors for clusters. Default NULL.

Value
returns nothing.

See Also

inferHeterogeneity

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
seg = system.file("extdata", 'TCGA.AB.3009.hg19.seg.txt', package = 'maftools')
TCGA.AB.3009.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA.AB.3009',
segFile = seg, vafCol = 'i_TumorVAF_WU')
plotClusters(TCGA.AB.3009.clust, genes = c("NF1", "SUZ12"), showCNvars = TRUE)

plotGisticResults

Plot gistic results as a bubble plot.

Description
Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each bubble is according to -log10 transformed q values.

Usage

plotGisticResults(gistic, color = NULL, file = NULL, width = 6,
height = 5, txtSize = 3)

Arguments

gistic an object of class GISTIC generated by readGistic
color colors for Amp and Del events.
file if given saves plot as a pdf.
width width of the file to be saved.
height height of the file to be saved.
txtSize label size for bubbles.
plotmafSummary

Value
nothing

Examples
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes, isTCGA = TRUE)
plotGisticResults(gistic = laml.gistic)

plotmafSummary

Plots maf summary.

Description
Plots maf summary.

Usage
plotmafSummary(maf, file = NULL, rmOutlier = TRUE, dashboard = TRUE, titvRaw = TRUE, width = 6, height = 5, addStat = NULL, showBarcodes = FALSE, fs = 10, textSize = 2, color = NULL, statFontSize = 3, titvColor = NULL, top = 10)

Arguments
maf an MAF object generated by read.maf
file If given pdf file will be generated.
rmOutlier If TRUE removes outlier from boxplot.
dashboard If FALSE plots simple summary instead of dashboard style.
titvRaw TRUE. If FALSE plots simple summary instead of dashboard style.
width plot parameter for output file.
height plot parameter for output file.
addStat Can be either mean or median. Default NULL.
showBarcodes include sample names in the top bar plot.
fs base size for text. Default 10.
textSize font size if showBarcodes is TRUE. Default 2.
color named vector of colors for each Variant_Classification.
statFontSize font size if addStat is used. Default 3.
titvColor colors for SNV classifications.
top include top n genes dashboard plot. Default 10.

Value
Prints plot.
plotOncodrive

Description

Takes results from oncodrive and plots them as a scatter plot. Size of the gene shows number of clusters (hotspots), x-axis can either be an absolute number of variants accumulated in these clusters or a fraction of total variants found in these clusters. y-axis is fdr values transformed into -log10 for better representation. Labels indicate Gene name with number clusters observed.

Usage

plotOncodrive(res = NULL, fdrCutOff = 0.05, useFraction = FALSE)

Arguments

- res: results from oncodrive
- fdrCutOff: fdr cutoff to call a gene as a driver.
- useFraction: if TRUE uses a fraction of total variants as X-axis scale instead of absolute counts.

Value

a ggplot object which can be further modified.

See Also

oncodrive

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, useAll = FALSE)
plotmafSummary(maf = laml, addStat = "median")

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, useAll = FALSE)
plotmafSummary(maf = laml, addStat = "median")

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.sig <- oncodrive(maf = laml, AACol = "Protein_Change", minMut = 5)
plotOncodrive(res = laml.sig, fdrCutOff = 0.1)
Description

Plots decomposed mutational signatures as a barplot.

Usage

```r
plotSignatures(nmfRes = NULL, contributions = FALSE, color = NULL, ...)
```

Arguments

- `nmfRes`: results from `extractSignatures`
- `contributions`: If TRUE plots contribution of signatures in each sample.
- `color`: colors for each Ti/Tv conversion class. Default NULL
- `...`: further plot options passed to `barplot`

Value

ggplot object if contributions is TRUE

See Also

- `trinucleotideMatrix`

plotTiTv

Plot Transition and Transversion ratios.

Description

Takes results generated from `titv` and plots the Ti/Tv ratios and contributions of 6 mutational conversion classes in each sample.

Usage

```r
plotTiTv(res = NULL, plotType = "both", file = NULL, width = 6, height = 5, color = NULL, showBarcodes = FALSE, textSize = 2)
```

Arguments

- `res`: results generated by `titv`
- `plotType`: Can be 'bar', 'box' or 'both'. Defaults to 'both'
- `file`: basename for output file name. If given pdf will be generated.
- `width`: width of the plot, in inches.
- `height`: height of the plot, in inches.
- `color`: named vector of colors for each conversion class.
- `showBarcodes`: Whether to include sample names for barplot
- `textSize`: fontsize if showBarcodes is TRUE. Default 2.
plotVaf

Plots vaf distribution of genes

Description

Plots vaf distribution of genes as a boxplot or violinplot.

