Package ‘occugene’

April 26, 2017

Version 1.36.0
Date 2006-11-07
Title Functions for Multinomial Occupancy Distribution
Author Oliver Will <oliverrreader@gmail.com>
Maintainer Oliver Will <oliverrreader@gmail.com>
Depends R (>= 2.0.0)
Description Statistical tools for building random mutagenesis libraries for prokaryotes. The package has functions for handling the occupancy distribution for a multinomial and for estimating the number of essential genes in random transposon mutagenesis libraries.
License GPL (>= 2)
biocViews Annotation, Pathways
NeedsCompilation no

R topics documented:

 binHist .. 2
 binInsert .. 3
 binInsertHist .. 4
 checkFormat ... 5
 delta0 ... 6
 eMult .. 7
 etDelta .. 8
 fCumul ... 9
 fFit ... 10
 loadAnnotation .. 11
 loadInsertions .. 11
 occup2Negenes .. 12
 sampleAnnotation ... 13
 sampleInsertions ... 14
 unbiasB0 .. 14
 unbiasDelta0 ... 15
 varMult .. 16

Index 18
binHist

Histogram Breakpoints

Description
Returns the histogram breakpoints for fast insertion.

Usage
binHist(orf, overlap=NULL, bp=6264403)

Arguments
- orf: 2-column matrix of annotation
- overlap: number position of overlap
- bp: number of base pairs in genome

Details
Returns a vector of breakpoints for the binInsertHist function.

Value
- end.pt: Position of last target
- orf: orfID
- overlap: Number of targets in overlap

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (** in **.

See Also
binInsertHist

Examples
**
binInsert

Description

Returns the number of ORF knockouts.

Usage

binInsert(insert, orf, returnCounts=FALSE, overlap=NULL, DEBUG=FALSE)

Arguments

insert List of insertion locations
orf 2-column matrix of annotation
returnCounts Return the number of insertions
overlap Number of shared targets
DEBUG Flag to debug the code

Details

Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value

Returns a numeric or an object

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **.

Examples

**
binInsertHist

Insert Locations Quickly

Description

Given a list of locations, returns the number of ORFs hit.

Usage

\[\text{binInsertHist(insert, orfHist, returnCounts=FALSE)} \]

Arguments

- **insert**: List of insertion locations
- **orfHist**: Histogram breakpoints
- **returnCounts**: Return the number of insertions

Details

Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value

Returns a numeric or an object

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

See Also

binHist

Examples

\[
**
\]
Description

Checks the format of the annotation and insertions.

Usage

checkFormat(anno, clone)

Arguments

anno 2-column matrix of annotation
clone vector

Details

Checks the format of the annotation and insertions list. Annotation has to be a matrix of the first and last target in the ORF. Insertions has to be a vector. Will stop if not correct format.

Value

Returns a boolean.

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) in **

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
if (checkFormat(anno, clone)) print("Looks good.");
Description

Point estimate for the number of new ORF knockouts in the next d clones.

Usage

\[
delta_0(d, \text{anno}, \text{clone})
\]

Arguments

- `d`: Number of clones to be made
- `anno`: 2-column matrix of annotation
- `clone`: Vector of insertions

Details

Use the parametric form of the cumulative occupancy distribution to estimate the number of new ORF knockouts in the next d clones.

Value

A numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (*) in **

See Also

unbiasDelta0

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
delta0(10,anno,clone)
```
eMult

Expected Value of the Occupancy Distribution

Description

Returns the expected value of the occupancy distribution based on a multinomial distribution.

Usage

eMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

- **n**: number of attempts in the multinomial distribution
- **p**: probabilities for landing in a specific bin
- **iter**: number of iterations used in the Monte-Carlo approximation
- **seed**: seed for the random number generator
- **experimental**: access to other functions of multinomials

Details

This function computes the expected value of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes expected number of bins with exactly one ball and the experimental argument "nextTo" computes the expected number of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
eMult(n,p)
eMult(n,p,iter=1000,seed=4)
```
etDelta

Number of New ORF Knockouts

Description

Estimates the number of new knockouts in next d clones.

