Package ‘motifStack’

December 21, 2016

Type Package
Version 1.18.0
Date 2015-10-9
Title Plot stacked logos for single or multiple DNA, RNA and amino acid sequence
Author Jianhong Ou, Michael Brodsky, Scot Wolfe and Lihua Julie Zhu
Maintainer Jianhong Ou <jianhong.ou@umassmed.edu>
Imports XML, scales
Depends R (>= 2.15.1), methods, grImport, grid, MotIV, ade4, Biostrings
Suggests RUnit, BiocGenerics, MotifDb, RColorBrewer, BiocStyle, knitr
biocViews SequenceMatching, Visualization, Sequencing, Microarray, Alignment, ChIPchip, ChIPSeq, MotifAnnotation, DataImport
Description The motifStack package is designed for graphic representation of multiple motifs with different similarity scores. It works with both DNA/RNA sequence motif and amino acid sequence motif. In addition, it provides the flexibility for users to customize the graphic parameters such as the font type and symbol colors.
License GPL (>= 2)
Lazyload yes
VignetteBuilder knitr
NeedsCompilation no

R topics documented:

motifStack-package .. 2
colorset ... 2
DNAmotifAlignment .. 3
getRankedUniqueMotifs 4
highlightCol .. 5
mergeMotifs .. 5
motifCircos .. 6
motifCloud ... 8
motifPiles ... 10
motifStack-package

Plot stacked logos for single or multiple DNA, RNA and amino acid sequence

Description

motifStack is a package that is able to draw amino acid sequence as easy as to draw DNA/RNA sequence. motifStack provides the flexibility for users to select the font type and symbol colors. motifStack is designed for graphical representation of multiple motifs.

Author(s)

Jianhong Ou and Lihua Julie Zhu
Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>

Index

motifStack-package

motifSig-class
motifSig-methods
motifSignature
motifStack
ouNode-class
pcm-class
pcm-methods
pfm-class
pfm-methods
pfm2pwm
plotMotifLogo
plotMotifLogoA
plotMotifLogoStack
plotMotifLogoStackWithTree
plotMotifOverMotif
plotMotifStackWithPhylog
plotMotifStackWithRadialPhylog
plotXaxis
plotYaxis
readPCM
reorderUPGMAtree

colorset

retrieve color setting for logo

Description

retrieve color setting for logo

Usage

colorset(alphabet="DNA", colorScheme='auto')
DNAmotifAlignment

Arguments

- **alphabet**
 A character, 'DNA', 'RNA' or 'AA'

- **colorScheme**
 'auto', 'charge', 'chemistry', 'classic' or 'hydrophobicity' for AA, 'auto' or 'basepairing' for DNA or RNA

Value

A character vector of color scheme

Examples

```r
col <- colorset("AA", "hydrophobicity")
```

Description

align DNA motifs for plotting motifs stack

Usage

```r
DNAmotifAlignment(pfms, threshold=0.4, minimalConsensus=0,
                   rcpostfix="(RC)", revcomp=rep(TRUE, length(pfms)))
```

Arguments

- **pfms**
 a list of position frequency matrices. pfms must be a list of class pfm

- **threshold**
 information content cutoff threshold for useful positions

- **minimalConsensus**
 minimal length of consensus for alignment

- **rcpostfix**
 the postfix for reverse complements

- **revcomp**
 a logical vector to indicates whether the reverse complemet should be involved into alignment

Value

a list of aligned motifs

Examples

```r
pcms<-readPCM(file.path(find.package("motifStack"), "extdata"),"pcm$")
motifs<-lapply(pcms,pcm2pfm)
motifs<-DNAmotifAlignment(motifs)
```
getRankedUniqueMotifs

get the unique motif in each category grouped by distance

Description

to get the unique motif in a given category, eg by species.

Usage

getRankedUniqueMotifs(phylog, attr)

Arguments

phylog an object of class phylog
attr attribute used for category of motifs

Value

return a list:

uni.rank unique motif ranks
uni.length length of unique motif grouped by distance
uni.list unique motif names grouped by distance

Author(s)

Jianhong Ou

Examples

if(interactive()){
 library("MotifDb")
 matrix.fly <- query(MotifDb, "Dmelanogaster")
 matrix.human <- query(MotifDb, "Hsapiens")
 pfms <- c(as.list(matrix.fly), as.list(matrix.human))
 pfms <- pfms[sample(1:length(pfms), 100)]
 jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
 "extdata", "jaspar2010_PCC_SWU.scores"))
 d <- MotIV::motifDistances(lapply(pfms, pfm2pwm))
 hc <- MotIV::motifHclust(d, method="average")
 phylog <- hclust2phylog(hc)
 leaves <- names(phylog$leaves)
 attr <- gsub("^(.*?)_.*$", ",\1", leaves)
 getRankedUniqueMotifs(phylog, attr)
}
highlightCol

add alpha transparency value to a color

Description

An alpha transparency value can be specified to a color, in order to get better color for background.

Usage

highlightCol(col, alpha = 0.5)

Arguments

- **col**: vector of any of the three kinds of R color specifications, i.e., either a color name (as listed by colors()), a hexadecimal string of the form "#rrggbbaa" (see rgb), or a positive integer i meaning palette()[i].
- **alpha**: a value in [0, 1]

Value

a vector of colors in hexadecimal string of the form "#rrggbbaa".

Author(s)

Jianhong Ou

Examples

highlightCol(1:5, 0.3)
highlightCol(c("red", "green", "blue"), 0.3)

mergeMotifs

merge multiple motifs

Description

merge multiple motifs by calculate mean of each position

Usage

mergeMotifs(..., bgNoise=NA)

Arguments

- **...**: pcm or pfm objects
- **bgNoise**: if it is not NA, test will using a background by Dirichlet(1)-distributed random frequencies with weight bg.noise. The value of bgNoise should be a number in the range of 0 to 1, eg. 0.05
Value

a pfm object

Author(s)

Jianhong Ou

Examples

```r
pcms<-readPCM(file.path(find.package("motifStack"), "extdata"), "pcm$")
mergeMotifs(pcms)
```

```
| motifCircos          | plot sequence logo stacks with a radial phylogenic tree and multiple color rings |
```

Description

plot sequence logo stacks with a radial phylogenic tree and multiple color rings. The difference from plotMotifStackWithRadialPhylog is that it has more color setting and one more group of pfms.