Usage

plotVaf(maf, vafCol = NULL, genes = NULL, violin = FALSE, top = 10,
orderByMedian = TRUE, flip = FALSE, fn = NULL, width = 6,
height = 5)

Arguments

- maf: an MAF object generated by read.maf
- vafCol: manually specify column name for vafs. Default looks for column 't_vaf'
- genes: specify genes for which plots has to be generated
- violin: if TRUE plots violin plot
- top: if genes is NULL plots top n number of genes. Defaults to 5.
- orderByMedian: Orders genes by decreasing median VAF. Default TRUE
- flip: if TRUE, flips axes. Default FALSE
- fn: Filename. If given saves plot as a output pdf. Default NULL.
- width: Width of plot to be saved. Default 6
- height: Height of plot to be saved. Default 5

Value

ggplot object which can be further modified.

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.titv <- titv(maf = laml, useSyn = TRUE)
plotTiTv(laml.titv)

plotVaf(maf = laml, vafCol = 't_TumorVAF_WU')
prepareMutSig
Prepares MAF file for MutSig analysis.

Description
Corrects gene names for MutSig compatibility.

Usage
prepareMutSig(maf, fn = NULL)

Arguments
- **maf**: an MAF object generated by `read.maf`
- **fn**: basename for output file. If provided writes MAF to an output file with the given basename.

Details
MutSig/MutSigCV is most widely used program for detecting driver genes. However, we have observed that covariates files (gene.covariates.txt and exome_full192.coverage.txt) which are bundled with MutSig have non-standard gene names (non Hugo_Symbols). This discrepancy between Hugo_Symbols in MAF and non-Hugo_symbols in covariates file causes MutSig program to ignore such genes. For example, KMT2D - a well known driver gene in Esophageal Carcinoma is represented as MLL2 in MutSig covariates. This causes KMT2D to be ignored from analysis and is represented as an insignificant gene in MutSig results. This function attempts to correct such gene symbols with a manually curated list of gene names compatible with MutSig covariates list.

Value
returns a MAF with gene symbols corrected.

Examples
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
prepareMutSig(maf = laml)

rainfallPlot
Rainfall plot to display kataegis or hyper mutated genomic regions.

Description
Plots inter variant distance as a function of genomic locus.

Usage
rainfallPlot(maf, tsb = NULL, detectChangePoints = FALSE,
ref.build = "hg19", color = NULL, savePlot = FALSE, width = 6,
height = 3, fontSize = 12, pointSize = 1)
Arguments

maf an MAF object generated by read.maf. Required.
tsb specify sample names (Tumor_Sample_Barcodes) for which plotting has to be done. If NULL, draws plot for most mutated sample.
detectChangePoints If TRUE, detectes genomic change points where potential kataegis are formed. Results are written to an output tab delimited file.
ref.build Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default hg19.
color named vector of colors for each conversion class.
savePlot If TRUE plot is saved to output pdf. Default FALSE.
width width of plot to be saved.
height height of plot to be saved.
fontSize Default 12.
pointSize Default 2.

Details

Note that detected change points are only loci where the distribution of inter-event distance changes. Segments may have to be manually inferred by adjacent change-points.

Value

returns ggplot object of the plot which can be further modified.

read.maf Read MAF files.

Description

Takes tab delimited MAF (can be plain text or gz compressed) file as an input and summarizes it in various ways. Also creates oncomatrix - helpful for visualization.

Usage

read.maf(maf, removeSilent = TRUE, useAll = TRUE,
gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL,
gisticDelGenesFile = NULL, cnTable = NULL,
removeDuplicatedVariants = TRUE, isTCGA = FALSE, verbose = TRUE)

Arguments

maf tab delimited MAF file. File can also be gz compressed. Required. Alternatively, you can also provide already read MAF file as a dataframe.
removeSilent logical. Whether to discard silent (variants with Low/Modifier consequences) mutations ("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron","RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA"). Default is TRUE.
read.maf

useAll logical. Whether to use all variants irrespective of values in Mutation_Status. Defaults to TRUE. If FALSE, only uses with values Somatic.

gisticAllLesionsFile All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Default NULL.

gisticAmpGenesFile Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL.

gisticDelGenesFile Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL.

cnTable Custom copynumber data if gistic results are not available. Input file should a tab seperated three column table containing gene name, Sample name and copy number status (either 'Amp' or 'Del'). Default NULL.

removeDuplicatedVariants removes repeated variants in a particular sample, mapped to multiple transcripts of same Gene. See Description. Default TRUE.

isTCGA Is input MAF file from TCGA source.

verbose TRUE logical. Default to be talkative and prints summary.