Usage

etDelta(d, anno, clone)

Arguments

d number of new clones
anno 2-column matrix of annotation
clone vector

Details

Estimates the number of new ORF knockouts in the next d clones using the method outlined by Efron and Thisted.

Value

expected Expected value
variance Variance

Author(s)

Oliver Will <owill4@yahoo.com>

References

Examples

data(sampleAnnotation)
data(sampleInsertions)
a.data <- sampleAnnotationexperiment <- sampleInsertionsorf <- cbind(a.data$first,a.data$last)clone <- experiment$positionetDelta(10,orf,clone)
Description

Returns values for parameterized cumulative occupancy distributions.

Usage

\texttt{fCumul(x,b0,b1,b2)}

Arguments

\begin{itemize}
\item \texttt{x} \quad \text{Point to evaluate}
\item \texttt{b0} \quad \text{Parameter b0}
\item \texttt{b1} \quad \text{Parameter b1}
\item \texttt{b2} \quad \text{Parameter b2}
\end{itemize}

Details

Function fitted to the cumulative occupancy distribution for a multinomial distribution. Exponential model := b0-b1*exp(-b2*x).

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in **

Examples

\begin{verbatim}
x <- 2
b0 <- 3
b1 <- 3
b2 <- 0.01
val <- fCumul(x,b0,b1,b2)
\end{verbatim}
\textit{fFit} \hspace{1cm} \textit{Parametric Fit for the Cumulative Occupancy Distribution}

\textbf{Description}

Parameterizes the cumulative occupancy distribution.

\textbf{Usage}

\begin{verbatim}
 fFit(anno, clone, TR=TRUE, b0=0, b1=0, b2=0)
\end{verbatim}

\textbf{Arguments}

- \textit{anno} \hspace{1cm} 2-column matrix of annotation
- \textit{clone} \hspace{1cm} vector
- \textit{TR} \hspace{1cm} Report a trace
- \textit{b0} \hspace{1cm} Starting value b0
- \textit{b1} \hspace{1cm} Starting value b1
- \textit{b2} \hspace{1cm} Starting value b2

\textbf{Details}

Fits various parametric functions to the occupancy distribution for a multinomial. Using the starting values of b0=0, b1=0, and b2=0 forces the function to find starting values for you.

\textbf{Value}

Returns a object.

\textbf{Author(s)}

Oliver Will <owill4@yahoo.com>

\textbf{References}

See the book chapter O. Will (**) in **

\textbf{Examples}

\begin{verbatim}
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
fm <- fFit(anno, clone, TR)
\end{verbatim}
loadAnnotation Loads Annotation File

Description
Loads and checks an annotation file.

Usage

```r
loadAnnotation(fileName)
```

Arguments

- `fileName`: Name of file

Details
Annotation file need four columns: idNum, first, last, and overlap.

Value
Returns a data frame

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (**) in **

Examples

```r
# No self contained example
```

loadInsertions Load Genome Annotation File

Description
Loads a list of insertion locations.

Usage

```r
loadInsertions(fileName)
```

Arguments

- `fileName`: Name of the file
Details

Loads a list of insertion locations created in a transposon mutagenesis library.

Value

Returns a data frame

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) in **

Examples

No self contained example

```
occup2Negenes
```

Convert Occupancy Format to Negenes

Description

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package.

Usage

```
occup2Negenes(anno, clone, INTERGENIC=FALSE)
```

Arguments

- `anno`: 2-column matrix of annotation
- `clone`: vector of insertion locations
- `INTERGENIC`: Process the intergenic region as last ORF.

Details

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package. Of the returned data frame, column 1 is n.sites, column 2, n.sites2, column 3, counts, column 4, counts2.