Usage

```r
motifCircos(phylog, pfms=NULL, pfms2=NULL, R=2.5,
            r.tree=1, col.tree.bg=NULL, col.tree.bg.alpha=1,
            cnodes=0, labels.nodes=names(phylog$nodes), clabel.nodes=0,
            r.leaves=NA, cleaves=1, labels.leaves=names(phylog$leaves), clabel.leaves=1,
            col.leaves=rep("black", length(labels.leaves)),
            col.leaves.bg=NULL, col.leaves.bg.alpha=1,
            r.pfms=NA, r.pfms2=NA,
            r.rings=0, col.rings=list(),
            col.inner.label.circle=NULL, inner.label.circle.width=0.02,
            col.outer.label.circle=NULL, outer.label.circle.width=0.02,
            draw.box=FALSE,
            clockwise =FALSE, init.angle=if(clockwise) 90 else 0,
            angle=360, pfmNameSpliter=";", rcpostfix="(RC)",
            motifScale=c("linear", "logarithmic"), ic.scale=TRUE,
            plotIndex=FALSE, IndexCol="black", IndexCex=.8,
            groupDistance=NA, groupDistanceLineCol="red",
            plotAxis=FALSE)
```

Arguments

- **phylog**: an object of class phylog
- **pfms**: a list of objects of class pfm
- **pfms2**: a list of objects of class pfm
- **R**: radius of canvas
- **r.tree**: half width of the tree
- **col.tree.bg**: a vector of colors for tree background
col.tree.bg.alpha
 a alpha value [0, 1] of colors for tree background

cnodes
 a character size for plotting the points that represent the nodes, used with par("cex")*cnodes. If zero, no points are drawn

labels.nodes
 a vector of strings of characters for the nodes labels

clabel.nodes
 a character size for the nodes labels, used with par("cex")*clabel.nodes. If zero, no nodes labels are drawn

r.leaves
 width of the leaves

cleaves
 a character size for plotting the points that represent the leaves, used with par("cex")*cleaves. If zero, no points are drawn

labels.leaves
 a vector of strings of characters for the leaves labels

clabel.leaves
 a character size for the leaves labels, used with

col.leaves
 a vector of colors for leaves labels

col.leaves.bg
 a vector of colors for background of leaves labels

col.leaves.bg.alpha
 alpha value [0, 1] for the colors of backgroud of leaves labels

r.pfms
 width of the pfms

r.pfms2
 width of the pfms2

r.rings
 a vector of width of color rings

col.rings
 a list of color rings

col.inner.label.circle
 a vector of colors for inner cirlce of pfms

inner.label.circle.width
 width for inner circle of pfms

col.outer.label.circle
 a vector of colors for outer circle of pfms

outer.label.circle.width
 width for outer circle of pfms

draw.box
 if TRUE draws a box around the current plot with the function box()

clockwise
 a logical value indicating if slices are drawn clockwise or counter clockwise

init.angle
 number specifying the starting angle (in degrees) for the slices. Defaults to 0 (i.e., ‘3 o’clock’) unless clockwise is true where init.angle defaults to 90 (degrees), (i.e., ‘12 o’clock’)

angle
 number specifying the angle (in degrees) for phylogenic tree. Defaults 360

pfmNameSpliter
 spliter when name of pfms/pfms2 contain multiple node of labels.leaves

rcpostfix
 the postfix for reverse complements

motifScale
 the scale of logo size

ic.scale
 logical. If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.

plotIndex
 logical. If TRUE, will plot index number in the motifLogo which can help user to describe the motifLogo

IndexCol
 The color of the index number when plotIndex is TRUE.

IndexCex
 The cex of the index number when plotIndex is TRUE.

groupDistance
 show groupDistance on the draw

groupDistanceLineCol
 groupDistance line color, default: red

plotAxis
 logical. If TRUE, will plot distance axis.
motifCloud

plot a DNA sequence logo cloud

Description

Plot a DNA sequence logo cloud
motifCloud

Usage

motifCloud(motifSig, rcpostfix="(RC)",
layout=c("rectangles", "cloud", "tree"),
scale=c(6, .5), rot.per=.1,
draw.box=TRUE, draw.freq=TRUE,
box.col="gray", freq.col="gray",
group.col=NULL, groups=NULL, draw.legend=FALSE,
font="Helvetica-Bold", ic.scale=TRUE, fontsize=12)

Arguments

motifSig an object of class motifSig
rcpostfix postfix for reverse-complement motif names, default: (RC)
layout layout of the logo cloud, rectangles, cloud or tree
scale A vector of length 2 indicating the range of the size of the sequence logo.
rot.per proportion sequence logo with 90 degree rotation. Only work for "cloud" layout
draw.box draw box for each sequence logo or not
draw.freq label frequency of each signature or not
box.col color of box for each sequence logo
freq.col color of frequency label
group.col color setting for groups
groups a named vectors of motif groups
draw.legend draw group color legend or not
font font of logo
ic.scale logical If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
fontsize font size of the template for grImport, default 12. Higher value make better quality figure, but also increase the file size.

Value

none

Examples

if(interactive()){
library("MotifDb")
matrix.fly <- query(MotifDb, "Dmelanogaster")
motifs <- as.list(matrix.fly)
motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey-", ",",
gsub("_[FBgn[0-9]+$", "",
gsub("^[a-zA-Z0-9]*$", ",",
gsub("(_[0-9]+)+$", "", names(motifs))))
motifs <- motifs[unique(names(motifs))] pfms <- sample(motifs, 50)
jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
"extdata", "jaspar2010_PCC_SWU.scores"))
d <- MotIV::motifDistances(lapply(pfms, pfm2pwm))
motifPiles

plot sequence logo stacks with a linear phylogenetic tree and multiple color sets.

