Package ‘nethet’

April 26, 2017

Type Package

Title A bioconductor package for high-dimensional exploration of biological network heterogeneity

Version 1.8.0

Date 2015-08-18

Author Nicolas Staedler, Frank Dondelinger

Maintainer Nicolas Staedler <staedler.n@gmail.com>,
Frank Dondelinger <fdondelinger.work@gmail.com>

Description Package nethet is an implementation of statistical solid methodology enabling the analysis of network heterogeneity from high-dimensional data. It combines several implementations of recent statistical innovations useful for estimation and comparison of networks in a heterogeneous, high-dimensional setting. In particular, we provide code for formal two-sample testing in Gaussian graphical models (differential network and GGM-GSA; Stadler and Mukherjee, 2013, 2014) and make a novel network-based clustering algorithm available (mixed graphical lasso, Stadler and Mukherjee, 2013).

Imports glasso, mvtnorm, parcor, GeneNet, huge, CompQuadForm, ggm, mclust, parallel, GSA, limma, multtest, ICSNP, glmnet, network, ggplot2

Suggests knitr, xtable, BiocStyle

biocViews Clustering, GraphAndNetwork

VignetteBuilder knitr

License GPL-2

NeedsCompilation yes

R topics documented:

NetHet-package ... 2
aggpval ... 3
bwprun_mixglasso .. 4
diffnet_multisplit ... 5
diffnet_singlesplit ... 8
diffregr_multisplit .. 10
diffregr_pval .. 12
diffregr_singlesplit .. 13
Description

A bioconductor package for high-dimensional exploration of biological network heterogeneity

Details

Includes: *Network-based clustering (MixGLasso) *Differential network (DiffNet) *Differential regression (DiffRegr) *Gene-set analysis based on graphical models (GGMGSA) *Plotting functions for exploring network heterogeneity
aggpval

References

Description

Meinshausen p-value aggregation.

Usage

aggpval(pval, gamma.min = 0.05)

Arguments

pval Vector of p-values.
gamma.min See inf-quantile formula of Meinshausen et al 2009 (default=0.05).

Details

Inf-quantile formula for p-value aggregation presented in Meinshausen et al 2009.

Value

Aggregated p-value.

Author(s)

n.stadler

Examples

pval=runif(50)
aggpval(pval)
bwprun_mixglasso

Description

Mixglasso with backward pruning

Usage

bwprun_mixglasso(x, n.comp.min = 1, n.comp.max, lambda = sqrt(2 * nrow(x) * log(ncol(x))) / 2, pen = "glasso.parcor", selection.crit = "mmdl", term = 10^(-3), min.compsize = 5, init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, reinit.out = FALSE, reinit.in = FALSE, mer = TRUE, del = TRUE, ...)

Arguments

x Input data matrix
n.comp.min Minimum number of components. Take n.comp.min=1!
n.comp.max Maximum number of components
lambda Regularization parameter. Default=sqrt(2*n*log(p))/2
pen Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor
selection.crit Selection criterion. Default='mmdl'
term Termination criterion of EM algorithm. Default=10^-3
min.compsize Stop EM if any(compsize)<min.compsize; Default=5
init Initialization. Method used for initialization init='cl.init',r.means',random','kmeans','kmeans.hc','hc'. Default='kmeans.hc'
my.cl Initial cluster assignments; need to be provided if init='cl.init' (otherwise this param is ignored). Default=NULL
modelname.hc Model class used in hc. Default="VVV"
nstart.kmeans Number of random starts in kmeans; default=1
iter.max.kmeans Maximal number of iteration in kmeans; default=10
reinit.out Re-initialization if compsize<min.compsize (at the start of algorithm) ?
reinit.in Re-initialization if compsize<min.compsize (at the bwprun-loop level of algorithm) ?
mer Merge closest comps for initialization
del Delete smallest comp for initialization
... Other arguments. See mixglasso_init

Details

This function runs mixglasso with various number of mixture components: It starts with a too large number of components and iterates towards solutions with smaller number of components by initializing using previous solutions.
Value

list consisting of

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>selcrit</td>
<td>Selcrit for all models with number of components between n.comp.min and n.comp.max</td>
</tr>
<tr>
<td>res.init</td>
<td>Initialization for all components</td>
</tr>
<tr>
<td>comp.name</td>
<td>List of names of components. Indicates which states where merged/deleted during backward pruning</td>
</tr>
<tr>
<td>re.init.in</td>
<td>Logical vector indicating whether re-initialization was performed or not</td>
</tr>
<tr>
<td>fit.mixgl.selcrit</td>
<td>Results for model with optimal number of components. List see mixglaso_init</td>
</tr>
</tbody>
</table>

Author(s)

n.stadler

Examples

```r
##generate data
data <- set.seed(1)
n <- 1000
n.comp <- 3
p <- 10

# Create different mean vectors
Mu <- matrix(0, p, n.comp)

nonzero.mean <- split(sample(1:p), rep(1:n.comp, length=p))
for(k in 1:n.comp){
  Mu[nonzero.mean[[k]], k] <- -2/sqrt(ceiling(p/n.comp))
}
sim <- sim_mix_networks(n, p, n.comp, Mu=Mu)

##run mixglasso

fit <- bwprun_mixglasso(sim$data, n.comp=1, n.comp.max=5, selection.crit='bic')
plot(fit$selcrit, ylab='bic', xlab='Num.Comps', type='b')
```

diffnet_multisplit Differential Network

Description

Differential Network
diffnet_multisplit(x1, x2, b.splits = 50, frac.split = 1/2, screen.meth = "screen_bic.glasso", include.mean = FALSE, gamma.min = 0.05, compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0", method.compquadform = "imhof", acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE, verbose = TRUE, mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)

Arguments

x1 Data-matrix sample 1. You might need to center and scale your data-matrix.
x2 Data-matrix sample 1. You might need to center and scale your data-matrix.
b.splits Number of splits (default=50).
frac.split Fraction train-data (screening) / test-data (cleaning) (default=0.5).
screen.meth Screening procedure. Options: 'screen_bic.glasso' (default), 'screen_cv.glasso', 'screen_shrink' (not recommended), 'screen_mb'.
include.mean Should sample specific means be included in hypothesis? Use include.mean=FALSE (default and recommended) which assumes mu1=mu2=0 and tests the hypothesis H0: Omega_1=Omega_2.
gamma.min Tuning parameter in p-value aggregation of Meinshausen et al (2009). (Default=0.05).
compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3'.
algorithm.mleggm Algorithm to compute MLE of GGM. The algorithm 'glasso_rho' is the default and (currently) the only available option.
method.compquadform Method to compute distribution function of weighted-sum-of-chi2s (default='imhof').
acc See ?davies (default 1e-04).
epsabs See ?imhof (default 1e-10).
epsrel See ?imhof (default 1e-10).
show.warn Should warnings be showed (default=FALSE)?
save.mle If TRUE, MLEs (inverse covariance matrices for samples 1 and 2) are saved for all b.splits. The median aggregated inverse covariance matrix is provided in the output as 'medwi'. The default is save.mle=FALSE.
verbose If TRUE, show output progress.
mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package parallel.
mc.set.seed See mclapply. Default=TRUE
mc.preschedule See mclapply. Default=TRUE
mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set, or otherwise.
... Additional arguments for screen.meth.
Details

Remark:
* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0: Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set include.mean=FALSE and to test equality of the means separately. * You might also want to scale x1 and x2, if you are only interested in differences due to (partial) correlations.