Value

Returns a data frame

Author(s)

Oliver Will <owill4@yahoo.com>
sampleAnnotation

References

See the book chapter O. Will (***) in **

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
occup2Negenes(anno, clone)
```

Description

This dataset has the annotation for a hypothetical bacterium.

Usage

```r
data(sampleAnnotation)
```

Format

A data frame containing 4 columns with 10 rows.

Author(s)

Oliver Will <owill4@yahoo.com>

Source

Randomly generated.

References

See the book chapter O. Will (***) in **
sampleInsertions Insertions for a Hypothetical Clonal Library

Description
Insertion locations for a simple random mutagenesis library example.

Usage
data(sampleInsertions)

Format
A data frame containing 1 column with 20 rows.

Author(s)
Oliver Will <owill4@yahoo.com>

Source
Randomly generated.

References
See the book chapter O. Will (**) in **

unbiasB0 Unbiased Estimator of the Number of Non-essential ORFs

Description
Unbiased point estimate and confidence intervals for the number of non-essential ORFs.

Usage
unbiasB0(anno, clone, iter=1000, seed=NULL, alpha=0.05, TR=TRUE)

Arguments
anno 2-column matrix of annotation
clone Vector of insertions
iter Number of iterations for the bootstrap
seed Seed for the random number generator
alpha Type I error
TR Report a trace
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of non-essential ORFs.

Value

- \(b_0 \) Unbiased point estimate
- CI Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (***) in **

See Also

fFit

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasB0(anno,clone,iter,seed,TR=TR)

unbiasDelta0 Unbiased Number of New Knockouts

Description

Unbiased point estimate and confidence intervals for the number of new ORF knockouts in the next \(d \) clones.

Usage

unbiasDelta0(d,anno,clone,iter=1000,seed=NULL,alpha=0.05,TR=TRUE)

Arguments

- \(d \) Number of new clones
- anno 2-column matrix of annotation
- clone Vector of insertions
- iter Number of iterations for the bootstrap
- seed Seed for the random number generator
- alpha Type I error
- TR Report a trace
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of new ORF knockouts in the next d clones.

Value

delta0 Unbiased point estimate
CI Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) in **

See Also

delta0

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasDelta0(10,anno,clone,iter,seed,TR=TR)

\begin{table}
\centering
\begin{tabular}{ll}
\hline
varMult & Variance of the Occupancy Distribution \\
\hline
\end{tabular}
\end{table}

Description

Returns the variance of the occupancy distribution based on a multinomial distribution.

Usage

\texttt{varMult(n, p, iter=NULL, seed=NULL, experimental=NULL)}

Arguments

\begin{itemize}
\item \texttt{n} number of attempts in the multinomial distribution
\item \texttt{p} probabilities for landing in a specific bin
\item \texttt{iter} number of iterations used in the Monte-Carlo approximation
\item \texttt{seed} seed for the random number generator
\item \texttt{experimental} access to other functions of multinomials
\end{itemize}
Details

This function computes the variance of the occupancy distribution for a multinomial. In other
words, the expected number of bins with at least one ball. The experimental argument "oneBall"
computes variance of bins with exactly one ball and the experimental argument "nextTo" computes
the variance of bins with one ball next to a bin with zero balls. Consider any functionality through
the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (**) in ** for specific details about this package or Johnson, N. L. and

Examples

```r
n <- 20
p <- c(seq(10, 1, -1), 47)/100
p <- p/sum(p)
varMult(n, p)
varMult(n, p, iter=1000, seed=4)
```
Index

*Topic attribute
 checkFormat, 5
*Topic datasets
 sampleAnnotation, 13
 sampleInsertions, 14
*Topic distribution
 eMult, 7
 varMult, 16
*Topic iteration
 binHist, 2
 binInsert, 3
 binInsertHist, 4
*Topic manip
 loadAnnotation, 11
 loadInsertions, 11
 occup2Negenes, 12
*Topic models
 fCumul, 9
 fFit, 10
*Topic nonlinear
 delta0, 6
 unbiasedB0, 14
 unbiasedDelta0, 15
*Topic univar
 etDelta, 8
 binHist, 2
 binInsert, 3
 binInsertHist, 4
 checkFormat, 5
 delta0, 6
 eMult, 7
 etDelta, 8
 fCumul, 9
 fFit, 10
 loadAnnotation, 11
 loadInsertions, 11
 occup2Negenes, 12
 sampleAnnotation, 13
 sampleInsertions, 14
 unbiasB0, 14
 unbiasDelta0, 15
 varMult, 16