Package ‘occugene’

January 30, 2017

Version 1.34.0
Date 2006-11-07
Title Functions for Multinomial Occupancy Distribution
Author Oliver Will <oliverrreader@gmail.com>
Maintainer Oliver Will <oliverrreader@gmail.com>
Depends R (>= 2.0.0)
Description Statistical tools for building random mutagenesis libraries for prokaryotes. The package has functions for handling the occupancy distribution for a multinomial and for estimating the number of essential genes in random transposon mutagenesis libraries.
License GPL (>= 2)
bioCViews Annotation, Pathways
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>binHist</td>
<td>2</td>
</tr>
<tr>
<td>binInsert</td>
<td>3</td>
</tr>
<tr>
<td>binInsertHist</td>
<td>4</td>
</tr>
<tr>
<td>checkFormat</td>
<td>5</td>
</tr>
<tr>
<td>delta0</td>
<td>6</td>
</tr>
<tr>
<td>eMult</td>
<td>7</td>
</tr>
<tr>
<td>etDelta</td>
<td>8</td>
</tr>
<tr>
<td>fCumul</td>
<td>9</td>
</tr>
<tr>
<td>fFit</td>
<td>10</td>
</tr>
<tr>
<td>loadAnnotation</td>
<td>11</td>
</tr>
<tr>
<td>loadInsertions</td>
<td>11</td>
</tr>
<tr>
<td>occup2Negenes</td>
<td>12</td>
</tr>
<tr>
<td>sampleAnnotation</td>
<td>13</td>
</tr>
<tr>
<td>sampleInsertions</td>
<td>14</td>
</tr>
<tr>
<td>unbiasB0</td>
<td>14</td>
</tr>
<tr>
<td>unbiasDelta0</td>
<td>15</td>
</tr>
<tr>
<td>varMult</td>
<td>16</td>
</tr>
</tbody>
</table>

Index 18
binHist

Histogram Breakpoints

Description

Returns the histogram breakpoints for fast insertion.

Usage

```r
binHist(orf, overlap=NULL, bp=6264403)
```

Arguments

- `orf` : 2-column matrix of annotation
- `overlap` : number position of overlap
- `bp` : number of base pairs in genome

Details

Returns a vector of breakpoints for the binInsertHist function.

Value

- `end.pt` : Position of last target
- `orf` : orfID
- `overlap` : Number of targets in overlap

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (***) in **.

See Also

- `binInsertHist`

Examples

```r
# **
```
binInsert

Insert Locations

Description
Returns the number of ORF knockouts.

Usage
binInsert(insert, orf, returnCounts=FALSE, overlap=NULL, DEBUG=FALSE)

Arguments
- **insert**: List of insertion locations
- **orf**: 2-column matrix of annotation
- **returnCounts**: Return the number of insertions
- **overlap**: Number of shared targets
- **DEBUG**: Flag to debug the code

Details
Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value
Returns a numeric or an object

Author(s)
Oliver Will <owill114@yahoo.com>

References
See the book chapter O. Will (**) in **.

Examples
**
binInsertHist
Insert Locations Quickly

Description
Given a list of locations, returns the number of ORFs hit.

Usage

```r
binInsertHist(insert, orfHist, returnCounts=FALSE)
```

Arguments
- `insert`: List of insertion locations
- `orfHist`: Histogram breakpoints
- `returnCounts`: Return the number of insertions

Details
Finds the number of ORFs that have an insertion given a list of locations. If the `returnCounts` flag is true, the function returns the number of insertions per ORF. Uses the function `hist` for gains in speed.

Value
Returns a numeric or an object

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (**) in **

See Also
- `binHist`

Examples

```r
# **
```
checkFormat

Checks the Format of Annotation and Insertions

Description

Checks the format of the annotation and insertions.

Usage

checkFormat(anno, clone)

Arguments

anno 2-column matrix of annotation
clone vector

Details

Checks the format of the annotation and insertions list. Annotation has to be a matrix of the first and last target in the ORF. Insertions has to be a vector. Will stop if not correct format.

Value

Returns a boolean.