Value

list consisting of

- ms.pval: p-values for all b.splits
- ss.pval: single-split p-value
- medagg.pval: median aggregated p-value
- meinshagg.pval: meinshausen aggregated p-value
- teststat: test statistics for b.splits
- weights.nulldist: estimated weights
- active.last: active-sets obtained in last screening-step
- medwi: median of inverse covariance matrices over b.splits
- sig.last: constrained mle (covariance matrix) obtained in last cleaning-step
- wi.last: constrained mle (inverse covariance matrix) obtained in last cleaning-step

Author(s)

n.stadler

Examples

##
##This example illustrates the use of Differential Network##
##

##set seed
set.seed(1)

##sample size and number of nodes
n <- 40
p <- 10

##specifiy sparse inverse covariance matrices
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
n.nz.common=ceiling(p*0.8))

invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)

##get corresponding correlation matrices
cor1 <- cov2cor(solve(invcov1))
cor2 <- cov2cor(solve(invcov2))

generate data under null hypothesis (both datasets have the same underlying network)
library('mvtnorm')
x1 <- rmvnorm(n, mean = rep(0, p), sigma = cor1)
x2 <- rmvnorm(n, mean = rep(0, p), sigma = cor1)

run diffnet (under null hypothesis)
dn.null <- diffnet_multisplit(x1, x2, b.splits = 1, verbose = FALSE)
dn.null$s.s.pval # single-split p-value

generate data under alternative hypothesis (datasets have different networks)
x1 <- rmvnorm(n, mean = rep(0, p), sigma = cor1)
x2 <- rmvnorm(n, mean = rep(0, p), sigma = cor2)

run diffnet (under alternative hypothesis)
dn.altn <- diffnet_multisplit(x1, x2, b.splits = 1, verbose = FALSE)
dn.altn$s.s.pval # single-split p-value
dn.altn$s.medagg.pval # median aggregated p-value

typically we would choose a larger number of splits
dn.altn <- diffnet_multisplit(x1, x2, b.splits = 10, verbose = FALSE)
dn.altn$m.s.pval # multi-split p-values
dn.altn$s.medagg.pval # median aggregated p-value
plot(dn.altn)# histogram of single-split p-values

diffnet_singlesplit Differential Network for user specified data splits

Description
Differential Network for user specified data splits

Usage
diffnet_singlesplit(x1, x2, split1, split2, screen.meth = "screen_bic.glasso",
compute.evals = "est2.my.ev3", algorithm.mleggm = "glasso_rho0",
include.mean = FALSE, method.compquadform = "imhof", acc = 1e-04,
epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE, save.mle = FALSE,
...)

Arguments
x1 Data-matrix sample 1. You might need to center and scale your data-matrix.
x2 Data-matrix sample 2. You might need to center and scale your data-matrix.
split1 Samples (condition 1) used in screening step.
split2 Samples (condition 2) used in screening step.
screen.meth Screening procedure. Options: 'screen_bic.glasso' (default), 'screen_cv.glasso', 'screen_shrink' (not recommended), 'screen_mb'.
compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3'.
Algorithm to compute MLE of GGM. The algorithm `glasso_rho` is the default and (currently) the only available option.

Should sample specific means be included in hypothesis? Use `include.mean=FALSE` (default and recommended) which assumes \(\mu_1=\mu_2=0 \) and tests the hypothesis \(H_0: \Omega_1=\Omega_2 \).

Method to compute distribution function of weighted-sum-of-chi2s (default=`imhof`).

See `davies` (default \(1e-04 \)).

See `imhof` (default \(1e-10 \)).

See `imhof` (default \(1e-10 \)).

Should warnings be showed (default=FALSE)?

Should MLEs be in the output list (default=FALSE)?

Additional arguments for `screen.meth`.

Details

Remark:
- If `include.mean=FALSE`, then \(x_1 \) and \(x_2 \) have mean zero and DiffNet tests the hypothesis \(H_0: \Omega_1=\Omega_2 \). You might need to center \(x_1 \) and \(x_2 \).
- If `include.mean=TRUE`, then DiffNet tests the hypothesis \(H_0: \mu_1=\mu_2 \& \Omega_1=\Omega_2 \).
- However, we recommend to set `include.mean=FALSE` and to test equality of the means separately.
- You might also want to scale \(x_1 \) and \(x_2 \), if you are only interested in differences due to (partial) correlations.

Value

- `pval.onesided`: p-value
- `pval.twosided`: ignore this output
- `teststat`: log-likelihood-ratio test statistic
- `weights.nulldistr`: estimated weights
- `active`: active-sets obtained in screening-step
- `sig`: constrained mle (covariance) obtained in cleaning-step
- `wi`: constrained mle (inverse covariance) obtained in cleaning-step
- `mu`: mle (mean) obtained in cleaning-step

Author(s)

n.stadler

Examples

```R
##set seed
set.seed(1)

##sample size and number of nodes
n <- 40
```
p <- 10

specify sparse inverse covariance matrices
gen.net <- generate_2networks(p, graph='random', n.nz=rep(p, 2),
 n.nz.common=ceiling(p*0.8))

invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1, invcov2, label.pos=0, label.cex=0.7)

get corresponding correlation matrices
cor1 <- cov2cor(solve(invcov1))
cor2 <- cov2cor(solve(invcov2))

generate data under alternative hypothesis
library('mvtnorm')
x1 <- rmvnorm(n, mean = rep(0, p), sigma = cor1)
x2 <- rmvnorm(n, mean = rep(0, p), sigma = cor2)

run diffnet
split1 <- sample(1:n, 20) # samples for screening (condition 1)
split2 <- sample(1:n, 20) # samples for screening (condition 2)
dn <- diffnet_singlesplit(x1, x2, split1, split2)
dn$pval.onesided # p-value

diffregr_multisplit Differential Regression (multi-split version).

Description

Differential Regression (multi-split version).

Usage

diffregr_multisplit(y1, y2, x1, x2, b.splits = 50, frac.split = 1/2,
 screen.meth = "screen_cvtrunc.lasso", gamma.min = 0.05,
 compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof",
 acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE,
 n.perm = NULL, mc.flag = FALSE, mc.set.seed = TRUE,
 mc.preschedule = TRUE, mc.cores = getOption("mc.cores", 2L), ...)

Arguments

y1 Response vector condition 1.
y2 Response vector condition 2.
x1 Predictor matrix condition 1.
x2 Predictor matrix condition 2.
b.splits Number of splits (default=50).
frac.split Fraction train-data (screening) / test-data (cleaning) (default=0.5).
screen.meth Screening method (default="screen_cvtrunc.lasso").
gamma.min Tuning parameter in p-value aggregation of Meinshausen et al (2009) (default=0.05).
compute.evals Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3.diffregr'.

method.compquadform Algorithm for computing distribution function of weighted-sum-of-chi2 (default='imhof').

acc See ?davies (default=1e-4).

epsabs See ?imhof (default=1e-10).

epsrel See ?imhof (default=1e-10).

show.warn Show warnings (default=FALSE)?

n.perm Number of permutation for "split-perm" p-value. Default=NULL, which means that the asymptotic approximation is used.

mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package parallel.

mc.set.seed See mclapply. Default=TRUE

mc.preschedule See mclapply. Default=TRUE

mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise.

... Other arguments specific to screen.meth.