Details

This function takes MAF file as input and summarizes them. If copy number data is available, e.g from GISTIC, it can be provided too via arguments gisticAllLesionsFile, gisticAmpGenesFile, and gisticDelGenesFile. Copy number data can also be provided as a custom table containing Gene name, Sample name and Copy Number status.

Note that if input MAF file contains multiple affected transcripts of a variant, this function by default removes them as duplicates, while keeping single unique entry per variant per sample. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

FLAGS - If you get a note on possible FLAGS while reading MAF, it means some of the top mutated genes are fishy. These genes are often non-pathogenic and passengers, but are frequently mutated in most of the public exome studies. Examples of such genes include TTN, MUC16, etc. This note can be ignored without any harm, it’s only generated as to make user aware of such genes. See references for details on FLAGS.

Value

An object of class MAF.

References

See Also

plotmafSummary write.mafSummary

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
```
readGistic

Read and summarize gistic output.

Description
A little function to summarize gistic output files. Summarized output is returned as a list of tables.

Usage
readGistic(gisticAllLesionsFile, gisticAmpGenesFile = NULL,
gisticDelGenesFile = NULL, isTCGA = FALSE)

Arguments
- **gisticAllLesionsFile**
 All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Default NULL.
- **gisticAmpGenesFile**
 Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL.
- **gisticDelGenesFile**
 Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL.
- **isTCGA**
 Is the data from TCGA. Default FALSE.

Details
Requires output files generated from GISTIC. Gistic documentation can be found here ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTICDocumentation_standalone.htm

Value
A list of summarized data.

Examples
```r
call.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = call.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes)
```

subsetMaf

Subset MAF

Description
Subsets MAF based on given conditions.

Usage
subsetMaf(maf, includeSyn = FALSE, tsb = NULL, genes = NULL,
fields = NULL, query = NULL, mafObj = FALSE, isTCGA = FALSE)
Arguments

- `maf` an MAF object generated by `read.maf`
- `includeSyn` to include synonymous variants in output
- `tsb` subset by these samples (Tumor Sample Barcodes)
- `genes` subset by these genes
- `fields` include only these fields along with necessary fields in the output
- `query` query string. e.g. "Variant_Classification == 'Missense_Mutation'" returns only Missense variants.
- `mafObj` returns output as MAF class **MAF-class**. Default FALSE
- `isTCGA` Is input MAF file from TCGA source.

Value

subset table or an object of class **MAF-class**

See Also

`getFields`

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
## Select all Splice_Site mutations from DNMT3A and NPM1
subsetMaf(maf = laml, genes = c("DNMT3A", "NPM1"), query = "Variant_Classification == 'Splice_Site'")
## Select all variants with VAF above 30%
subsetMaf(maf = laml, query = "i_TumorVAF_WU > 30")
## Extract data for samples 'TCGA.AB.3009' and 'TCGA.AB.2933' but only include vaf filed.
subsetMaf(maf = laml, tsb = c('TCGA.AB.3009', 'TCGA.AB.2933'), fields = 'i_TumorVAF_WU')
```

Description

Compares mutation load in input MAF against all of 33 TCGA cohorts.

Usage

```r
tcgaCompare(maf, cohortName = NULL, primarySite = FALSE, col = c("gray70", "black"), medianCol = "red", fn = NULL, width = 8, height = 5, fontSize = 10)
```
Arguments

- **maf**: an MAF object generated by `read.maf`
- **cohortName**: name for the input MAF cohort. Default "Input"
- **primarySite**: If TRUE uses primary site of cancer as labels instead of TCGA project IDs. Default FALSE.
- **col**: color vector for length 2 TCGA cohorts and input MAF cohort. Default gray70 and black.
- **medianCol**: color for median line. Default red.
- **fn**: If provided saves plot to output pdf with basename fn. Default NULL.
- **width**: width for output plot
- **height**: height of output plot
- **fontSize**: base fontsize. Default 10.

Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
tcgaCompare(maf = laml, cohortName = "AML")
```

titv

Classifies SNPs into transitions and transversions

Description

takes output generated by read.maf and classifies Single Nucleotide Variants into Transitions and Transversions.

Usage

```r
titv(maf, useSyn = FALSE, plot = TRUE, file = NULL)
```

Arguments

- **maf**: an MAF object generated by `read.maf`
- **useSyn**: Logical. Whether to include synonymous variants in analysis. Defaults to FALSE.
- **plot**: plots a titv fractions. default TRUE.
- **file**: basename for output file name. If given writes summaries to output file. Default NULL.

Value

list of data.frames with Transitions and Transversions summary.

See Also

- `plotTiTv`
Examples

```r
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)
laml.titv = titv(maf = laml, useSyn = TRUE)
```

trinucleotideMatrix

Extract single 5' and 3' bases flanking the mutated site.

Description

Extract single 5' and 3' bases flanking the mutated site.

Usage