Description

plot sequence logo stacks with a linear phylogenetic tree and multiple color sets.

Usage

motifPiles(phylog, pfms=NULL, pfms2=NULL,
 r.tree=.45, col.tree=NULL,
 cnodes=0, labels.nodes=names(phylog$nodes), clabel.nodes=0,
 cleaves=.2, labels.leaves=names(phylog$leaves), clabel.leaves=1,
 col.leaves=rep("black", length(labels.leaves)),
 col.leaves.bg=NULL, col.leaves.bg.alpha=1,
 r.pfms=NA, r.pfms2=NA, motifScale=c("logarithmic", "linear"),
 col.pfms=NULL, col.pfms.width=0.02,
 col.pfms2=NULL, col.pfms2.width=0.02,
 r.anno=0, col.anno=list(),
 pfmNameSpliter=";", rcpostfix="(RC)", ic.scale=TRUE,
 plotIndex=FALSE, IndexCol="black", IndexCex=.8,
 groupDistance=NA, groupDistanceLineCol="red")

Arguments

phylog an object of class phylog
pfms a list of objects of class pfm
pfms2 a list of objects of class pfm
r.tree width of the tree
col.tree a vector of colors for tree
cnodes a character size for plotting the points that represent the nodes, used with par("cex")*cnodes. If zero, no points are drawn
labels.nodes a vector of strings of characters for the nodes labels
clabel.nodes a character size for the nodes labels, used with par("cex")*clabel.nodes. If zero, no nodes labels are drawn
cleaves a character size for plotting the points that represent the leaves, used with par("cex")*cleaves. If zero, no points are drawn
labels.leaves a vector of strings of characters for the leaves labels
clabel.leaves a character size for the leaves labels, used with
col.leaves a vector of colors for leaves labels
col.leaves.bg a vector of colors for background of leaves labels
col.leaves.bg.alpha alpha value [0, 1] for the colors of background of leaves labels
r.pfms width of the pfms
r.pfms2 width of the pfms2
motifScale the scale of logo size
col.pfms a vector of colors for inner pile of pfms
col.pfms.width width for inner pile of pfms
col.pfms2 a vector of colors for outer pile of pfms
col.pfms2.width width for outer pile of pfms
r.anno a vector of width of color sets
col.anno a list of color sets
pfmNameSpliter spliter when name of pfms/pfms2 contain multiple node of labels.leaves
rcpostfix the postfix for reverse complements
ic.scale logical. If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
plotIndex logical. If TRUE, will plot index number in the motifLogo which can help user to describe the motifLogo
IndexCol The color of the index number when plotIndex is TRUE.
IndexCex The cex of the index number when plotIndex is TRUE.
groupDistance show groupDistance on the draw
groupDistanceLineCol groupDistance line color, default: red

Value
none

Author(s)
Jianhong Ou

See Also
motifCircos

Examples
if(interactive()){
 library("MotifDb")
 matrix.fly <- query(MotifDb, "Dmelanogaster")
 motifs <- as.list(matrix.fly)
 motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
 names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey_", ",",
 gsub("_FBgn[0-9]+$", ",",

 motifs <- motifPiles(motifs, rcpostfix = "ribbon",
 plotIndex = TRUE, ic.scale = FALSE, r.pfms = 0.1,
 pfmNameSpliter = "-", groupDistance = FALSE,
 r.anno = 0.05, col.anno = "red",
 groupDistanceLineCol = "red",
 indexCol = "red", indexCex = 0.8)
 motifLogo(motifs, motifScale = 0.5, ic.scale = TRUE)
motifSig-class

Class "motifSig"

Description

An object of class "motifSig" represents the output of function `motifSignature`

Objects from the Class

Objects can be created by calls of the form `new("motifSig", signature, freq, nodelist, gpcol)`.

Slots

- `signatures` list object of class "pfm"
- `freq` code"numeric" signature frequency
- `nodelist` list object of class "ouNode"
- `gpcol` code"character" signature group color sets

Methods

- `signatures` signature(object = "motifSig") return the signatures of motifSig
- `frequence` signature(object = "motifSig") return the frequency of motifSig
- `nodelist` signature(object = "motifSig") return the nodelist of motifSig
- `sigColor` signature(object = "motifSig") return the group color sets of motifSig
motifSig-methods

"motifSig" methods

Description

methods for motifSig objects.

Usage

S4 method for signature 'motifSig'
signatures(object)
S4 method for signature 'motifSig'
frequence(object)
S4 method for signature 'motifSig'
nodelist(object)
S4 method for signature 'motifSig'
sigColor(object)

Arguments

object An object of class motifSig.

Methods

signatures signature(object = "motifSig") return the signatures of motifSig
frequence signature(object = "motifSig") return the frequency of motifSig
nodelist signature(object = "motifSig") return the nodelist of motifSig
sigColor signature(object = "motifSig") return the group color sets of motifSig

$, $<- Get or set the slot of motifSig

motifSignature

get signatures from motifs

Description

extract signatures from multiple motifs by distance calculated from STAMP

Usage

motifSignature(pfms, phylog, groupDistance, rcpostfix="(RC)",
min.freq=2, trim=0.2, families=list())
motifStack

Arguments

- `pfms`: a list of objects of class pfm
- `phylog`: an object of class phylog
- `groupDistance`: maximal distance of motifs in the same group
- `rcpostfix`: postfix for reverse-complement motif names, default: (RC)
- `min.freq`: signatures with frequency below min.freq will not be plotted
- `trim`: minimal information content for each position of signature
- `families`: for each family, the motif number in one signature should only count as 1