Details

Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center the input data prior to running Differential Regression.

Value

List consisting of

ms.pval p-values for all b.splits

ss.pval single-split p-value

medagg.pval median aggregated p-value

meinshagg.pval meinshausen aggregated p-value (meinshausen et al 2009)

teststat test statistics for b.splits

weights.nulldistr estimated weights

active.last active-sets obtained in last screening-step

beta.last constrained mle (regression coefficients) obtained in last cleaning-step

Author(s)

n.stadler
Examples

###
#This example illustrates the use of Differential Regression#
###

##set seed
set.seed(1)

Number of predictors and sample size
p <- 100
n <- 80

Predictor matrices
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)

Active-sets and regression coefficients
act1 <- sample(1:p,5)
act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2))
bet1 <- bet2 <- rep(0,p)
bet1[act1] <- 0.5
bet2[act2] <- 0.5

Response vectors under null-hypothesis
y1 <- x1%*%as.matrix(bet1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(bet1)+rnorm(n,sd=1)

Diffregr (asymptotic p-values)
fit.null <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5)
fit.null$ms.pval#multi-split p-values
fit.null$medagg.pval#median aggregated p-values

Response vectors under alternative-hypothesis
y1 <- x1%*%as.matrix(bet1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(bet2)+rnorm(n,sd=1)

Diffregr (asymptotic p-values)
fit.alt <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5)
fit.alt$ms.pval
fit.alt$medagg.pval

Diffregr (permutation-based p-values; 100 permutations)
fit.alt.perm <- diffregr_multisplit(y1,y2,x1,x2,b.splits=5,n.perm=100)
fit.alt.perm$ms.pval
fit.alt.perm$medagg.pval

Computation "split-asym" p-values.

Description

Computation "split-asym"/"split-perm" p-values.
Usage

``` R
diffregr_pval(y1, y2, x1, x2, beta1, beta2, beta, act1, act2, act,
compute.evals, method.compquadform, acc, epsabs, epsrel, show.warn, n.perm)
```

Arguments

- `y1`: Response vector condition 1.
- `y2`: Response vector condition 2.
- `x1`: Predictor matrix condition 1.
- `x2`: Predictor matrix condition 2.
- `beta1`: Regression coefficients condition 1.
- `beta2`: Regression coefficients condition 2.
- `beta`: Pooled regression coefficients.
- `act1`: Active-set condition 1.
- `act2`: Active-set condition 2.
- `act`: Pooled active-set.
- `compute.evals`: Method for computation of weights.
- `method.compquadform`: Method to compute distribution function of w-sum-of-chi2.
- `acc`: See ?davies.
- `epsabs`: See ?imhof.
- `epsrel`: See ?imhof.
- `show.warn`: Show warnings?
- `n.perm`: Number of permutations.

Value

P-value, test statistic, estimated weights.

Author(s)

n.stadler

diffregr_singlesplit
Differential Regression (single-split version).

Description

Differential Regression (single-split version).

Usage

``` R
diffregr_singlesplit(y1, y2, x1, x2, split1, split2,
screen.meth = "screen_cvtrunc.lasso",
compute.evals = "est2.my.ev3.diffregr", method.compquadform = "imhof",
acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE,
n.perm = NULL, ...)
```
Arguments

- **y1**: Response vector condition 1.
- **y2**: Response vector condition 2.
- **x1**: Predictor matrix condition 1.
- **x2**: Predictor matrix condition 2.
- **split1**: Samples condition 1 used in screening-step.
- **split2**: Samples condition 2 used in screening-step.
- **screen.meth**: Screening method (default='screen_cvtrunc.lasso').
- **compute.evals**: Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3.diffregr'.
- **method.compquadform**: Algorithm for computing distribution function of weighted-sum-of-chi2 (default='imhof').
- **acc**: See ?davies (default=1e-4).
- **epsabs**: See ?imhof (default=1e-10).
- **epsrel**: See ?imhof (default=1e-10).
- **show.warn**: Show warnings (default=FALSE)?
- **n.perm**: Number of permutation for "split-perm" p-value (default=NULL).
- **...**: Other arguments specific to screen.meth.

Details

Intercepts in regression models are assumed to be zero (mu1=mu2=0). You might need to center the input data prior to running Differential Regression.

Value

List consisting of

- **pval.onesided**: "One-sided" p-value.
- **pval.twosided**: "Two-sided" p-value. Ignore all "*.twosided results.
- **teststat**: 2 times Log-likelihood-ratio statistics
- **weights.nulldistr**: Estimated weights of weighted-sum-of-chi2s.
- **active**: List of active-sets obtained in screening step.
- **beta**: Regression coefficients (MLE) obtained in cleaning-step.

Author(s)

n.stadler
Examples

```r
##set seed
set.seed(1)

##number of predictors / sample size
p <- 100
n <- 80

##predictor matrices
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)

##active-sets and regression coefficients
act1 <- sample(1:p,5)
act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2))
beta1 <- beta2 <- rep(0,p)
beta1[act1] <- 0.5
beta2[act2] <- 0.5

##response vectors
y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1)

##run diffregr
split1 <- sample(1:n,50)#samples for screening (condition 1)
split2 <- sample(1:n,50)#samples for screening (condition 2)
fit <- diffregr_singlesplit(y1,y2,x1,x2,split1,split2)
fit$pval.onesided#p-value
```

dot_plot

Create a plot showing the edges with the highest partial correlation in any cluster.

Description

This function takes the output of `het_cv_glasso` or `mixglasso` and creates a plot of the highest scoring edges along the y axis, where, the edge in each cluster is represented by a circle whose area is proportional to the smallest mean of the two nodes that make up the edge, and the position along the y axis shows the partial correlation of the edge.

Usage

```r
dot_plot(net.clustering, p.corrthresh = 0.25, hard.limit = 50,
display = TRUE, node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)), dot.size.range = c(3, 12))
```
export_network

Arguments

net.clustering A network clustering object as returned by het_cv_glasso or mixglasso.
p.corrs.thresh Cutoff for the partial correlations; only edges with absolute partial correlation > p.corrs.thresh (in any cluster) will be displayed.
hard.limit Additional hard limit on the number of edges to display. If p.corrs.thresh results in more edges than hard.limit, only hard.limit edges with the highest partial correlation are returned.
display If TRUE, print the plot to the current output device.
node.names Names for the nodes in the network.
group.names Names for the clusters or groups.
dot.size.range Graphical parameter for scaling the size of the circles (dots) representing an edge in each cluster.

Value

Returns a ggplot2 object. If display=TRUE, additionally displays the plot.

Examples

n = 500
p = 10
s = 0.9
n.comp = 3

Create different mean vectors
Mu = matrix(0,p,n.comp)

Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

Set non-zero means to fixed value
for(k in 1:n.comp){
Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))
}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

dot_plot(mixglasso.clustering, p.corrs.thresh=0.5)

export_network Export networks as a CSV table.

Description

This function takes the output of het_cv_glasso or mixglasso and exports it as a text table in CSV format, where each entry in the table records an edge in one group and its partial correlation.
Usage

export_network(net.clustering, file = "network_table.csv",
node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2,
...)

Arguments

net.clustering A network clustering object as returned by \texttt{screen_cv.glasso} or \texttt{mixglasso}.
file Filename to save the network table under.
node.names Names for the nodes in the network. If NULL, names from net.clustering will be used.
group.names Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integers 1:numClusters).
p.corrs.thresh Threshold applied to the absolute partial correlations. Edges that are below the threshold in all of the groups are not exported. Using a negative value will export all possible edges (including those with zero partial correlation).
... Further parameters passed to \texttt{write.csv}.

