binHist

Histogram Breakpoints

Description

Returns the histogram breakpoints for fast insertion.

Usage

binHist(orf, overlap=NULL, bp=6264403)

Arguments

orf 2-column matrix of annotation
overlap number position of overlap
bp number of base pairs in genome

Details

Returns a vector of breakpoints for the binInsertHist function.

Value

end.pt Position of last target
orf orfID
overlap Number of targets in overlap

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **.

See Also

binInsertHist

Examples

**
binInsert

Insert Locations

Description
Returns the number of ORF knockouts.

Usage
binInsert(insert, orf, returnCounts=FALSE, overlap=NULL, DEBUG=FALSE)

Arguments
- **insert**: List of insertion locations
- **orf**: 2-column matrix of annotation
- **returnCounts**: Return the number of insertions
- **overlap**: Number of shared targets
- **DEBUG**: Flag to debug the code

Details
Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value
Returns a numeric or an object

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (** in **.

Examples

**
binInsertHist

Insert Locations Quickly

Description
Given a list of locations, returns the number of ORFs hit.

Usage
binInsertHist(insert, orfHist, returnCounts=FALSE)

Arguments
- insert: List of insertion locations
- orfHist: Histogram breakpoints
- returnCounts: Return the number of insertions

Details
Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value
Returns a numeric or an object

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (**) in **

See Also
binHist

Examples
**
checkFormat

Checks the Format of Annotation and Insertions

Description

Checks the format of the annotation and insertions.

Usage

```r
checkFormat(anno, clone)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anno</td>
<td>2-column matrix of annotation</td>
</tr>
<tr>
<td>clone</td>
<td>vector</td>
</tr>
</tbody>
</table>

Details

Checks the format of the annotation and insertions list. Annotation has to be a matrix of the first and last target in the ORF. Insertions has to be a vector. Will stop if not correct format.

Value

Returns a boolean.

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
if (checkFormat(anno, clone)) {print("Looks good.");}
```
Number of New Knockouts

delta0

Description

Point estimate for the number of new ORF knockouts in the next d clones.

Usage

```r
delta0(d, anno, clone)
```

Arguments

- `d` Number of clones to be made
- `anno` 2-column matrix of annotation
- `clone` Vector of insertions

Details

Use the parametric form of the cumulative occupancy distribution to estimate the number of new ORF knockouts in the next d clones.

Value

A numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

See Also

unbiasDelta0

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
delta0(10, anno, clone)
```
eMult

Expected Value of the Occupancy Distribution

Description

Returns the expected value of the occupancy distribution based on a multinomial distribution.

Usage

eMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

- **n**: number of attempts in the multinomial distribution
- **p**: probabilities for landing in a specific bin
- **iter**: number of iterations used in the Monte-Carlo approximation
- **seed**: seed for the random number generator
- **experimental**: access to other functions of multinomials

Details

This function computes the expected value of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes expected number of bins with exactly one ball and the experimental argument "nextTo" computes the expected number of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
eMult(n,p)
eMult(n,p,iter=1000,seed=4)
```
etDelta

Number of New ORF Knockouts

Description
Estimates the number of new knockouts in next d clones.

Usage
etDelta(d, anno, clone)

Arguments
- d number of new clones
- anno 2-column matrix of annotation
- clone vector

Details
Estimates the number of new ORF knockouts in the next d clones using the method outlined by Efron and Thisted.

Value
- expected Expected value
- variance Variance

Author(s)
Oliver Will <owill4@yahoo.com>

References

Examples
- data(sampleAnnotation)
- data(sampleInsertions)
- a.data <- sampleAnnotation
- experiment <- sampleInsertions
- orf <- cbind(a.data$first,a.data$last)
- clone <- experiment$position
- etDelta(10,orf,clone)
fCumul

Parametric Function for the Cumulative Occupancy Distribution

Description

Returns values for parameterized cumulative occupancy distributions.

Usage

fCumul(x,b0,b1,b2)

Arguments

- **x**
 Point to evaluate

- **b0**
 Parameter b0

- **b1**
 Parameter b1

- **b2**
 Parameter b2

Details

Function fitted to the cumulative occupancy distribution for a multinomial distribution. Exponential model := b0-b1*exp(-b2*x).

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

Examples

```r
x <- 2
b0 <- 3
b1 <- 3
b2 <- 0.01
val <- fCumul(x,b0,b1,b2)
```
Parametric Fit for the Cumulative Occupancy Distribution

Description

Parameterizes the cumulative occupancy distribution.

Usage

```r
fFit(anno, clone, TR=TRUE, b0=0, b1=0, b2=.0)
```

Arguments

- `anno`: 2-column matrix of annotation
- `clone`: vector
- `TR`: Report a trace
- `b0`: Starting value b0
- `b1`: Starting value b1
- `b2`: Starting value b2

Details

Fits various parametric functions to the occupancy distribution for a multinomial. Using the starting values of b0=0, b1=0, and b2=0 forces the function to find starting values for you.

Value

Returns a object.