Value

an Object of class motifSig

Examples

```r
if(interactive()){
  library("MotifDb")
  matrix.fly <- query(MotifDb, "Dmelanogaster")
  motifs <- as.list(matrix.fly)
  motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
  names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey_", "",
                       gsub("_[0-9]+\$", "",
                       gsub("[^a-zA-Z0-9]\$", "",
                       gsub("([a-zA-Z0-9]+)\$", "", names(motifs))))
  motifs <- motifs[unique(names(motifs))]
  pfms <- sample(motifs, 50)
  jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
                                         "extdata", "jaspar2010_PCC_SWU.scores"))
  d <- MotIV::motifDistances(lapply(pfms, pfm2pwm))
  hc <- MotIV::motifHclust(d, method="average")
  phylog <- hclust2phylog(hc)
  leaves <- names(phylog$leaves)
  pfms <- lapply(leaves, function(.ele, pfms){new("pfm", mat=pfms[[.ele]],
                           name=.ele)}, pfms)
  motifSig <- motifSignature(pfms, phylog, groupDistance=0.1)
}
```

motifStack

plot a DNA sequence logo stack

Description

Plot a DNA sequence logo stack

Usage

```r
motifStack(pfms, layout=c("stack", "treeview", "phylog", "radialPhylog"), ...)
```
ouNode-class

Arguments

pfms
a list of objects of class pfm
layout
layout of the logo stack, stack, treeview or radialPhylog
...

any parameters could to pass to plotMotifLogoStack, plotMotifLogoStackWithTree, plotMotifStackWithPhylog or plotMotifStackWithRadialPhylog

Value

return a list contains pfms and phylog

Examples

if(interactive()){
 library("MotifDb")
 matrix.fly <- query(MotifDb, "Dmelanogaster")
 motifs <- as.list(matrix.fly)
 motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
 names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey_", ", ",
 gsub("_FBgn[0-9]+$", ", ",
 gsub("[a-zA-Z]+","",
 gsub("(_[a-z]+)+$", ", ", names(motifs))))
 motifs <- motifs[unique(names(motifs))]
 pfms <- sample(motifs, 50)
 pfms <- lapply(names(pfms), function(.ele, pfms){new("pfm", mat=pfms[[.ele]], name=.ele)}, pfms)
 motifStack(pfms, "radialPhylog")
}

ouNode-class

Class ouNode

Description

An object of class "ouNode" represents a motif node in a cluster tree

Objects from the Class

Objects can be created by calls of the form new(\texttt{"ouNode"}, left, right, parent, distl, distr, sizel, sizer).

Slots

left: character indicates the name of left leave
right: character indicates the name of right leave
parent: character indicates the name of parent node
distl: numeric indicates the distance of left leave
distr: numeric indicates the distance of right leave
sizel: numeric indicates the size of left leave
sizer: numeric indicates the size of right leave

Methods

\$, $<- \text{Get or set the slot of } \texttt{ouNode}
Examples

```r
new("ouNode", left="A", right="B", parent="Root", dist1=1, distr=2, sizel=1, sizer=1)
```

pcm-class

Class "pcm"

Description

An object of class "pcm" represents the position count matrix of a DNA/RNA/amino-acid sequence motif. The entry stores a matrix, which in row i, column j gives the counts of observing nucleotide/or amino acid i in position j of the motif.

Objects from the Class

Objects can be created by calls of the form `new("pcm", mat, name, alphabet, color, background)`.

Slots

- **mat** Object of class "matrix" The position count matrix
- **name** code"character" The motif name
- **alphabet** "character" The sequence alphabet. "DNA", "RNA", "AA" or "others".
- **color** a "character" vector. The color setting for each symbol
- **background** a "numeric" vector. The background frequency.

Methods

- **addBlank** signature(x="pcm", n="numeric", b="logical") add space into the position count matrix for alignment. b is a bool value, if TRUE, add space to the 3' end, else add space to the 5' end. n indicates how many spaces should be added.
- **coerce** signature(from = "pcm", to = "matrix"): convert object pcm to matrix
- **getIC** signature(x = "pcm",:) Calculate information content profile for position frequency matrix.
- **matrixReverseComplement** signature(x = "pcm") get the reverse complement of position frequency matrix.
- **trimMotif** signature(x = "pcm", t= "numeric") trim motif by information content.
- **plot** signature(x = "pcm") Plots the sequence logo of the position count matrix.

Examples

```r
pcm <- read.table(file.path(find.package("motifStack"), "extdata", "bin_SOLEXA.pcm"))
pcm <- pcm[,3:ncol(pcm)]
rownames(pcm) <- c("A","C","G","T")

classical <- pcm
```

```r
motif <- new("pcm", mat=as.matrix(pcm), name="bin_SOLEXA")
plot(motif)
```
pcm-methods

"pcm" methods

Description

methods for pcm objects.

Usage

S4 method for signature 'pcm,numeric,logical'
addBlank(x,n,b)
S4 method for signature 'pcm,ANY'
getIC(x,p="missing")
S4 method for signature 'pcm'
matrixReverseComplement(x)
S4 method for signature 'pcm,ANY'
plot(x,y="missing",...)
S4 method for signature 'pcm,ANY'
pcm2pfm(x,background="missing")
S4 method for signature 'matrix,ANY'
pcm2pfm(x,background="missing")
S4 method for signature 'matrix,numERIC'
pcm2pfm(x,background)
S4 method for signature 'data.frame,ANY'
pcm2pfm(x,background="missing")
S4 method for signature 'data.frame,numERIC'
pcm2pfm(x,background)
S4 method for signature 'pcm,numERIC'
trimMotif(x,t)

Arguments

x An object of class pcm. For getIC, if parameter p is followed, x should be an object of matrix. For pcm2pfm, x also could be an object of matrix.
y Not use.
p p is the background frequency.
n how many spaces should be added.
b logical value to indicate where the space should be added.
background a "numeric" vector. The background frequency.
t numeric value of information content threshold for trimming.
... Further potential arguments passed to plotMotifLogo.