```r
trinucleotideMatrix(maf, ref_genome, prefix = NULL, add = TRUE, ignoreChr = NULL, useSyn = FALSE)
```

Arguments

- `maf`: an **MAF** object generated by `read.maf`
- `ref_genome`: faidx indexed reference fasta file.
- `prefix`: Prefix to add or remove from contig names in MAF file.
- `add`: If prefix is used, default is to add prefix to contig names in MAF file. If false prefix will be removed from contig names.
- `ignoreChr`: Chromosomes to remove from analysis. e.g. chrM
- `useSyn`: Logical. Whether to include synonymous variants in analysis. Defaults to FALSE.

Details

Extracts immediate 5’ and 3’ bases flanking the mutated site and classifies them into 96 substitution classes. This function loads reference genome into memory. Typical human genome occupies a peak memory of ~3 gb while extracting bases.

Value

A matrix of dimension nx96, where n is the number of samples in the MAF.

See Also

- `extractSignatures`

Examples

```r
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = "hg19.fa", prefix = "chr", add = TRUE, useSyn = TRUE)
## End(Not run)
```
vcr | Samll internal function to make complex events.

Description
Samll internal function to make complex events. Ignore this.

Usage
vcr(xstr, gis = FALSE)

Arguments
xstr character to split
gis Is input from gistic. Logical.

Value
split string

write.GisticSummary | Writes GISTIC summaries to output tab-delimited text files.

Description
Writes GISTIC summaries to output tab-delimited text files.

Usage
write.GisticSummary(gistic, basename = NULL)

Arguments
gistic an object of class GISTIC generated by readGistic
basename basename for output file to be written.

Value
None. Writes output as tab delimited text files.

See Also
readGistic

Examples
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
laml.gistic <- readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile = del.genes)
write.GisticSummary(gistic = laml.gistic, basename = 'laml')
write.mafSummary
*W*rites maf summaries to output tab-delimited text files.

Description
Writes maf summaries to output tab-delimited text files.

Usage
```r  
write.mafSummary(maf, basename = NULL)  
```

Arguments
- `maf` an MAF object generated by `read.maf`
- `basename` basename for output file to be written.

Value
None. Writes output as text files.

See Also
`read.maf`

Examples
```r  
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")  
laml <- read.maf(maf = laml.maf, removeSilent = TRUE, useAll = FALSE)  
write.mafSummary(maf = laml, basename = "laml")  
```
Index

annovarToMaf, 2
barplot, 31
coOncoplot, 4
extractSignatures, 5, 31, 39
forestPlot, 6, 17
geneCloud, 7
genesToBarcodes, 7
getCodeobandSummary, 8, 11
getCodeobandSummary, GISTIC-method (getCytobandSummary), 8
getFields, 9, 16, 37
getFields, MAF-method (getFields), 9
geneSummary, 9, 11, 16
geneSummary, GISTIC-method (geneSummary), 9
geneSummary, MAF-method (geneSummary), 9
geneSummary, MAFFelds (getGeneSummary), 9
geneSummary, SampleSummary, 10, 11, 16
geneSummary, SampleSummary, GISTIC-method (getSampleSummary), 10
geneSummary, SampleSummary, MAF-method (getSampleSummary), 10
GISTIC, 7, 11
GISTIC (GISTIC-class), 11
GISTIC-class, 11
gisticPlot, 11
icgcSimpleMutationToMAF, 12
inferHeterogeneity, 13, 28
lollipopPlot, 14
MAF, 3, 4, 7, 13, 15, 17–23, 26, 27, 29, 30, 32–34, 38, 39, 41
MAF (MAF-class), 16
MAF-class, 16
mafCompare, 6, 17
mafSurvival, 18
math.score, 19
mutExclusive, 20
nmm, 5
oncodrive, 20, 30
oncoplot, 22, 24
oncoPrint, 22
oncostrip, 12, 23, 24
oncotate, 24
pancanComparison, 25
pfamDomains, 26
plotCBSsegments, 26
plotClusters, 14, 27
plotGISTICResults, 28
plotMAFSummary, 29, 35
plotOncoDriv, 21, 30
plotSignatures, 5, 31
plotTiTv, 31, 38
plotVaf, 32
prepareMutSig, 33
rainfallPlot, 33
read.maf, 7, 13, 15, 18–22, 26, 29, 30, 32–34, 34, 37–39, 41
readGistic, 7, 11, 36, 40
subsetMaf, 36
tcgaCompare, 37
titv, 31, 32, 38
trinucleotideMatrix, 5, 31, 39
vcr, 40
wordcloud, 7
write.GISTICSummary, 40
write.mafSummary, 35, 41