Value

Function does not return anything.

Author(s)

Frank Dondelinger

Examples

n = 500
p = 10
s = 0.9
n.comp = 3

Create different mean vectors
Mu = matrix(0,p,n.comp)

Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

Set non-zero means to fixed value
for(k in 1:n.comp){
 Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))
}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

Not run:
Save network in CSV format suitable for Cytoscape import
export_network(mixglasso.clustering, file='neteth_network.csv',

export_network
generate_2networks

Generate sparse invcov with overlap

Description

Generate two sparse inverse covariance matrices with overlap

Usage

generate_2networks(p, graph = "random", n.nz = rep(p, 2), n.nz.common = p,
 n.hub = 2, n.hub.diff = 1, magn.nz.diff = 0.8, magn.nz.common = 0.9,
 magn.diag = 0, emin = 0.1, verbose = FALSE)

Arguments

 p number of nodes
 graph 'random' or 'hub'
 n.nz number of edges per graph (only for graph='random')
 n.nz.common number of edges in common between graphs (only for graph='random')
 n.hub number of hubs (only for graph='hub')
 n.hub.diff number of different hubs
 magn.nz.diff default=0.9
 magn.nz.common default=0.9
 magn.diag default=0
 emin default=0.1 (see ?huge.generator)
 verbose If verbose=FALSE then tracing output is disabled.

Value

Two sparse inverse covariance matrices with overlap

Examples

n <- 70
p <- 30

Specify sparse inverse covariance matrices,
with number of edges in common equal to ~ 0.8*p
gen.net <- generate_2networks(p, graph="random", n.nz=rep(p, 2),
 n.nz.common=ceiling(p*0.8))

invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]

plot_2networks(invcov1, invcov2, label.pos=0, label.cex=0.7)
generate_inv_cov

Description
Generate an inverse covariance matrix with a given sparsity and dimensionality.

Usage
`generate_inv_cov(p = 162, sparsity = 0.7)`

Arguments
- **p**: Dimensionality of the matrix.
- **sparsity**: Determined the proportion of non-zero off-diagonal entries.

Details
This function generates an inverse covariance matrix, with at most $(1\text{-}\text{sparsity})\cdot p(p-1)$ non-zero off-diagonal entries, where the non-zero entries are sampled from a beta distribution.

Value
A p by p positive definite inverse covariance matrix.

Examples
```r
generate_inv_cov(p=162)
```

ggmgsa_multisplit
Multi-split GGMGSA (parallelized computation)

Description
Multi-split GGMGSA (parallelized computation)

Usage
```r
ggmgsa_multisplit(x1, x2, b.splits = 50, gene.sets, gene.names, gs.names = NULL, method.p.adjust = "fdr", order.adj.agg = "agg-adj", mc.flag = FALSE, mc.set.seed = TRUE, mc.preschedule = TRUE, mc.cores =getOption("mc.cores", 2L), verbose = TRUE, ...)
```
Arguments

x1 Expression matrix for condition 1 (mean zero is required).
x2 Expression matrix for condition 2 (mean zero is required).
b.splits Number of random data splits (default=50).
gene.sets List of gene-sets.
gene.names Gene names. Each column in x1 (and x2) corresponds to a gene.
gs.names Gene-set names (default=NULL).
gene.names Gene-set names (default=NULL).
metho��.p.adjust Method for p-value adjustment (default='fdr').
order.adj.agg Order of aggregation and adjustment of p-values. Options: 'agg-adj' (default), 'adj-agg'.
mc.flag If TRUE use parallel execution for each b.splits via function mclapply of package parallel.
mc.set.seed See mclapply. Default=TRUE
mc.preschedule See mclapply. Default=TRUE
mc.cores Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise.
verbose If TRUE, show output progress.
... Other arguments (see diffnet_singlesplit).

Details

Computation can be parallelized over many data splits.

Value

List consisting of

medagg.pval Median aggregated p-values
meinshagg.pval Meinshausen aggregated p-values
pval matrix of p-values before correction and adjustment, dim(pval)=(number of gene-sets)x(number of splits)
teststatmed median aggregated test-statistic
teststatmed.bic median aggregated bic-corrected test-statistic
teststatmed.aic median aggregated aic-corrected test-statistic
teststat matrix of test-statistics, dim(teststat)=(number of gene-sets)x(number of splits)
rel.edgeinter normalized intersection of edges in condition 1 and 2
df1 degrees of freedom of GGM obtained from condition 1
df2 degrees of freedom of GGM obtained from condition 2
df12 degrees of freedom of GGM obtained from pooled data (condition 1 and 2)

Author(s)

n.stadler
Examples

Generate networks

```r
set.seed(1)
p <- 9 # network with p nodes
n <- 40
hub.net <- generate_2networks(p, graph = 'hub', n.hub = 3, n.hub.diff = 1) # generate hub networks
invcov1 <- hub.net[[1]]
invcov2 <- hub.net[[2]]
plot_2networks(invcov1, invcov2, label.pos = 0, label.cex = 0.7)
```

Generate data

```r
library('mvtnorm')
x1 <- rmvnorm(n, mean = rep(0, p), sigma = cov2cor(solve(invcov1)))
x2 <- rmvnorm(n, mean = rep(0, p), sigma = cov2cor(solve(invcov2)))
```

Run DiffNet

```r
fit.dn <- diffnet_multisplit(x1, x2, b.splits = 2, verbose = FALSE)
fit.dn$medagg.pval
```

Identify hubs with 'gene-sets'

```r
gene.names <- paste('G', 1:p, sep = '')
gsets <- split(gene.names, rep(1:3, each = 3))
```

Run GGM-GSA

```r
fit.ggmgsa <- ggmgsa_multisplit(x1, x2, b.splits = 2, gsets, gene.names, verbose = FALSE)
summary(fit.ggmgsa)
fit.ggmgsa$medagg.pval # median aggregated p-values
p.adjust(apply(fit.ggmgsa$pval, 1, median), method = 'fdr') # or: first median aggregation, second fdr-correction
```

ggmgsa_singlesplit Single-split GGMGSA

Description

Single-split GGMGSA

Usage

```r
ggmgsa_singlesplit(x1, x2, gene.sets, gene.names, method.p.adjust = "fdr", verbose = TRUE, ...)
```
Arguments

x1 centered (scaled) data for condition 1
x2 centered (scaled) data for condition 2
gene.sets List of gene-sets.
gene.names Gene names. Each column in x1 (and x2) corresponds to a gene.
method.p.adjust Method for p-value adjustment (default='fdr').
verbose If TRUE, show output progress.
... Other arguments (see diffnet_singlesplit).

Value

List of results.

Author(s)

n.stadler

gsea.iriz

Description

Irizarry approach for gene-set testing

Usage

gsea.iriz(x1, x2, gene.sets, gene.names, gs.names = NULL,
 method.p.adjust = "fdr", alternative = "two-sided")

Arguments

x1 Expression matrix (condition 1)
x2 Expression matrix (condition 2)
gene.sets List of gene-sets
gene.names Gene names
gs.names Gene-set names
method.p.adjust Method for p-value adjustment (default='fdr')
alternative Default='two-sided' (uses two-sided p-values).