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
fm <- fFit(anno, clone, TR)
```
loadAnnotation

Description
Loads and checks an annotation file.

Usage
loadAnnotation(fileName)

Arguments
fileName Name of file

Details
Annotation file need four columns: idNum, first, last, and overlap.

Value
Returns a data frame

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (** in **) in **

Examples

No self contained example

loadInsertions

Description
Loads a list of insertion locations.

Usage
loadInsertions(fileName)

Arguments
fileName Name of the file
Details

Loads a list of insertion locations created in a transposon mutagenesis library.

Value

Returns a data frame

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) **

Examples

No self contained example

```
occup2Negenes
```

Description

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package.

Usage

```r
occup2Negenes(anno, clone, INTERGENIC=FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anno</td>
<td>2-column matrix of annotation</td>
</tr>
<tr>
<td>clone</td>
<td>vector of insertion locations</td>
</tr>
<tr>
<td>INTERGENIC</td>
<td>Process the intergenic region as last ORF.</td>
</tr>
</tbody>
</table>

Details

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package. Of the returned data frame, column 1 is n.sites, column 2, n.sites2, column 3, counts, column 4, counts2.

Value

Returns a data frame

Author(s)

Oliver Will <owill4@yahoo.com>
References

See the book chapter O. Will (** in **) in **

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
occup2Negenes(anno,clone)

sampleAnnotation Annotation for a Hypothetical Prokayote

Description

This dataset has the annotation for a hypothetical bacterium.

Usage

data(sampleAnnotation)

Format

A data frame containing 4 columns with 10 rows.

Author(s)

Oliver Will <owill4@yahoo.com>

Source

Randomly generated.

References

See the book chapter O. Will (** in **) in **
sampleInsertions Insertions for a Hypothetical Clonal Library

Description
Insertion locations for a simple random mutagenesis library example.

Usage
data(sampleInsertions)

Format
A data frame containing 1 column with 20 rows.

Author(s)
Oliver Will <owill4@yahoo.com>

Source
Randomly generated.

References
See the book chapter O. Will (** in **) in **

unbiasB0 Unbiased Estimator of the Number of Non-essential ORFs

Description
Unbiased point estimate and confidence intervals for the number of non-essential ORFs.

Usage
unbiasB0(anno, clone, iter=1000, seed=NULL, alpha=0.05, TR=TRUE)

Arguments
anno 2-column matrix of annotation
clone Vector of insertions
iter Number of iterations for the bootstrap
seed Seed for the random number generator
alpha Type I error
TR Report a trace
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of non-essential ORFs.

Value

- b0: Unbiased point estimate
- CI: Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (***) in **

See Also

fFit

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasB0(anno,clone,iter,seed,TR=TR)
```

unbiasDelta0

Unbiased Number of New Knockouts

Description

Unbiased point estimate and confidence intervals for the number of new ORF knockouts in the next \(d \) clones.

Usage

```r
unbiasDelta0(d,anno,clone,iter=1000,seed=NULL,alpha=0.05,TR=TRUE)
```

Arguments

- **d**: Number of new clones
- **anno**: 2-column matrix of annotation
- **clone**: Vector of insertions
- **iter**: Number of iterations for the bootstrap
- **seed**: Seed for the random number generator
- **alpha**: Type I error
- **TR**: Report a trace
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of new ORF knockouts in the next d clones.

Value

delta0 Unbiased point estimate
CI Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) See Also
delta0

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasDelta0(10,anno,clone,iter,seed,TR=TR)

varMult

Variance of the Occupancy Distribution

Description

Returns the variance of the occupancy distribution based on a multinomial distribution.

Usage

varMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

n number of attempts in the multinomial distribution
p probabilities for landing in a specific bin
iter number of iterations used in the Monte-Carlo approximation
seed seed for the random number generator
experimental access to other functions of multinomials
Details

This function computes the variance of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes variance of bins with exactly one ball and the experimental argument "nextTo" computes the variance of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
varMult(n,p)
varMult(n,p,iter=1000,seed=4)
```
Index

*Topic **attribute**
 checkFormat, 5

*Topic **datasets**
 sampleAnnotation, 13
 sampleInsertions, 14

*Topic **distribution**
 eMult, 7
 varMult, 16

*Topic **iteration**
 binHist, 2
 binInsert, 3
 binInsertHist, 4

*Topic **manip**
 loadAnnotation, 11
 loadInsertions, 11
 occup2Negenes, 12

*Topic **models**
 fCumul, 9
 fFit, 10

*Topic **nonlinear**
 delta0, 6
 unbiasedB0, 14
 unbiasedDelta0, 15

*Topic **univar**
 etDelta, 8

 binHist, 2
 binInsert, 3
 binInsertHist, 4

 checkFormat, 5

 delta0, 6

 eMult, 7
 etDelta, 8

 fCumul, 9
 fFit, 10

 loadAnnotation, 11
 loadInsertions, 11

 occup2Negenes, 12

 sampleAnnotation, 13
 sampleInsertions, 14

 unbiasedB0, 14
 unbiasedDelta0, 15

 varMult, 16