Description

A study of the effect of p53 and/or Ras mutations on gene expression. The third dataset is a comparison between four cell types – YAMC cells, mutant-p53 YAMC cells, activated-Ras YAMC cells, and p53/Ras double mutant YAMC cells. Three replicates were performed for the untransformed YAMC cells, and four replicates were performed for each of the other cell types.
Usage
data(nature2008)

Format
A qPCRset object.

Examples
data(nature2008)
show(nature2008)

oncogene2013 The qPCR data from Sampson et al. *Oncogene* 2013.

Description
Two cell types – young adult mouse colon (YAMC) cells and mutant-p53/activated-Ras transformed YAMC cells – in combination with three treatments – untreated, sodium butyrate, or valproic acid. Four replicates were performed for each cell-type/treatment combination.

Usage
data(oncogene2013)

Format
A qPCRset object.

Examples
data(oncogene2013)
show(oncogene2013)

qpcrImpute Impute Non-detects in qPCR data

Description
This function models the missing data mechanism and uses an EM algorithm to impute the non-detect values in the qPCR data.

Usage
qpcrImpute(object, dj=NULL, pyfit=NULL, groupVars=NULL, batch=NULL, tol=1,
iterMax=100, outform=c("Single","Param","Multy"),
vary_fit=TRUE, vary_model=TRUE, add_noise=TRUE,
formula=NULL, numsam=5)
Arguments

- **object** a qPCRset
- **dj** normalization values. If NULL, features with "control" in featureType(object) are used to normalize the data. If no control features are found, the data are not normalized.
- **pyfit** initial estimate of the relationship between the probability of a non-detect and average expression. If NULL, this relationship is estimated from the data.
- **groupVars** which columns in pData(object) should be used to determine replicate samples. If NULL, all columns are used.
- **batch** matrix with batch effects, it has the same dimensions as exprs(object). If NULL, batch effect matrix is a zero matrix.
- **tol** likelihood convergence criterion of the EM algorithm.
- **iterMax** maximum number of iterations of the EM algorithm.
- **outform** the form of the output requested. If "Single" performs a single imputation of missing values. If "Param" returns estimated model parameters: mean and variance. If "Multy" performs a multiple imputation of missing values, and creates multiple data sets with imputed values.
- **formula** specifies the model.
- **numsam** number of the datasets to be created if outform="Multy". The default value is 5.
- **vary_fit** if outform="Multy", includes the model uncertainty due to the logit of the probability of being missing. The default value is "TRUE".
- **vary_model** if outform="Multy", includes the model uncertainty due to the estimating mean of the data. The default value is "TRUE".
- **add_noise** if outform="Multy", introduces the variance component due to the random noise. The default value is "TRUE".

Value

The function returns a qPCRset object with non-detects replaced by their imputed values.

Author(s)

Valeriia Sherina, Matthew N. McCall

Examples

data(oncogene2013)
tst <- qpcrImpute(oncogene2013, groupVars=c("sampleType","treatment"), outform="Param")
The qPCR data from Almudevar et al. SAGMB 2011.

Description

Cells transformed to malignancy by mutant p53 and activated Ras are perturbed with the aim of restoring gene expression to levels found in non-transformed parental cells via retrovirus-mediated re-expression of corresponding cDNAs or shRNA-dependent stable knock-down. The data contain 4-6 replicates for each perturbation, and each perturbation has a corresponding control sample in which only the vector has been added.

Usage

data(sagmb2011)

Format

A qPCRset object.

Examples

data(sagmb2011)
show(sagmb2011)
Index

*Topic datasets
 nature2008, 1
 oncogene2013, 2
 sagmb2011, 4

*Topic manip
 qpcrImpute, 2

nature2008, 1
oncogene2013, 2
qpcrImpute, 2
sagmb2011, 4