Package ‘netprioR’

April 15, 2017

Title A model for network-based prioritisation of genes

Description A model for semi-supervised prioritisation of genes
 integrating network data, phenotypes and additional prior
 knowledge about TP and TN gene labels from the literature or
 experts.

Imports stats, Matrix, dplyr, doParallel, foreach, parallel,
 sparseMVN, ggplot2, gridExtra, pROC

Depends methods, graphics, R(>= 3.3)

Suggests knitr, BiocStyle, pander

VignetteBuilder knitr

biocViews CellBasedAssays, Preprocessing, Network

Type Package

Lazyload yes

LazyData true

Version 1.0.0

Date 2016-05-08

Author Fabian Schmich

Maintainer Fabian Schmich <fabian.schmich@bsse.ethz.ch>

License GPL-3

URL http://bioconductor.org/packages/netprioR

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

 netprioR-package ... 2
 bandwidth ... 2
 cmn ... 3
 conjugate_gradient ... 3
 cuthill_mckee ... 4
 fit ... 4
 laplacian ... 5
 learn ... 5
 netprioR-class ... 6
This package provides a model for semi-supervised prioritisation of genes integrating network data, phenotypes and additional prior knowledge about TP and TN gene labels.

Author(s)
Fabian Schmich | Computational Biology Group, ETH Zurich | <fabian.schmich@bsse.ethz.ch>

References
Fabian Schmich et. al (2016).

Description
Compute the bandwidth of a matrix

Usage
bandwidth(x)

Arguments

x: Inpute matrix

Value
Bandwidth

Author(s)
Fabian Schmich
cmn

Class Mass Normalization (CMN) from Zhu et al., 2003

Description

Class Mass Normalization (CMN) from Zhu et al., 2003

Usage

```r
cmn(yhat, l, u)
```

Arguments

- `yhat`: Response for labeled (l) and unlabeled (u) genes
- `l`: Indices of labeled genes
- `u`: Indices of unlabeled genes

Value

Class normalized `yhat`

Author(s)

Fabian Schmich

conjugate_gradient

Conjugate Gradient Solver

Description

Solves linear equation systems iteratively

Usage

```r
conjugate_gradient(A, b, x0 = rep(0, ncol(A)), threshold = 1e-15, verbose = FALSE)
```

Arguments

- `A`: Matrix
- `b`: Coefficients
- `x0`: Starting solution
- `threshold`: Termination threshold
- `verbose`: Show iterative progress

Value

Solution for equation system
cuthill_mckee
Cuthill McKee (CM) algorithm

Description
Transform sparse matrix into a band matrix

Usage
cuthill_mckee(x)

Arguments
x Input matrix

Value
Band matrix

Author(s)
Fabian Schmich

fit
Fit netprioR model

Description
Fit netprioR model

Usage
fit(object, ...)

S4 method for signature 'netprioR'
fit(object, refit = FALSE, ...)

Arguments
object A netprioR object
... Additional arguments
refit Flag whether to overwrite existing fit

Value
A netprioR object with fitted model

Author(s)
Fabian Schmich
Author(s)
Fabian Schmich

Examples
data(simulation)
np <- netprioR(networks = simulation$networks,
 phenotypes = simulation$phenotypes,
 labels = simulation$labels.obs,
 model.fit = FALSE)
summary(np)
np <- fit(np, nrestarts = 1, verbose = FALSE)
summary(np)

laplacian

Graph Laplacian

Description
Compute the Laplacian matrix of a graph given its adjacency matrix

Usage
laplacian(x, norm = c("none", "sym", "asym"))

Arguments

x Adjacency matrix

norm Type of normalisation

Value
Laplacian matrix

Author(s)
Fabian Schmich

learn
Fit netprioR model

Description
Infer parameters and hidden data using the EM algorithm of netprioR

Usage
learn(Yobs, X, G, l, u, a = 0.1, b = 0.1, sigma2 = 1, tau2 = 10,
 eps = 1e-11, max.iter = 500, thresh = 0.001, use.cg = TRUE,
 thresh.cg = 1e-05, nrestarts = 5, max.cores = detectCores(),
 verbose = FALSE)
Arguments