Methods

addBlank signature(x="pcm", n="numeric", b="logical") add space into the position count matrix for alignment. b is a bool value, if TRUE, add space to the 3’ end, else add space to the 5’ end. n indicates how many spaces should be added.
coerce signature(from = "pcm", to = "matrix"): convert object pcm to matrix
pfm-class

getIC signature(x = "pcm",) Calculate information content profile for position frequency matrix.

matrixReverseComplement signature(x = "pcm") get the reverse complement of position frequency matrix.

plot signature(x = "pcm") Plots the sequence logo of the position count matrix.

trimMotif signature(x = "pcm", t= "numeric") trim motif by information content.

$, $<- Get or set the slot of pcm

Examples

pcm <- read.table(file.path(find.package("motifStack"), "extdata", "bin_SOLEXA.pcm"))
pcm <- pcm[,3:ncol(pcm)]
rownames(pcm) <- c("A","C","G","T")
motif <- new("pcm", mat=as.matrix(pcm), name="bin_SOLEXA")
getIC(motif)
matrixReverseComplement(motif)
as(motif,"matrix")
pcm2pfm(motif)

pfm-class

Class "pfm"

Description

An object of class "pfm" represents the position frequency matrix of a DNA/RNA/amino-acid sequence motif. The entry stores a matrix, which in row i, column j gives the frequency of observing nucleotide/or amino acid i in position j of the motif.

Objects from the Class

Objects can be created by calls of the form new("pfm", mat, name, alphabet, color, background).

Slots

mat Object of class "matrix" The position frequency matrix
name code"character" The motif name
alphabet "character" The sequence alphabet. "DNA", "RNA", "AA" or "others".
color a "character" vector. The color setting for each symbol
background a "numeric" vector. The background frequency.

Methods

addBlank signature(x="pfm", n="numeric", b="logical") add space into the position frequency matrix for alignment. b is a bool value, if TRUE, add space to the 3' end, else add space to the 5' end. n indicates how many spaces should be added.

coerce signature(from = "pfm", to = "matrix"): convert object pfm to matrix

getIC signature(x = "pfm",) Calculate information content profile for position frequency matrix.
Description

methods for pfm objects.

Usage

```r
# S4 method for signature 'pfm,numeric,logical'
addBlank(x,n,b)
# S4 method for signature 'pfm,ANY'
getIC(x,p="missing")
# S4 method for signature 'matrix,numeric'
getIC(x,p)
# S4 method for signature 'pfm'
matrixReverseComplement(x)
# S4 method for signature 'pfm,ANY'
plot(x,y="missing",...)
# S4 method for signature 'pfm,numeric'
trimMotif(x,t)
```

Arguments

- **x**: An object of class pfm. For getIC, if parameter `p` is followed, `x` should be an object of matrix.
- **y**: Not use.
- **p**: `p` is the background frequency.
- **n**: how many spaces should be added.
- **b**: logical value to indicate where the space should be added.
- **t**: numeric value of information content threshold for trimming.
- **...**: Further potential arguments passed to `plotMotifLogo`.

getIC signature(x = "matrix", p = "numeric") Calculate information content profile for matrix. `p` is the background frequency.

matrixReverseComplement signature(x = "pfm") get the reverse complement of position frequency matrix.

trimMotif signature(x = "pfm", t= "numeric") trim motif by information content.

plot signature(x = "pfm") Plots the sequence logo of the position frequency matrix.

Examples

```r
cpm <- read.table(file.path(find.package("motifStack"), "extdata", "bin_SOLEXA.pcm"))
cpm <- cpm[,3:ncol(pcm)]
rownames(pcm) <- c("A","C","G","T")
motif <- pcm2pfm(pcm)
motif <- new("pfm", mat=motif, name="bin_SOLEXA")
plot(motif)
```
Methods

addBlank signature(x="pfm", n="numeric", b="logical") add space into the position frequency matrix for alignment. b is a bool value, if TRUE, add space to the 3' end, else add space to the 5' end. n indicates how many spaces should be added.

getIC signature(x = "pfm",) Calculate information content profile for position frequency matrix.

getIC signature(x = "matrix", p = "numeric") Calculate information content profile for matrix. p is the background frequency

matrixReverseComplement signature(x = "pfm") get the reverse complement of position frequency matrix.

plot signature(x = "pfm") Plots the sequence logo of the position frequency matrix.

trimMotif signature(x = "pfm", t= "numeric") trim motif by information content.

$, $<- Get or set the slot of pfm

Examples

pcm <- read.table(file.path(find.package("motifStack"), "extdata", "bin_SOLEXA.pcm"))
pcm <- pcm[,3:ncol(pcm)]
rownames(pcm) <- c("A","C","G","T")
motif <- pcm2pfm(pcm)
motif <- new("pfm", mat=motif, name="bin_SOLEXA")
getIC(motif)
matrixReverseComplement(motif)
addBlank(motif, 1, FALSE)
addBlank(motif, 3, TRUE)
as(motif,"matrix")

pfm2pwm

convert pfm object to PWM

Description

convert pfm object to PWM

Usage

pfm2pwm(x)

Arguments

x an object of pfm or pcm or matrix

Value

A numeric matrix representing the Position Weight Matrix for PWM.

