Package ‘netprioR’

April 26, 2017

Title A model for network-based prioritisation of genes

Description A model for semi-supervised prioritisation of genes
 integrating network data, phenotypes and additional prior
 knowledge about TP and TN gene labels from the literature or
 experts.

Imports stats, Matrix, dplyr, doParallel, foreach, parallel,
 sparseMVN, ggplot2, gridExtra, pROC

Depends methods, graphics, R(>= 3.3)

Suggests knitr, BiocStyle, pander

VignetteBuilder knitr

biocViews CellBasedAssays, Preprocessing, Network

Type Package

Lazyload yes

LazyData true

Version 1.2.0

Date 2016-05-08

Author Fabian Schmich

Maintainer Fabian Schmich <fabian.schmich@bsse.ethz.ch>

License GPL-3

URL http://bioconductor.org/packages/netprioR

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

 netprioR-package .. 2
 bandwidth .. 2
 cmn ... 3
 conjugate_gradient ... 3
 cuthill_mckee ... 4
 fit ... 4
 laplacian .. 5
 learn ... 5
 netprioR-class .. 6
Description

This package provides a model for semi-supervised prioritisation of genes integrating network data, phenotypes and additional prior knowledge about TP and TN gene labels.

Author(s)

Fabian Schmich | Computational Biology Group, ETH Zurich | fabian.schmich@bsse.ethz.ch

References

Fabian Schmich et. al (2016).

Description

Compute the bandwidth of a matrix

Usage

bandwidth(x)

Arguments

x Inpute matrix

Value

Bandwidth

Author(s)

Fabian Schmich
Class Mass Normalization (CMN) from Zhu et al., 2003

Description

Class Mass Normalization (CMN) from Zhu et al., 2003

Usage

\texttt{cmn(yhat, l, u)}

Arguments

\begin{itemize}
 \item \texttt{yhat} \quad \text{Response for labeled (l) and unlabeled (u) genes}
 \item \texttt{l} \quad \text{Indices of labeled genes}
 \item \texttt{u} \quad \text{Indices of unlabeled genes}
\end{itemize}

Value

Class normalized \texttt{yhat}

Author(s)

Fabian Schmich

\quad

\quad

Conjugate Gradient Solver

Description

Solves linear equation systems iteratively

Usage

\texttt{conjugate_gradient(A, b, x0 = rep(0, ncol(A)), threshold = 1e-15, verbose = FALSE)}

Arguments

\begin{itemize}
 \item \texttt{A} \quad \text{Matrix}
 \item \texttt{b} \quad \text{Coefficients}
 \item \texttt{x0} \quad \text{Starting solution}
 \item \texttt{threshold} \quad \text{Termination threshold}
 \item \texttt{verbose} \quad \text{Show iterative progress}
\end{itemize}

Value

Solution for equation system
cuthill_mckee

Cuthill McKee (CM) algorithm

Description

Transform sparse matrix into a band matrix

Usage

```
cuthill_mckee(x)
```

Arguments

- `x`
 Input matrix

Value

Band matrix

fit

Fit netprioR model

Description

Fit *netprioR* model

Usage

```
fit(object, ...)  
```

S4 method for signature 'netprioR'

```
fit(object, refit = FALSE, ...)  
```

Arguments

- `object`
 A *netprioR* object

- `...`
 Additional arguments

- `refit`
 Flag whether to overwrite existing fit

Value

A *netprioR* object with fitted model
Author(s)

Fabian Schmich

Examples

data(simulation)
np <- netprioR(networks = simulation$networks,
 phenotypes = simulation$phenotypes,
 labels = simulation$labels.obs,
 model.fit = FALSE)
summary(np)
np <- fit(np, nrestarts = 1, verbose = FALSE)
summary(np)

laplacian

Graph Laplacian

Description

Compute the Laplacian matrix of a graph given its adjacency matrix

Usage

laplacian(x, norm = c("none", "sym", "asym"))

Arguments

x
Adjacency matrix

norm
Type of normalisation

Value

Laplacian matrix

Author(s)

Fabian Schmich

learn

Fit netprioR model

Description

Infer parameters and hidden data using the EM algorithm of netprioR

Usage

learn(Yobs, X, G, l, u, a = 0.1, b = 0.1, sigma2 = 1, tau2 = 10,
 eps = 1e-11, max.iter = 500, thresh = 0.001, use.cg = TRUE,
 thresh.cg = 1e-05, nrestarts = 5, max.cores = detectCores(),
 verbose = FALSE)
Arguments