Yobs Observed labels (NA, if not observed)
X Phenotypes
G Graph Laplacians
l Indices of labelled instances
u Indices of unlabelled instances
a Shape parameter of Gamma prior for W
b Scale parameter of Gamma prior for W
sigma2 Variance for Gaussian labels
tau2 Variance for Gaussian prior for beta
eps Small value added to diagonal of Q in order to make it non-singular
max.iter Maximum number of iterations for EM
thresh Threshold for termination of EM with respect to change in parameters
use.cg Flag whether to use conjugate gradient instead of exact computation of expecta-
tions
thresh.cg Threshold for the termination of the conjugate gradient solver
nrestarts Number of restarts for EM
max.cores Maximum number of cores to use for parallel computation
verbose Print verbose output

Value
List containing: Predicted labels Yhat and inferred parameters W and beta

Author(s)
Fabian Schmich

netprioR-class

Description
Class that represents a netprioR model.

Usage

netprioR(networks, phenotypes, labels, ...)

S4 method for signature 'list,matrix,factor'
netprioR(networks, phenotypes, labels,
 fit.model = FALSE, a = 0.1, b = 0.1, sigma2 = 0.1, tau2 = 100,
 eps = 1e-10, max.iter = 500, thresh = 1e-06, use.cg = FALSE,
 thresh.cg = 1e-06, nrestarts = 5, max.cores = detectCores(),
 verbose = TRUE, ...)
Arguments

networks List of N x N adjacency matrices of gene-gene similarities
phenotypes Matrix of dimension N x P containing covariates
labels Vector of N x 1 labels for all genes (NA if no label available)
... Additional arguments
fit.model Indicator whether to fit the model
a Shape parameter of Gamma prior for W
b Scale parameter of Gamma prior for W
sigma2 Variance for Gaussian labels
tau2 Variance for Gaussian prior for beta
eps Small value added to diagonal of Q in order to make it non-singular
max.iter Maximum number of iterations for EM
thresh Threshold for termination of EM with respect to change in parameters
use.cg Flag whether to use conjugate gradient instead of exact computation of expectations
thresh.cg Threshold for the termination of the conjugate gradient solver
nrestarts Number of restarts for EM
max.cores Maximum number of cores to use for parallel computation
verbose Print verbose output

Value

A `netprioR` object

Slots

networks List of N x N adjacency matrices of gene-gene similarities
phenotypes Matrix of dimension N x P containing covariates
labels Vector of N x 1 labels for all genes. NA if no label available.
is.fitted Flag indicating if model is fitted
model List containing estimated parameters and imputed missing data

Author(s)

Fabian Schmich

Examples

runs long-ish
data(simulation)
np <- netprioR(networks = simulation$networks,
 phenotypes = simulation$phenotypes,
 labels = simulation$labels.obs,
 fit.model = TRUE)
summary(np)
norm_kern \hspace{1cm} \textit{Normalise kernel}

Description

adopted from GeneMania, Mostafavi et al, 2009

Usage

```
norm_kern(x)
```

Arguments

- `x` \hspace{1cm} kernel

Value

Normalized kernel

Author(s)

Fabian Schmich

plot.netprioR \hspace{1cm} \textit{Plot method for netprioR objects}

Description

Plot method for \texttt{netprioR} objects

Usage

```r
## S3 method for class \texttt{netprioR}
plot(x, which = c("all", "weights", "lik", "scores"), ...)
```

Arguments

- `x` \hspace{1cm} A \texttt{netprioR} object
- `which` \hspace{1cm} Flag for which plot should be shown, options: weights, lik, scores, all
- `...` \hspace{1cm} Additional parameters for plot

Value

Plot of the weights, likelihood, ranks, or all three

Author(s)

Fabian Schmich

Examples

```r
data(simulation)
plot(simulation$model)
```
ranks

Retrieve ranked prioritisation list

Usage

ranks(object)

S4 method for signature 'netprioR'
ranks(object)

Arguments

object A netprioR object

Value

Ranked list of prioritised genes

Author(s)

Fabian Schmich

Examples

data(simulation)
ranks(simulation$model)

ROC

Compute ROC curve from netprioR model and true labels

Usage

ROC(object, ...)