Details

Implements the approach described in "Gene set enrichment analysis made simple" by Irizarry et al (2011). It tests for shift and/or change in scale of the distribution.
Value

List consisting of

- **pval.shift** - p-values measuring shift
- **pval.scale** - p-values measuring scale
- **pval.combined** - combined p-values (minimum of pval.shift and pval.scale)

Author(s)

n.stadler

Examples

```r
n <- 100
p <- 20
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)
gene.names <- paste("Var",1:p,sep="Var")
gsets <- split(gene.names,rep(1:4,each=5))
fit <- gsea.iriz(x1,x2,gsets,gene.names)
fit$pvals.combined

x2[,1:3] <- x2[,1:3]+0.5#variables 1-3 of first gene-set are upregulated
fit <- gsea.iriz(x1,x2,gsets,gene.names)
fit$pvals.combined
```

het_cv_glasso
Cross-validated glasso on heterogeneous dataset with grouping

Description

Run glasso on a heterogeneous dataset to obtain networks (inverse covariance matrices) of the variables in the dataset for each pre-specified group of samples.

Usage

```r
het_cv_glasso(data, grouping = rep(1, dim(data)[1]), mc.flag = FALSE,
               use.package = "huge", normalise = FALSE, verbose = FALSE, ...)
```

Arguments

- **data** - The heterogenous network data. Needs to be a num.samples by dim.samples matrix or dataframe.
- **grouping** - The grouping of samples; a vector of length num.samples, with num.groups unique elements.
- **mc.flag** - Whether to use parallel processing via package mclapply to distribute the glasso estimation over different groups.
- **use.package** - 'glasso' for glasso package, or 'huge' for huge package (default)
- **normalise** - If TRUE, normalise the columns of the data matrix before running glasso.
- **verbose** - If TRUE, output progress.
- **...** - Further parameters to be passed to `screen_cv.lasso`.
Details

This function runs the graphical lasso with cross-validation to determine the best parameter lambda for each group of samples. Note that this function defaults to using package huge (rather than package glasso) unless otherwise specified, as it tends to be more numerically stable.

Value

Returns a list with named elements 'Sig', 'SigInv', 'Mu', 'Sigma.diag', 'group.names' and 'var.names. The variables Sig and SigInv are arrays of size dim.samples by dim.samples by num.groups, where the first two dimensions contain the (inverse) covariance matrix for the network obtained by running glasso on group k. Variables Mu and Sigma.diag contain the mean and variance of the input data, and group.names and var.names contains the names for the groups and variables in the data (if specified as colnames of the input data matrix).

Examples

```r
n = 100
p = 25

# Generate networks with random means and covariances.
sim.result = sim_mix_networks(n, p, n.comp=3)

test.data = sim.result$data
test.labels = sim.result$comp

# Reconstruct networks for each component
networks = het_cv_glasso(data=test.data, grouping=test.labels)
```

invcov2parcor

Convert inverse covariance to partial correlation

Description

Convert inverse covariance to partial correlation

Usage

`invcov2parcor(invcov)`

Arguments

- `invcov`
 Inverse covariance matrix

Value

The partial correlation matrix.

Examples

```r
inv.cov = generate_inv_cov(p=25)
p.corr = invcov2parcor(inv.cov)
```
invcov2parcor_array

Convert inverse covariance to partial correlation for several inverse covariance matrices collected in an array.

Description
Convert inverse covariance to partial correlation for several inverse covariance matrices collected in an array.

Usage
invcov2parcor_array(invcov.array)

Arguments

invcov.array Array of inverse covariance matrices, of dimension numNodes by numNodes by numComps.

Value
Array of partial correlation matrices of dimension numNodes by numNodes by numComps

Examples
invcov.array = sapply(1:5, function(x) generate_inv_cov(p=25), simplify='array')
p.corr = invcov2parcor_array(invcov.array)

logratio
Log-likelihood-ratio statistics used in DiffNet

Description
Log-likelihood-ratio statistics used in Differential Network

Usage
logratio(x1, x2, x, sig1, sig2, sig, mu1, mu2, mu)

Arguments

x1 data-matrix sample 1
x2 data-matrix sample 2
x pooled data-matrix
sig1 covariance sample 1
sig2 covariance sample 2
sig pooled covariance
mu1 mean sample 1
mu2 mean sample 2
mu pooled mean
Value

Returns a list with named elements 'twiceLR', 'sig1', 'sig2', 'sig'. 'twiceLR' is twice the log-likelihood-ratio statistic.

Author(s)

n.stadler

Examples

```r
x1=matrix(rnorm(100),50,2)
x2=matrix(rnorm(100),50,2)
logratio(x1,x2,rbind(x1,x2),diag(1,2),diag(1,2),diag(1,2),c(0,0),c(0,0),c(0,0))$twiceLR
```

Description

mixglasso

Usage

```r
mixglasso(x, n.comp, lambda = sqrt(2*n*log(ncol(x)))/2, pen = "glasso.parcor", init = "kmeans.hc", my.cl = NULL, modelname.hc = "VVV", nstart.kmeans = 1, iter.max.kmeans = 10, term = 10^{-3}, min.compsize = 5, save.allfits = FALSE, filename = "mixglasso_fit.rda", mc.flag = FALSE, mc.set.seed = FALSE, mc.preschedule = FALSE, mc.cores = getOption("mc.cores", 2L), ...)
```

Arguments

- **x**: Input data matrix
- **n.comp**: Number of mixture components. If n.comp is a vector, mixglasso will estimate a model for each number of mixture components, and return a list of models, as well as their BIC and MMDL scores and the index of the best model according to each score.
- **lambda**: Regularization parameter. Default=sqrt(2*n*log(p))/2
- **pen**: Determines form of penalty: glasso.parcor (default) to penalise the partial correlation matrix, glasso.invcov to penalise the inverse covariance matrix (this corresponds to classical graphical lasso), glasso.invcor to penalise the inverse correlation matrix.
- **init**: Initialization. Method used for initialization init='cl.init','r.means','random','kmeans','kmeans.hc'. Default='kmeans'
- **my.cl**: Initial cluster assignments; need to be provided if init='cl.init' (otherwise this param is ignored). Default=NULL
- **modelname.hc**: Model class used in hc. Default="VVV"
- **nstart.kmeans**: Number of random starts in kmeans; default=1
mixglasso

iter.max.kmeans

Maximal number of iteration in kmeans; default=10

term

Termination criterion of EM algorithm. Default=10^-3

min.compsize

Stop EM if any(compsize)<min.compsize; Default=5

save.allfits

If TRUE, save output of mixglasso for all k’s.

filename

If save.allfits is TRUE, output of mixglasso will be saved as paste(filename, _fit.mixgl_k.rda, sep=

mc.flag

If TRUE use parallel execution for each n.comp via function mclapply of package parallel.

mc.set.seed

See mclapply. Default=FALSE

mc.preschedule

See mclapply. Default=FALSE

mc.cores

Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise.

... Other arguments. See mixglasso_init

Details

Runs mixture of graphical lasso network clustering with one or several numbers of mixture components.

Value

A list with elements:

models

List with each element i containing an S3 object of class 'nethetclustering' that contains the result of fitting the mixture graphical lasso model with n.comps[i] components. See the documentation of mixglasso_ncomp_fixed for the description of this object.

bic

BIC for all fits.

mmdl

Minimum description length score for all fits.

comp

Component assignments for all fits.

bix.opt

Index of model with optimal BIC score.

mmdl.opt

Index of model with optimal MMDL score.