Yobs Observed labels (NA, if not observed)
X Phenotypes
G Graph Laplacians
l Indices of labelled instances
u Indices of unlabelled instances
a Shape parameter of Gamma prior for W
b Scale parameter of Gamma prior for W
sigma2 Variance for Gaussian labels
tau2 Variance for Gaussian prior for beta
eps Small value added to diagonal of Q in order to make it non-singular
max.iter Maximum number of iterations for EM
thresh Threshold for termination of EM with respect to change in parameters
use.cg Flag whether to use conjugate gradient instead of exact computation of expectations
thresh.cg Threshold for the termination of the conjugate gradient solver
nrestarts Number of restarts for EM
max.cores Maximum number of cores to use for parallel computation
verbose Print verbose output

Value

List containing: Predicted labels Yhat and inferred parameters W and beta

Author(s)

Fabian Schmich

Description

Class that represents a netprioR model.

Usage

netprioR(networks, phenotypes, labels, ...)

S4 method for signature 'list, matrix, factor'
netprioR(networks, phenotypes, labels,
 fit.model = FALSE, a = 0.1, b = 0.1, sigma2 = 0.1, tau2 = 100,
 eps = 1e-10, max.iter = 500, thresh = 1e-06, use.cg = FALSE,
 thresh.cg = 1e-06, nrestarts = 5, max.cores = detectCores(),
 verbose = TRUE, ...)
Arguments

- **networks**: List of NxN adjacency matrices of gene-gene similarities
- **phenotypes**: Matrix of dimension NxP containing covariates
- **labels**: Vector of Nx1 labels for all genes (NA if no label available)
- **fit.model**: Indicator whether to fit the model
- **a**: Shape parameter of Gamma prior for W
- **b**: Scale parameter of Gamma prior for W
- **sigma2**: Variance for Gaussian labels
- **tau2**: Variance for Gaussian prior for beta
- **eps**: Small value added to diagonal of Q in order to make it non-singular
- **max.iter**: Maximum number of iterations for EM
- **thresh**: Threshold for termination of EM with respect to change in parameters
- **use.cg**: Flag whether to use conjugate gradient instead of exact computation of expectations
- **thresh.cg**: Threshold for the termination of the conjugate gradient solver
- **nrestarts**: Number of restarts for EM
- **max.cores**: Maximum number of cores to use for parallel computation
- **verbose**: Print verbose output

Value

A `netprioR` object

Slots

- **networks**: List of NxN adjacency matrices of gene-gene similarities
- **phenotypes**: Matrix of dimension NxP containing covariates
- **labels**: Vector of Nx1 labels for all genes. NA if no label available.
- **is.fitted**: Flag indicating if model is fitted
- **model**: List containing estimated parameters and imputed missing data

Author(s)

Fabian Schmich

Examples

```r
# runs long-ish
data(simulation)
np <- netprioR(networks = simulation$networks,
               phenotypes = simulation$phenotypes,
               labels = simulation$labels.obs,
               fit.model = TRUE)
summary(np)
```
norm_kern

Normalise kernel

Description

adopted from GeneMania, Mostafavi et al, 2009

Usage

```r
norm_kern(x)
```

Arguments

- `x` kernel

Value

Normalised kernel

Author(s)

Fabian Schmich

plot.netprioR

Plot method for netprioR objects

Description

Plot method for netprioR objects

Usage

```r
## S3 method for class 'netprioR'
plot(x, which = c("all", "weights", "lik", "scores"), ...)
```

Arguments

- `x` A netprioR object
- `which` Flag for which plot should be shown, options: weights, lik, scores, all
- `...` Additional parameters for plot

Value

Plot of the weights, likelihood, ranks, or all three

Author(s)

Fabian Schmich

Examples

```r
data(simulation)
plot(simulation$model)
```
ranks

Retrieve ranked prioritisation list

Description
Retrieve ranked prioritisation list

Usage
ranks(object)

S4 method for signature 'netprioR'

ranks(object)

Arguments

object A netprioR object

Value
Ranked list of prioritised genes

Author(s)
Fabian Schmich

Examples
data(simulation)
ranks(simulation$model)

ROC

Compute ROC curve from netprioR model and true labels

Description
Compute ROC curve from netprioR model and true labels

Usage
ROC(object, ...)