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will in **

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
if (checkFormat(anno, clone)) {print("Looks good.");}
delta0

Number of New Knockouts

Description

Point estimate for the number of new ORF knockouts in the next d clones.

Usage

\[
\text{delta0}(d, \text{anno}, \text{clone})
\]

Arguments

- **d**: Number of clones to be made
- **anno**: 2-column matrix of annotation
- **clone**: Vector of insertions

Details

Use the parametric form of the cumulative occupancy distribution to estimate the number of new ORF knockouts in the next d clones.

Value

A numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (***) in **

See Also

unbiasDelta0

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
delta0(10,anno,clone)
```
Description

Returns the expected value of the occupancy distribution based on a multinomial distribution.

Usage

eMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

n number of attempts in the multinomial distribution
p probabilities for landing in a specific bin
iter number of iterations used in the Monte-Carlo approximation
seed seed for the random number generator
experimental access to other functions of multinomials

Details

This function computes the expected value of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes expected number of bins with exactly one ball and the experimental argument "nextTo" computes the expected number of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
eMult(n,p)
eMult(n,p,iter=1000,seed=4)
```
etDelta Number of New ORF Knockouts

Description
Estimates the number of new knockouts in next d clones.

Usage
etDelta(d, anno, clone)

Arguments
- d: number of new clones
- anno: 2-column matrix of annotation
- clone: vector

Details
Estimates the number of new ORF knockouts in the next d clones using the method outlined by Efron and Thisted.

Value
- expected: Expected value
- variance: Variance

Author(s)
Oliver Will <owill4@yahoo.com>

References

Examples
```r
data(sampleAnnotation)
data(sampleInsertions)
a.data <- sampleAnnotation
experiment <- sampleInsertions
orf <- cbind(a.data$first,a.data$last)
clone <- experiment$position
etDelta(10, orf, clone)
```
Description

Returns values for parameterized cumulative occupancy distributions.

Usage

fCumul(x,b0,b1,b2)

Arguments

x Point to evaluate
b0 Parameter b0
b1 Parameter b1
b2 Parameter b2

Details

Function fitted to the cumulative occupancy distribution for a multinomial distribution. Exponential model := b0-b1*exp(-b2*x).

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **

Examples

x <- 2
b0 <- 3
b1 <- 3
b2 <- 0.01
val <- fCumul(x,b0,b1,b2)
fFit

Parametric Fit for the Cumulative Occupancy Distribution

Description
Parameterizes the cumulative occupancy distribution.

Usage
fFit(anno, clone, TR=TRUE, b0=0, b1=0, b2=0)

Arguments
- anno: 2-column matrix of annotation
- clone: vector
- TR: Report a trace
- b0: Starting value b0
- b1: Starting value b1
- b2: Starting value b2

Details
Fits various parametric functions to the occupancy distribution for a multinomial. Using the starting values of b0=0, b1=0, and b2=0 forces the function to find starting values for you.

Value
Returns an object.

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (**) in **

Examples
```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
fm <- fFit(anno, clone, TR)
```
loadAnnotation Loads Annotation File

Description
Loads and checks an annotation file.

Usage
loadAnnotation(fileName)

Arguments
fileName Name of file

Details
Annotation file need four columns: idNum, first, last, and overlap.

Value
Returns a data frame

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (** in **) in **

Examples
No self contained example

loadInsertions Load Genome Annotation File

Description
Loads a list of insertion locations.

Usage
loadInsertions(fileName)

Arguments
fileName Name of the file
Details
Loads a list of insertion locations created in a transposon mutagenesis library.