Author(s)

n.stadler

Examples

###
##This an example of how to use MixGLasso##
###

##generate data
set.seed(1)
n <- 1000
n.comp <- 3
p <- 10
Create different mean vectors
Mu <- matrix(0,p,n.comp)
nonzero.mean <- split(sample(1:p),rep(1:n.comp,length=p))
for(k in 1:n.comp){
 Mu[nonzero.mean[[k]],k] <- -2/sqrt(ceiling(p/n.comp))
}
sim <- sim_mix_networks(n, p, n.comp, Mu=Mu)

##run mixglasso
set.seed(1)
fit1 <- mixglasso(sim$data,n.comp=1:6)
fit1$bic
set.seed(1)
fit2 <- mixglasso(sim$data,n.comp=6)
fit2$bic
set.seed(1)
fit3 <- mixglasso(sim$data,n.comp=1:6,lambda=0)
set.seed(1)
fit4 <- mixglasso(sim$data,n.comp=1:6,lambda=Inf)
#set.seed(1)
#fit5 <- bwprun_mixglasso(sim$data,n.comp=1,n.comp.max=5,selection.crit='bic')
#plot(fit5$selcrit,ylab='bic',xlab='Num.Comps',type='b')

##compare bic
library('ggplot2')
plotting.frame <- data.frame(BIC= c(fit1$bic, fit3$bic, fit4$bic),
 Num.Comps=rep(1:6, 3), Lambda=rep(
 c('Default',
 'Lambda = 0',
 'Lambda = Inf'),
 each=6))
p <- ggplot(plotting.frame) +
geom_line(aes(x=Num.Comps, y=BIC, colour=Lambda))
print(p)

Description

mixglasso_init (initialization and lambda set by user)

Usage

mixglasso_init(x, n.comp, lambda, u.init, mix.prob.init, gamma = 0.5,
 pen = "glasso.parcor", penalize.diagonal = FALSE, term = 10^-3,
 miniter = 5, maxiter = 1000, min.compsize = 5, show.trace = FALSE)
Arguments

- **x**: Input data matrix
- **n.comp**: Number of mixture components
- **lambda**: Regularization parameter
- **u.init**: Initial responsibilities
- **mix.prob.init**: Initial component probabilities
- **gamma**: Determines form of penalty
- **pen**: Determines form of penalty: glasso.parcor (default), glasso.invcov, glasso.invcor
- **penalize.diagonal**: Should the diagonal of the inverse covariance matrix be penalized? Default=FALSE (recommended)
- **term**: Termination criterion of EM algorithm. Default=10^-3
- **miniter**: Minimal number of EM iteration before 'stop EM if any(compsize)<min.compsize' applies. Default=5
- **maxiter**: Maximal number of EM iteration. Default=1000
- **min.compsize**: Stop EM if any(compsize)<min.compsize; Default=5
- **show.trace**: Should information during execution be printed? Default=FALSE

Details

This function runs mixglasso; requires initialization (u.init,mix.prob.init)

Value

- **list consisting of**
 - **mix.prob**: Component probabilities
 - **Mu**: Component specific mean vectors
 - **Sig**: Component specific covariance matrices
 - **SigInv**: Component specific inverse covariance matrices
 - **iter**: Number of EM iterations
 - **loglik**: Log-likelihood
 - **bic**: -loglik+log(n)*DF/2
 - **mmdl**: -loglik+penmmdl/2
 - **u**: Component responsibilities
 - **comp**: Component assignments
 - **compsize**: Size of components
 - **pi.comps**: Component probabilities
 - **warn**: Warnings during EM algorithm

Author(s)

- **n.stadler**
plot.diffnet

Plotting function for object of class 'diffnet'

Description

Plotting function for object of class 'diffnet'

Usage

S3 method for class 'diffnet'
plot(x, ...)

Arguments

x

object of class 'diffnet'

...

Further arguments.

Value

Histogram over multi-split p-values.

Author(s)

nicolas

plot.diffregr

Plotting function for object of class 'diffregr'

Description

Plotting function for object of class 'diffregr'

Usage

S3 method for class 'diffregr'
plot(x, ...)

Arguments

x

object of class 'diffregr'

...

Further arguments.

Value

Histogram over multi-split p-values.

Author(s)

nicolas
plot.ggmgsa

Plotting function for object of class 'ggmgmsa'

Description
Plotting function for object of class 'ggmgmsa'

Usage
S3 method for class 'ggmgmsa'
plot(x, ...)

Arguments
x object of class 'ggmgmsa'
... Further arguments.

Value
Boxplot of single-split p-values.

Author(s)
nicolas

plot.nethetclustering

Plot networks

Description
This function takes the output of screen_cv.glasso or mixglasso and creates a network plot using the network library.

Usage
S3 method for class 'nethetclustering'
plot(x, node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)), p.corrs.thresh = 0.2,
print.pdf = FALSE, pdf.filename = "networks", ...)

Arguments
x A network clustering object as returned by screen_cv.glasso or mixglasso.
node.names Names for the nodes in the network. If NULL, names from net.clustering will be used.
group.names Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integers 1:numClusters).
p.corrs.thresh Threshold applied to the absolute partial correlations. Edges that are below the threshold in all of the groups are not displayed.
print.pdf If TRUE, save the output as a PDF file.

pdf.filename If print.pdf is TRUE, specifies the file name of the output PDF file.

... Further arguments

Value

Returns NULL and prints out the networks (or saves them to pdf if print.pdf is TRUE. The networks are displayed as a series of nComps+1 plots, where in the first plot edge widths are shown according to the maximum partial correlation of the edge over all groups. The following plots show the edges for each group. Positive partial correlation edges are shown in black, negative ones in blue. If an edge is below the threshold on the absolute partial correlation, it is displayed in gray or light blue respectively.

plot_2networks Plot two networks (GGMs)

Description

Plot two networks (GGMs)

Usage

plot_2networks(invcov1, invcov2, node.label = paste("X", 1:nrow(invcov1), sep = ""), main = c("", ""), ...)

Arguments

invcov1 Inverse covariance matrix of GGM1.
invcov2 Inverse covariance matrix of GGM2.
node.label Names of nodes.
main Vector (two elements) with network names.
... Other arguments (see plot.network).

Value

Figure with two panels (for each network).

Author(s)

nicolas

Examples

n <- 70
p <- 30

Specify sparse inverse covariance matrices,
with number of edges in common equal to ~ 0.8*p
genet <- generate_2networks(p, graph='random', n.nz=rep(p,2),
 n.nz.common=ceiling(p*0.8))
invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1, invcov2, label.pos=0, label.cex=0.7)

print.nethetsummary

S3 method for class 'nethetsummary'
print(x, ...)

Arguments

- `x` object of class 'nethetsummary'
- `...` Other arguments

Value

Function does not return anything.

Author(s)

frankd

scatter_plot

Create a scatterplot showing correlation between specific nodes in the network for each pre-specified group.

Description

This function takes the output of `het_cv_glasso` or `mixglasso` and creates a plot showing the correlation between specified node pairs in the network for all groups. The subplots for each node pair are arranged in a numPairs by numGroups grid. Partial correlations associated with each node pair are also displayed.