S4 method for signature 'netprioR'

ROC(object, true.labels, plot = FALSE, ...)

Arguments

object A netprioR object
...

Additional arguments

true.labels True full set of underlying labels

plot Flag whether to plot the AUC curve
Value

ROC curve with AUC

Author(s)

Fabian Schmich

Examples

```r
data(simulation)
ROC(simulation$model, true.labels = simulation$labels.true)
```

simulate_labels
Simulate labels

Description

Simulate labels

Usage

```r
simulate_labels(values, sizes, nobs)
```

Arguments

- `values` Vector of labels for groups
- `sizes` Vector of group sizes
- `nobs` Vector of number of observed labels per group

Value

List of Y, Yobs and indices for labeled instances

Author(s)

Fabian Schmich

Examples

```r
labels <- simulate_labels(values = c("Positive", "Negative"),
                          sizes = c(10, 10),
                          nobs = c(5, 5))
```
simulate_network_random

Simulate random networks with predefined number of members for each of the two groups and the number of neighbours for each node

Description

Simulate random networks with predefined number of members for each of the two groups and the number of neighbours for each node

Usage

```r
simulate_network_random(nmemb, nnei = 1)
```

Arguments

- `nmemb` Vector of number of members for each group
- `nnei` Number of neighbours for each node

Value

Adjacency matrix of graph

Author(s)

Fabian Schmich

Examples

```r
network <- simulate_network_random(nmemb = c(10, 10), nnei = 1)
```

simulate_network_scalefree

Simulate scalefree networks

Description

Simulate scale free networks for predefined number of members for each of two groups and a parameter `pclus` that determines how strictly distinct the groups are

Usage

```r
simulate_network_scalefree(nmemb, pclus = 1)
```

Arguments

- `nmemb` Vector of numbers of members per group
- `pclus` Scalar in [0, 1] determining how strictly distinct groups are
Value

Adjacency matrix

Author(s)

Fabian Schmich

Examples

```r
network <- simulate_network_scalefree(nmemb = c(10, 10), pclus = 0.8)
```

simulate_phenotype
Simulate phenotypes correlated to labels pivoted into two groups

Description

Simulate phenotypes correlated to labels pivoted into two groups

Usage

```r
simulate_phenotype(labels.true, meandiff, sd)
```

Arguments

- `labels.true`: Vector of labels
- `meandiff`: Difference of means between positive and negative groups
- `sd`: Standard deviation of the phenotype

Value

Simulated phenotype

Author(s)

Fabian Schmich

Examples

```r
data(simulation)
phenotypes <- simulate_phenotype(labels.true = simulation$labels.true, meandiff = 0.5, sd = 1)
```
Example data: Simulated networks, phenotypes and labels for $N = 1000$ genes

Description

The data set contains simulated data for $N = 1000$ genes and $P = 1$ (univariate) phenotypes. The list of networks contains 2 low noise networks and two high noise networks. The class labels are "Positive" and "Negative".

Usage

data(simulation)

Details

The code used to simulate the data can be found in `system.file("example", "data_simulation.R", package = "netprioR")`

Value

List of simulated networks, phenotypes and labels for 1000 genes

weights

Retrieve network weights

Description

Retrieve network weights

Usage

weights(object, ...)

S4 method for signature 'netprioR'
weights(object)

Arguments

- **object**: A *netprioR* object
- **...**: Additional arguments

Value

Estimated network weights

Author(s)

Fabian Schmich
Examples

```r
data(simulation)
weights(simulation$model)
```
Index

*Topic package
 netprioR-package, 2

bandwidth, 2

cmn, 3
conjugate_gradient, 3
cuthill_mckee, 4

fit, 4
fit, netprioR-method (fit), 4

laplacian, 5
learn, 5

netprioR, 4, 7–9, 13
netprioR (netprioR-class), 6
netprioR, list, matrix, factor-method (netprioR-class), 6
netprioR-class, 6
netprioR-package, 2
norm_kern, 8

plot.netprioR, 8

ranks, 9
ranks, netprioR-method (ranks), 9
ROC, 9
ROC, netprioR-method (ROC), 9

simulate_labels, 10
simulate_network_random, 11
simulate_network_scalefree, 11
simulate_phenotype, 12
simulation, 13

weights, 13
weights, netprioR-method (weights), 13