Value
Returns a data frame

Author(s)
Oliver Will <owill4@yahoo.com>

References
See the book chapter O. Will (** in **)
References

See the book chapter O. Will (**) in **

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
occup2Negenes(anno,clone)

```
sampleAnnotation
  Annotation for a Hypothetical Prokayote

Description

This dataset has the annotation for a hypothetical bacterium.

Usage

data(sampleAnnotation)

Format

A data frame containing 4 columns with 10 rows.

Author(s)

Oliver Will <owill4@yahoo.com>

Source

Randomly generated.

References

See the book chapter O. Will (**) in **
sampleInsertions  
*Insertions for a Hypothetical Clonal Library*

**Description**

Insertion locations for a simple random mutagenesis library example.

**Usage**

```r
data(sampleInsertions)
```

**Format**

A data frame containing 1 column with 20 rows.

**Author(s)**

Oliver Will <owill4@yahoo.com>

**Source**

Randomly generated.

**References**

See the book chapter O. Will (**) in **

---

unbiasB0  
*Unbiased Estimator of the Number of Non-essential ORFs*

**Description**

Unbiased point estimate and confidence intervals for the number of non-essential ORFs.

**Usage**

```r
unbiasB0(anno, clone, iter=1000, seed=NULL, alpha=0.05, TR=TRUE)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anno</td>
<td>2-column matrix of annotation</td>
</tr>
<tr>
<td>clone</td>
<td>Vector of insertions</td>
</tr>
<tr>
<td>iter</td>
<td>Number of insertions for the bootstrap</td>
</tr>
<tr>
<td>seed</td>
<td>Seed for the random number generator</td>
</tr>
<tr>
<td>alpha</td>
<td>Type I error</td>
</tr>
<tr>
<td>TR</td>
<td>Report a trace</td>
</tr>
</tbody>
</table>
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of non-essential ORFs.

Value

- \( b_0 \): Unbiased point estimate
- CI: Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (***) in **

See Also

fFit

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasB0(anno,clone,iter,seed,TR=TR)
```

unbiasDelta0

Unbiased Number of New Knockouts

Description

Unbiased point estimate and confidence intervals for the number of new ORF knockouts in the next \( d \) clones.

Usage

```r
unbiasDelta0(d,anno,clone,iter=1000,seed=NULL,alpha=0.05,TR=TRUE)
```

Arguments

- \( d \): Number of new clones
- \( \text{anno} \): 2-column matrix of annotation
- \( \text{clone} \): Vector of insertions
- \( \text{iter} \): Number of iterations for the bootstrap
- \( \text{seed} \): Seed for the random number generator
- \( \text{alpha} \): Type I error
- \( \text{TR} \): Report a trace
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of new ORF knockouts in the next d clones.

Value

delta0  Unbiased point estimate
CI        Confidence interval at the alpha specified

Author(s)

Oliver Will <owill4@yahoo.com>

References

See the book chapter O. Will (** in **) **

See Also

delta0

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasDelta0(10,anno,clone,iter,seed,TR=TR)

varMult

Variance of the Occupancy Distribution

Description

Returns the variance of the occupancy distribution based on a multinomial distribution.

Usage

varMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

n  number of attempts in the multinomial distribution
p  probabilities for landing in a specific bin
iter  number of iterations used in the Monte-Carlo approximation
seed  seed for the random number generator
experimental  access to other functions of multinomials
Details

This function computes the variance of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes variance of bins with exactly one ball and the experimental argument "nextTo" computes the variance of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will <owill4@yahoo.com>

References


Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
varMult(n,p)
varMult(n,p,iter=1000,seed=4)
```
Index

*Topic **attribute**
  checkFormat, 5

*Topic **datasets**
  sampleAnnotation, 13
  sampleInsertions, 14

*Topic **distribution**
  eMult, 7
  varMult, 16

*Topic **iteration**
  binHist, 2
  binInsert, 3
  binInsertHist, 4

*Topic **manip**
  loadAnnotation, 11
  loadInsertions, 11
  occup2Negenes, 12

*Topic **models**
  fCumul, 9
  fFit, 10

*Topic **nonlinear**
  delta0, 6
  unbiasB0, 14
  unbiasDelta0, 15

*Topic **univar**
  etDelta, 8

  binHist, 2
  binInsert, 3
  binInsertHist, 4

  checkFormat, 5

  delta0, 6

  eMult, 7
  etDelta, 8

  fCumul, 9
  fFit, 10

  loadAnnotation, 11
  loadInsertions, 11

  occup2Negenes, 12

sampleAnnotation, 13
sampleInsertions, 14
unbiasB0, 14
unbiasDelta0, 15
varMult, 16