S4 method for signature 'netprioR'
ROC(object, true.labels, plot = FALSE, ...)

Arguments

object A netprioR object
... Additional arguments
true.labels True full set of underlying labels
plot Flag whether to plot the AUC curve
Value

ROC curve with AUC

Author(s)

Fabian Schmich

Examples

data(simulation)
ROC(simulation$model, true.labels = simulation$labels.true)

simulate_labels

Simulate labels

Description

Simulate labels

Usage

simulate_labels(values, sizes, nobs)

Arguments

values Vector of labels for groups
sizes Vector of group sizes
nobs Vector of number of observed labels per group

Value

List of Y, Yobs and indices for labeled instances

Author(s)

Fabian Schmich

Examples

labels <- simulate_labels(values = c("Positive", "Negative"),
sizes = c(10, 10),
nobs = c(5, 5))
simulate_network_random

Simulate random networks with predefined number of members for each of the two groups and the number of neighbours for each node

Description

Simulate random networks with predefined number of members for each of the two groups and the number of neighbours for each node

Usage

simulate_network_random(nmemb, nnei = 1)

Arguments

nmemb Vector of number of members for each group
nnei Number of neighbours for each node

Value

Adjacency matrix of graph

Author(s)

Fabian Schmich

Examples

network <- simulate_network_random(nmemb = c(10, 10), nnei = 1)

simulate_network_scalefree

Simulate scalefree networks

Description

Simulate scale free networks for predefined number of members for each of two groups and a parameter pclus that determines how strictly distinct the groups are

Usage

simulate_network_scalefree(nmemb, pclus = 1)

Arguments

nmemb Vector of numbers of members per group
pclus Scalar in [0, 1] determining how strictly distinct groups are
simulate_phenotype

Value

Adjacency matrix

Author(s)

Fabian Schmich

Examples

```r
network <- simulate_network_scalefree(nmemb = c(10, 10), pclus = 0.8)
```

<table>
<thead>
<tr>
<th>simulate_phenotype</th>
<th>Simulate phenotypes correlated to labels pivoted into two groups</th>
</tr>
</thead>
</table>

Description

Simulate phenotypes correlated to labels pivoted into two groups

Usage

```r
simulate_phenotype(labels.true, meandiff, sd)
```

Arguments

- `labels.true`: Vector of labels
- `meandiff`: difference of means between positive and negative groups
- `sd`: Standard deviation of the phenotype

Value

Simulated phenotype

Author(s)

Fabian Schmich

Examples

```r
data(simulation)
phenotypes <- simulate_phenotype(labels.true = simulation$labels.true, meandiff = 0.5, sd = 1)
```
Example data: Simulated networks, phenotypes and labels for N = 1000 genes

Description
The data set contains simulated data for N = 1000 genes and P = 1 (univariate) phenotypes. The list of networks contains 2 low noise networks and two high noise networks. The class labels are "Positive" and "Negative".

Usage
data(simulation)

Details
The code used to simulate the data can be found in system.file("example", "data_simulation.R", package = "netprioR")

Value
List of simulated networks, phenotypes and labels for 1000 genes

Retrieve network weights

Description
Retrieve network weights

Usage
weights(object, ...)

S4 method for signature 'netprioR'
weights(object)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A netprioR object</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments</td>
</tr>
</tbody>
</table>

Value
Estimated network weights

Author(s)
Fabian Schmich
Examples

data(simulation)
weights(simulation$model)
Index

*Topic package
 netprioR-package, 2

bandwidth, 2

cmn, 3
conjugate_gradient, 3
cuthill_mckee, 4

fit, 4
fit, netprioR-method (fit), 4

laplacian, 5
learn, 5

netprioR, 4, 7–9, 13
netprioR (netprioR-class), 6
netprioR, list, matrix, factor-method (netprioR-class), 6
netprioR-class, 6
netprioR-package, 2
norm_kern, 8

plot.netprioR, 8

ranks, 9
ranks, netprioR-method (ranks), 9
ROC, 9
ROC, netprioR-method (ROC), 9

simulate_labels, 10
simulate_network_random, 11
simulate_network_scalefree, 11
simulate_phenotype, 12
simulation, 13

weights, 13
weights, netprioR-method (weights), 13