Author(s)

Jianhong Ou
plotMotifLogo

See Also
PWM

Examples

library("MotifDb")
matrix.fly <- query(MotifDb, "Dmelanogaster")
pfm2pwm(matrix.fly[[1]])

Description
plot amino acid or DNA sequence logo

Usage

plotMotifLogo(pfm, motifName, p=rep(0.25, 4), font="Helvetica-Bold",
colset=c("#00811B","#2000C7","#FFB32C","#D00001"),
xaxis=TRUE,yaxis=TRUE,xlab="position",ylab="bits",
xlceX=1.2, ylceX=1.2, ncex=1.2, ic.scale=TRUE, fontsize=12)

Arguments

pfm a position frequency matrices
motifName motif name
p background possibility
font font of logo
colset color setting for each logo letter
xaxis draw x-axis or not
yaxis draw y-axis or not
xlab x-label, do nothing if set xlab as NA
ylab y-label, do nothing if set ylab as NA
xlceX cex value for x-label
ylceX cex value for y-label
ncex cex value for motif name
ic.scale logical If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
fontsize font size of the template for grImport, default 12. Higher value make better quality figure, but also increase the file size.

Value
none
Examples

```r
pcm <- matrix(runif(40, 0, 100), nrow = 4, ncol = 10)
pfm <- pcm2pfm(pcm)
rownames(pfm) <- c("A", "C", "G", "T")
plotMotifLogo(pfm)
```

plotMotifLogoA

plot sequence logo without plot.new

Description

plot amino acid or DNA sequence logo in a given canvas

Usage

```r
plotMotifLogoA(pfm, font = "Helvetica-Bold", ic.scale = TRUE, fontsize = 12)
```

Arguments

- `pfm` an object of pfm
- `font` font of logo
- `ic.scale` logical. If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
- `fontsize` font size of the template for grImport, default 12. Higher value make better quality figure, but also increase the file size.

Value

none

Examples

```r
pcm <- matrix(runif(40, 0, 100), nrow = 4, ncol = 10)
pfm <- pcm2pfm(pcm)
rownames(pfm) <- c("A", "C", "G", "T")
motif <- new("pfm", mat = pfm, name = "bin_SOLEXA")
plotMotifLogoA(motif)
```

plotMotifLogoStack

plot sequence logos stack

Description

plot sequence logos stack

Usage

```r
plotMotifLogoStack(pfms, ...)
```
plotMotifLogoStackWithTree

plot sequence logos stack with hierarchical cluster tree

Description
plot sequence logos stack with hierarchical cluster tree

Usage
plotMotifLogoStackWithTree(pfms, hc, treewidth=1/8, trueDist=FALSE, ...)

Arguments
 pfms a list of position frequency matrices, pfms must be a list of class pfm
 hc an object of the type produced by stats::hclust
 treewidth the width to show tree
 trueDist logical flags to use hclust height or not.
 ... other parameters can be passed to plotMotifLogo function

Examples
pcm1<-matrix(c(0,50,0,50,
 100,0,0,0,
 0,100,0,0,
 0,0,100,0,
 0,0,0,100,
 50,50,0,0,
 0,0,50,50), nrow=4)
pcm2<-matrix(c(50,50,0,0,
 0,100,0,0,
 0,50,50,0,
 0,0,0,100,
 50,50,0,0,
 0,0,50,50), nrow=4)
rownames(pcm1)<-c("A","C","G","T")
rownames(pcm2)<-c("A","C","G","T")
pfms<-list(p1=new("pfm",mat=pcm2pfm(pcm1),name="m1"),
 p2=new("pfm",mat=pcm2pfm(pcm2),name="m2"))
pfms<-DNAmotifAlignment(pfms)
plotMotifLogoStack(pfms)
Input

```r
cms <- readPCM(file.path(find.package("motifStack"), "extdata","pcm"))
motifs <- lapply(cms, pcm2pfm)
```

Clustering

```r
jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
"extdata", "jaspar2010_PCC_SWJ.scores"))
d <- MotIV::motifDistances(lapply(motifs, pfm2pwm))
hc <- MotIV::motifHclust(d, method="average")

# reorder the motifs for plotMotifLogoStack
motifs <- motifs[hc$order]
# do alignment
motifs <- DNAmotifAlignment(motifs)
# plot stacks
plotMotifLogoStack(motifs, nce=1.0)
plotMotifLogoStackWithTree(motifs, hc=hc)
```

plotMotifOverMotif
plot motif over another motif

Description

plot motif over another motif to emphasize the difference.

Usage

```r
plotMotifOverMotif(motif, backgroundMotif, bgNoise=NA,
                   font="Helvetica-Bold", textgp=gpar())
```

Arguments

- **motif**: an object of pcm or pfm
- **backgroundMotif**: an object of pcm or pfm
- **bgNoise**: if it is not NA, test will using a background by Dirichlet(1)-distributed random frequencies with weight bg.noise. The value of bgNoise should be a number in the range of 0 to 1, eg. 0.05
- **font**: font for logo symbol
- **textgp**: text parameter

Value

none
plotMotifStackWithPhylog

Examples

```r
pcms <- readPCM(file.path(find.package("motifStack"), "extdata"), "pcm")
len <- sapply(pcms, function(.ele) ncol(.ele$mat))
pcms <- pcms[len==7]
plotMotifOverMotif(pcms[[1]], pcms[[2]], bgNoise=0.05)
```

Description

plot sequence logo stacks with a ape4-style phylogenic tree

Usage

```r
plotMotifStackWithPhylog(phylog, pfms=NULL, 
f.phylog = 0.3, f.logo = NULL, cleaves =1, cnodes =0, 
labels.leaves = names(phylog$leaves), clabel.leaves=1, 
labels.nodes = names(phylog$nodes), clabel.nodes = 0, 
font="Helvetica-Bold", ic.scale=TRUE, fontsize=12)
```

Arguments

- **phylog**: an object of class phylog
- **pfms**: a list of objects of class pfm
- **f.phylog**: a size coefficient for tree size (a parameter to draw the tree in proportion to leaves label)
- **f.logo**: a size coefficient for the motif
- **cleaves**: a character size for plotting the points that represent the leaves, used with par("cex")*cleaves. If zero, no points are drawn
- **cnodes**: a character size for plotting the points that represent the nodes, used with par("cex")*cnodes. If zero, no points are drawn
- **labels.leaves**: a vector of strings of characters for the leaves labels
- **clabel.leaves**: a character size for the leaves labels, used with
- **labels.nodes**: a vector of strings of characters for the nodes labels
- **clabel.nodes**: a character size for the nodes labels, used with par("cex")*clabel.nodes. If zero, no nodes labels are drawn
- **font**: font of logo
- **ic.scale**: logical If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
- **fontsize**: font size of the template for grImport, default 12. Higher value make better quality figure, but also increase the file size.