Usage

scatter_plot(net.clustering, data, node.pairs, display = TRUE,
node.names = rownames(net.clustering$Mu),
group.names = sort(unique(net.clustering$comp)), cex = 1)
Arguments

net.clustering A network clustering object as returned by `het_cv_glasso` or `mixglasso`.
data Observed data for the nodes, a numObs by numNodes matrix. Note that nodes need to be in the same ordering as in node.names.
node.pairs A matrix of size numPairs by 2, where each row contains a pair of nodes to display. If node.names is specified, names in node.pairs must correspond to elements of node.names.
display If TRUE, print the plot to the current output device.
node.names Names for the nodes in the network. If NULL, names from net.clustering will be used.
group.names Names for the clusters or groups. If NULL, names from net.clustering will be used (by default these are integers 1:numClusters).
cex Scale factor for text and symbols in plot.

Value

Returns a ggplot2 object. If display=TRUE, additionally displays the plot.

Examples

```r
n = 500
p = 10
s = 0.9
n.comp = 3

# Create different mean vectors
Mu = matrix(0,p,n.comp)

# Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(1:p),rep(1:n.comp,length=p))

# Set non-zero means to fixed value
for(k in 1:n.comp){
  Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))
}

# Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)
mixglasso.result = mixglasso(sim.result$data, n.comp=3)
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

# Specify edges
node.pairs = rbind(c(1,3), c(6,9),c(7,8))

# Create scatter plots of specified edges
scatter_plot(mixglasso.clustering, data=sim.result$data, node.pairs=node.pairs)
```
screen_aic.glasso

AIC-tuned glasso with additional thresholding

Description
AIC-tuned glasso with additional thresholding

Usage
screen_aic.glasso(x, include.mean = TRUE, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, plot.it = FALSE, trunc.method = "linear.growth", trunc.k = 5, use.package = "huge", verbose = FALSE)

Arguments
x
The input data. Needs to be a num.samples by dim.samples matrix.
include.mean
Include mean in likelihood. TRUE / FALSE (default).
length.lambda
Length of lambda path to consider (default=20).
lambdamin.ratio
Ratio lambda.min/lambda.max.
penalize.diagonal
If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE)
plot.it
TRUE / FALSE (default)
trunc.method
None / linear.growth (default) / sqrt.growth
trunc.k
truncation constant, number of samples per predictor (default=5)
use.package
‘glasso’ or ‘huge’ (default).
verbose
If TRUE, output la.min, la.max and la.opt (default=FALSE).

Value
Returns a list with named elements ‘rho.opt’, ‘wi’, ‘wi.orig’. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.

Author(s)
n.stadler

Examples
n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_aic.glasso(x,length.lambda=5)$wi
screen_bic.glasso

BIC-tuned glasso with additional thresholding

Description

BIC-tuned glasso with additional thresholding

Usage

```r
screen_bic.glasso(x, include.mean = TRUE, length.lambda = 20,
                  lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
                  penalize.diagonal = FALSE, plot.it = FALSE,
                  trunc.method = "linear.growth", trunc.k = 5, use.package = "huge",
                  verbose = FALSE)
```

Arguments

- `x`: The input data. Needs to be a num.samples by dim.samples matrix.
- `include.mean`: Include mean in likelihood. TRUE / FALSE (default).
- `length.lambda`: Length of lambda path to consider (default=20).
- `lambdamin.ratio`: Ratio lambda.min/lambda.max.
- `penalize.diagonal`: If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE)
- `plot.it`: TRUE / FALSE (default)
- `trunc.method`: None / linear.growth (default) / sqrt.growth
- `trunc.k`: truncation constant, number of samples per predictor (default=5)
- `use.package`: 'glasso' or 'huge' (default).
- `verbose`: If TRUE, output la.min, la.max and la.opt (default=FALSE).

Value

Returns a list with named elements `rho.opt`, `wi`, `wi.orig`. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.

Author(s)

n.stadler

Examples

```r
n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_bic.glasso(x,length.lambda=5)$wi
```
screen_cv.glasso

Cross-validated glasso with additional thresholding

Description

Cross-validated glasso with additional thresholding

Usage

```r
screen_cv.glasso(x, include.mean = FALSE, folds = 10, length.lambda = 20,
                   lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
                   penalize.diagonal = FALSE, trunc.method = "linear.growth", trunc.k = 5,
                   plot.it = FALSE, se = FALSE, use.package = "huge", verbose = FALSE)
```

Arguments

- `x`: The input data. Needs to be a num.samples by dim.samples matrix.
- `include.mean`: Include mean in likelihood. TRUE / FALSE (default).
- `folds`: Number of folds in the cross-validation (default=10).
- `length.lambda`: Length of lambda path to consider (default=20).
- `lambdamin.ratio`: Ratio lambda.min/lambda.max.
- `penalize.diagonal`: If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE)
- `trunc.method`: None / linear.growth (default) / sqrt.growth
- `trunc.k`: Truncation constant, number of samples per predictor (default=5)
- `plot.it`: TRUE / FALSE (default)
- `se`: default=FALSE.
- `use.package`: ‘glasso’ or ‘huge’ (default).
- `verbose`: If TRUE, output la.min, la.max and la.opt (default=FALSE).

Details

Run glasso on a single dataset, using cross-validation to estimate the penalty parameter lambda. Performs additional thresholding (optionally).

Value

Returns a list with named elements ‘rho.opt’, ‘w’, ‘wi’, ‘wi.orig’, ‘mu’. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). Variable w is the estimated covariance matrix. The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix. Variable mu is the mean of the input data.

Author(s)

n.stadler
Examples

```r
n=50
p=5
x=matrix(rnorm(n*p),n,p)
which=screen_cv.glasso(x,folds=2)$wi
```

screen_cv1se.lasso
Cross-validated Lasso screening (lambda.1se-rule)

Description

Cross-validated Lasso screening (lambda.1se-rule)

Usage

```r
screen_cv1se.lasso(x, y)
```

Arguments

- `x`
 Predictor matrix

- `y`
 Response vector

Value

Active-set

Author(s)

n.stadler

Examples

```r
screen_cv1se.lasso(matrix(rnorm(5000),50,100),rnorm(50))
```

screen_cvfix.lasso
Cross-validated Lasso screening and upper bound on number of predictors.

Description

Cross-validated Lasso screening and upper bound on number of predictors

Usage

```r
screen_cvfix.lasso(x, y, no.predictors = 10)
```

Arguments

- `x`
 Predictor matrix.

- `y`
 Response vector.

- `no.predictors`
 Upper bound on number of active predictors,
screen_cvmin.lasso

Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates small coefficients to zero such that there are no more than no.predictors non-zero coefficients.

Value

Active-set.

Author(s)

n.stadler

Examples

```r
screen_cvmin.lasso(matrix(rnorm(5000),50,100),rnorm(50))
```

screen_cvmin.lasso
Cross-validation lasso screening (lambda.min-rule)

Description

Cross-validated Lasso screening (lambda.min-rule)

Usage

```r
screen_cvmin.lasso(x, y)
```

Arguments

- `x`
 Predictor matrix

- `y`
 Response vector

Value

Active-set

Author(s)

n.stadler

Examples

```r
screen_cvmin.lasso(matrix(rnorm(5000),50,100),rnorm(50))
```
Cross-validated Lasso screening and sqrt-truncation.

Usage

```
screen_cvsqrt.lasso(x, y)
```

Arguments

- `x`: Predictor matrix.
- `y`: Response vector.

Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to zero, such that there are no more than sqrt(n) non-zero coefficients.