Value

none
plotMotifStackWithRadialPhylog

plot sequence logo stacks with a radial phylogenetic tree

Description

plot sequence logo stacks with a radial phylogenetic tree

Usage

plotMotifStackWithRadialPhylog(phyllog, pfms=NULL,
circle=0.75, circle.motif=NA, cleaves=1, cnodes=0,
labels.leaves=names(phyllog$leaves), clabel.leaves=1,
labels.nodes=names(phyllog$nodes), clabel.nodes=0,
draw.box=FALSE,
col.leaves=rep("black", length(labels.leaves)),
col.leaves.bg=NULL, col.leaves.bg.alpha=1,
col.bg=NULL, col.bg.alpha=1,
col.inner.label.circle=NULL, inner.label.circle.width="default",
col.outer.label.circle=COL=NA, outer.label.circle.width="default",
clockwise=FALSE, init.angle=if(clockwise) 90 else 0,
angle=360, pfmNameSpliter=";", rcpostfix = "(RC)",
motifScale=c("linear","logarithmic"), ic.scale=TRUE,
```
plotMotifStackWithRadialPhylog

plotIndex=FALSE, IndexCol="black", IndexCex=.8,
groupDistance=NA, groupDistanceLineCol="red",
plotAxis=FALSE, font="Helvetica-Bold", fontsize=12)

Arguments

phylog        an object of class phylog
pfms          a list of objects of class pfm
circle        a size coefficient for the outer circle
circle.motif  a size coefficient for the motif circle
cleaves       a character size for plotting the points that represent the leaves, used with par("cex")*cleaves. If zero, no points are drawn
cnodes        a character size for plotting the points that represent the nodes, used with par("cex")*cnodes. If zero, no points are drawn
labels.leaves a vector of strings of characters for the leaves labels
clabel.leaves a character size for the leaves labels, used with
labels.nodes  a vector of strings of characters for the nodes labels
clabel.nodes  a character size for the nodes labels, used with par("cex")*clabel.nodes. If zero, no nodes labels are drawn
draw.box      if TRUE draws a box around the current plot with the function box()
col.leaves    a vector of colors for leaves labels
col.leaves.bg a vector of colors for background of leaves labels
col.leaves.bg.alpha
               alpha value [0, 1] for the colors of backgroud of leaves labels
col.bg        a vector of colors for tree background
col.bg.alpha  a alpha value [0, 1] of colors for tree background
col.inner.label.circle
               a vector of colors for inner cirlce of pfms
inner.label.circle.width
               width for inner circle of pfms
col.outer.label.circle
               a vector of colors for outer circle of pfms
outer.label.circle.width
               width for outer circle of pfms
clockwise     a logical value indicating if slices are drawn clockwise or counter clockwise
init.angle    number specifying the starting angle (in degrees) for the slices. Defaults to 0 (i.e., ‘3 o’clock’) unless clockwise is true where init.angle defaults to 90 (degrees), (i.e., ‘12 o’clock’)
angle         number specifying the angle (in degrees) for phylogenic tree. Defaults 360
pfmNameSpliter spliter when name of pfms contain multiple node of labels.leaves
rcpostfix     the postfix for reverse complements
motifScale    the scale of logo size
ic.scale      logical. If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.
```
plotMotifStackWithRadialPhylog

plotIndex logical. If TRUE, will plot index number in the motifLogo which can help user to describe the motifLogo.

IndexCol The color of the index number when plotIndex is TRUE.

IndexCex The cex of the index number when plotIndex is TRUE.

groupDistance show groupDistance on the draw.

groupDistanceLineCol groupDistance line color, default: red.

plotAxis logical. If TRUE, will plot distance axis.

font font of logo.

fontsize font size of the template for grImport, default 12. Higher value make better quality figure, but also increase the file size.

Value

none

See Also

plot.phylog

Examples

if(interactive()){
 library("MotifDb")
 matrix.fly <- query(MotifDb, "Dmelanogaster")
 motifs <- as.list(matrix.fly)
 motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
 names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey_", "",
 gsub("_FBgn[0-9]+$", "",
 gsub("^[a-zA-Z0-9-]","",
 gsub("([0-9]+)\+$", "", names(motifs)))))
 motifs <- motifs[unique(names(motifs))]
 pfms <- sample(motifs, 50)
 jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
 "extdata", "jaspar2010_PCC_SWU.scores"))
 d <- MotIV::motifDistances(pfms)
 hc <- hclust2phylog(d)
 leaves <- names(phylog$leaves)
 pfms <- lapply(leaves, function(.ele, pfms){new("pfm",mat=pfms[[.ele]],
 name=.ele)},pfms)
 pfms <- DNAmotifAlignment(pfms, minimalConsensus=3)
 library(RColorBrewer)
 color <- brewer.pal(12, "Set3")
 plotMotifStackWithRadialPhylog(phylog, pfms, circle=0.9,
 cleaves = 0.5, clabel.leaves = 0.7,
 col.bg=rep(color, each=5), col.leaves=rep(color, each=5))
}
plotXaxis

plotXaxis

plot x-axis

Description

plot x-axis for the sequence logo

Usage

```r
plotXaxis(pfm, p=rep(0.25, 4))
```

Arguments

- `pfm`
 position frequency matrices
- `p`
 background possibility

Value

none

plotYaxis

plot y-axis

Description

plot y-axis for the sequence logo

Usage

```r
plotYaxis(ymax)
```

Arguments

- `ymax`
 max value of y axis

Value

none
readPCM

read pcm from a path

Description

read position count matrix from a path

Usage

```r
readPCM(path=".", pattern=NULL)
```

Arguments

- **path**: a character vector of full path names
- **pattern**: an optional regular expression

Value

A list of `pcm` objects

Examples

```r
pcms<-readPCM(file.path(find.package("motifStack"), "extdata"), "pcm")
```

reorderUPGMAtree

re-order UPGMA tree

Description

re-order the UPGMA tree by adjacent motif distance

Usage

```r
reorderUPGMAtree(phylog, motifs, rcpostfix = "(RC)"
```

Arguments

- **phylog**: an object of phylog
- **motifs**: a list of objects of pfm
- **rcpostfix**: the postfix for reverse complements

Value

an object of phylog

Author(s)

Jianhong Ou
Examples

if(interactive()){
 library("MotifDb")
 matrix.fly <- query(MotifDb, "Dmelanogaster")
 motifs <- as.list(matrix.fly)
 motifs <- motifs[grepl("Dmelanogaster-FlyFactorSurvey-", names(motifs), fixed=TRUE)]
 names(motifs) <- gsub("Dmelanogaster_FlyFactorSurvey_", ",
 gsub("_[FBgn[0-9]+$", ",
 gsub("[^a-zA-Z0-9]+","",
 gsub("(?=[a-zA-Z0-9]+=)", ",
 gsub("(_[0-9]+)+$", ",", names(motifs)))
 motifs <- motifs[unique(names(motifs))]
 pfms <- sample(motifs, 50)
 jaspar.scores <- MotIV::readDBScores(file.path(find.package("MotIV"),
 "extdata", "jaspar2010_PCC_SWU.scores"))
 d <- MotIV::motifDistances(pfms)
 hc <- MotIV::motifHclust(d, method="average")
 phylog <- hclust2phylog(hc)
 reorderUPGMAtree(phylog, pfms)
 }
}
Index

*Topic classes
 motifSig-class, 12
 motifSig-methods, 13
 ouNode-class, 15
 pcm-class, 16
 pcm-methods, 17
 pfm-class, 18
 pfm-methods, 19

*Topic misc
 getRankedUniqueMotifs, 4
 highlightCol, 5
 mergeMotifs, 5
 motifCircos, 6
 motifPiles, 10
 pfm2pfm, 20
 reorderUPGMAtree, 30

*Topic package
 motifStack-package, 2
 $,motifSig-method (motifSig-methods), 13
 $,ouNode-method (ouNode-class), 15
 $,pcm-method (pcm-methods), 17
 $,pfm-method (pfm-methods), 19
 $<-,motifSig-method (motifSig-methods), 13
 $<-,ouNode-method (ouNode-class), 15
 $<-,pcm-method (pcm-methods), 17
 $<-,pfm-method (pfm-methods), 19
 addBlank (pfm-methods), 19
 addBlank,pcm,numerical,logical-method (pcm-methods), 17
 addBlank,pfm,numerical,logical-method (pfm-methods), 19
 colors, 5
 colorset, 2
 DNAmotifAlignment, 3
 frequence (motifSig-methods), 13
 frequence,motifSig-method (motifSig-methods), 13
 getIC (pfm-methods), 19
 getIC,matrix,matrix-method (pfm-methods), 19
 getIC,matrix,numerical-method (pfm-methods), 19
 getIC,pcm,ANY-method (pcm-methods), 17
 getIC,pfm,ANY-method (pfm-methods), 19
 getRankedUniqueMotifs, 4
 highlightCol, 5
 matrixReverseComplement (pfm-methods), 19
 matrixReverseComplement,pcm-method (pcm-methods), 17
 matrixReverseComplement,pfm-method (pfm-methods), 19
 mergeMotifs, 5
 motifCircos, 6, 11
 motifCloud, 8
 motifPiles, 10
 motifSig, 9, 13, 14
 motifSig (motifSig-methods), 13
 motifSig-class, 12
 motifSig-methods, 13
 motifSignature, 12, 13
 motifStack, 14
 motifStack-package, 2
 nodelist (motifSig-methods), 13
 nodelist,motifSig-method (motifSig-methods), 13
 ouNode, 12, 15
 ouNode (ouNode-class), 15
 ouNode-class, 15
 palette, 5
 pcm, 5, 18, 20, 24, 30
 pcm (pcm-methods), 17
 pcm-class, 16
 pcm-methods, 17
 pcm2pfm (pcm-methods), 17
 pcm2pfm,data.frame,ANY-method (pcm-methods), 17
pcm2pfm, data.frame, numeric-method
(pcm-methods), 17
pcm2pfm, matrix, ANY-method
(pcm-methods), 17
pcm2pfm, matrix, numeric-method
(pcm-methods), 17
pcm2pfm, pcm, ANY-method (pcm-methods), 17
pfm, 5, 6, 15, 20, 24
pfm (pfm-methods), 19
pfm-class, 18
pfm-methods, 19
pfm2 pwm, 20
plot, pcm, ANY-method (pcm-methods), 17
plot, pfm, ANY-method (pfm-methods), 19
plot.phylog, 26, 28
plotMotifLogo, 21
plotMotifLogoA, 22
plotMotifLogoStack, 15, 22
plotMotifLogoStackWithTree, 15, 23
plotMotifOverMotif, 24
plotMotifStackWithPhylog, 15, 25
plotMotifStackWithRadialPhylog, 8, 15, 26
plotXaxis, 29
plotYaxis, 29
PWM, 21

readPCM, 30
reorderUPGMA tree, 30
rgb, 5

sigColor (motifSig-methods), 13
sigColor, motifSig-method
(motifSig-methods), 13
signatures (motifSig-methods), 13
signatures, motifSig-method
(motifSig-methods), 13

trimMotif (pcm-methods), 17
trimMotif, pcm, numeric-method
(pcm-methods), 17
trimMotif, pfm, numeric-method
(pfm-methods), 19