Value

Active-set.

Author(s)

n.stadler

Examples

```
screen_cvsqrt.lasso(matrix(rnorm(5000),50,100),rnorm(50))
```

Cross-validated Lasso screening and additional truncation.

Usage

```
screen_cvtrunc.lasso(x, y, k.trunc = 5)
```

Arguments

- `x`: Predictor matrix.
- `y`: Response vector.
- `k.trunc`: Truncation constant="number of samples per predictor" (default=5).

Description

Cross-validated Lasso screening and additional truncation.
Details

Computes Lasso coefficients (cross-validation optimal lambda). Truncates smallest coefficients to zero, such that there are no more than n/k.trunc non-zero coefficients.

Value

Active-set.

Author(s)

n.stadler

Examples

screen_cvtrunc.lasso(matrix(rnorm(5000),50,100),rnorm(50))

screen_mb

Node-wise Lasso-regressions for GGM estimation

Description

Node-wise Lasso-regressions for GGM estimation

Usage

screen_mb(x, include.mean = NULL, folds = 10, length.lambda = 20, lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001), penalize.diagonal = FALSE, trunc.method = "linear.growth", trunc.k = 5, plot.it = FALSE, se = FALSE, verbose = FALSE)

Arguments

x
The input data. Needs to be a num.samples by dim.samples matrix.

include.mean
Include mean in likelihood. TRUE / FALSE (default).

folds
Number of folds in the cross-validation (default=10).

length.lambda
Length of lambda path to consider (default=20).

lambdamin.ratio
Ratio lambda.min/lambda.max.

penalize.diagonal
If TRUE apply penalization to diagonal of inverse covariance as well. (default=FALSE)

trunc.method
None / linear.growth (default) / sqrt.growth

trunc.k
truncation constant, number of samples per predictor (default=5)

plot.it
TRUE / FALSE (default)

se
default=FALSE.

verbose
If TRUE, output la.min, la.max and la.opt (default=FALSE).

Details

(Meinshausen-Buehlmann approach)
sim_mix

Value

Returns a list with named elements 'rho.opt', 'wi'. Variable rho.opt is the optimal (scaled) penalization parameter (rho.opt=2*la.opt/n). The variables wi is a matrix of size dim.samples by dim.samples containing the truncated inverse covariance matrix. Variable Mu mean of the input data.

Author(s)

n.stadler

Examples

n=50
p=5
x=matrix(rnorm(n*p),n,p)
wihat=screen_mb(x)$wi

Description

Simulate from mixture model with multi-variate Gaussian or t-distributed components.

Usage

sim_mix(n, n.comp, mix.prob, Mu, Sig, dist = "norm", df = 2)

Arguments

n sample size
n.comp number of mixture components ("comps")
mix.prob mixing probabilities (need to sum to 1)
Mu matrix of component-specific mean vectors
Sig array of component-specific covariance matrices
dist 'norm' for Gaussian components, 't' for t-distributed components
df degrees of freedom of the t-distribution (not used for Gaussian distribution), default=2

Value

a list consisting of:
S component assignments
X observed data matrix

Author(s)

n.stadler
Examples

n.comp = 4
p = 5 # dimensionality
Mu = matrix(rep(0, p), p, n.comp)
Sigma = array(diag(p), c(p, p, n.comp))
mix.prob = rep(0.25, n.comp)
sim_mix(100, n.comp, mix.prob, Mu, Sigma)

Description

Generate inverse covariances, means, mixing probabilities, and simulate data from resulting mixture model.

Usage

sim_mix_networks(n, p, n.comp, sparsity = 0.7, mix.prob = rep(1/n.comp, n.comp), Mu = NULL, Sig = NULL, ...)

Arguments

n Number of data points to simulate.
p Dimensionality of the data.
n.comp Number of components of the mixture model.
sparsity Determines the proportion of non-zero off-diagonal entries.
mix.prob Mixture probabilities for the components; defaults to uniform distribution.
Mu Means for the mixture components, a p by n.comp matrix. If NULL, sampled from a standard Gaussian.
Sig Covariances for the mixture components, a p by p by n.comp array. If NULL, generated using generate_inv_cov.
... Further arguments passed to sim_mix.

Details

This function generates n.comp mean vectors from a standard Gaussian and n.comp covariance matrices, with at most \((1 - \text{sparsity}) \times p(p-1)/2\) non-zero off-diagonal entries, where the non-zero entries are sampled from a beta distribution. Then it uses sim_mix to simulate from a mixture model with these means and covariance matrices.

Means Mu and covariance matrices Sig can also be supplied by the user.

Value

A list with components: Mu Means of the mixture components. Sig Covariances of the mixture components. data Simulated data, a n by p matrix. S Component assignments, a vector of length n.

Examples

Generate dataset with 100 samples of dimensionality 30, and 4 components
test.data = sim_mix_networks(n=100, p=30, n.comp=4)
Summary function for object of class 'diffnet'

Usage

S3 method for class 'diffnet'
summary(object, ...)

Arguments

 object object of class 'diffnet'

... Other arguments.

Value

aggregated p-values

Author(s)

nicolas

Summary function for object of class 'diffregr'

Usage

S3 method for class 'diffregr'
summary(object, ...)

Arguments

 object object of class 'diffregr'

... Other arguments

Value

aggregated p-values

Author(s)

nicolas
summary.ggmgsa

Summary function for object of class ’ggmgsa’

Description

Summary function for object of class ’ggmgsa’

Usage

```r
## S3 method for class 'ggmgsa'
summary(object, ...)
```

Arguments

- `object` object of class 'ggmgsa'
- `...` Other arguments

Value

aggregated p-values

Author(s)

nicolas

summary.nethetclustering

Summary function for object of class ’nethetclustering’

Description

Summary function for object of class ’nethetclustering’

Usage

```r
## S3 method for class 'nethetclustering'
summary(object, ...)
```

Arguments

- `object` object of class 'nethetclustering'
- `...` Other arguments

Value

Network statistics (a ’nethetsummary’ object)

Author(s)

frankd
Index

aggpval, 3
bwprun_mixglasso, 4
diffnet_multisplit, 5
diffnet_singlesplit, 8
diffregr_multisplit, 10
diffregr_pval, 12
diffregr_singlesplit, 13
dot_plot, 15
eexport_network, 16
generate_2networks, 18
generate_inv_cov, 19, 43
ggmgsa_multisplit, 19
ggmgsa_singlesplit, 21
gsea.iriz, 22
het_cv_glasso, 15, 16, 23, 33, 34
invcov2parcor, 24
invcov2parcor_array, 25
logratio, 25
mixglasso, 15–17, 26, 31, 33, 34
mixglasso_init, 28
NetHet-package, 2
plot.diffnet, 30
plot.diffregr, 30
plot.ggmgsa, 31
plot.nethetclustering, 31
plot_2networks, 32
print.nethetsummary, 33
scatter_plot, 33
screen_aic.glasso, 35
screen_bic.glasso, 36
screen_cv.glasso, 17, 31, 37
screen_cv1se.lasso, 38
screen_cvfix.lasso, 38
screen_cvmin.lasso, 39
screen_cvsqrt.lasso, 40
screen_cvtrunc.lasso, 40
screen_mb, 41
sim_mix, 42, 43
sim_mix_networks, 43
summary.diffnet, 44
summary.diffregr, 44
summary.ggmgsa, 45
summary.nethetclustering, 45
write.csv, 17