Package ‘pcaExplorer’

January 22, 2017

Type Package

Title Interactive Visualization of RNA-seq Data Using a Principal Components Approach

Version 2.0.0

Date 2016-10-04

Maintainer Federico Marini <marinif@uni-mainz.de>

Description This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.

License MIT + file LICENSE

LazyData TRUE

Imports DESeq2, SummarizedExperiment, GenomicRanges, IRanges, S4Vectors, genefilter, ggplot2 (>= 2.0.0), d3heatmap, scales, NMF, plyr, topGO, limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0), shinydashboard, shinyBS, DT, shinyAce, threejs, biomaRt, pheatmap, knitr, rmarkdown, tidyr, grDevices, methods

Suggests testthat, BiocStyle, airway, org.Hs.eg.db

URL https://github.com/federicomarini/pcaExplorer

BugReports https://github.com/federicomarini/pcaExplorer/issues

biocViews Visualization, RNASeq, DimensionReduction, PrincipalComponent, QualityControl, GUI, ReportWriting

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Author Federico Marini [aut, cre]

R topics documented:

 correlatePCs .. 2
distro_expr ... 3
geneprofiler .. 3
correlatePCs

Principal components (cor)relation with experimental covariates

Description

Computes the significance of (cor)relations between PCA scores and the sample experimental covariates, using Kruskal-Wallis test for categorial variables and the cor.test based on Spearman’s correlation for continuous variables.

Usage

correlatePCs(pcaobj, coldata, pcs = 1:4)

Arguments

pcaobj A prcomp object
coldata A data.frame object containing the experimental covariates
pcs A numeric vector, containing the corresponding PC number

Value

A data.frame object with computed p values for each covariate and for each principal component

Examples

library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
correlatePCs(pcaobj, colData(dds))
distro_expr

Plot distribution of expression values

Description

Plot distribution of expression values

Usage

```r
distro_expr(rld, plot_type = "density")
```

Arguments

- `rld` A `DESeqTransform` object.
- `plot_type` Character, choose one of boxplot, violin or density. Defaults to density.

Value

A plot with the distribution of the expression values

Examples

```r
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3,betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
distro_expr(rlt)
```

geneprofiler

Extract and plot the expression profile of genes

Description

Extract and plot the expression profile of genes

Usage

```r
geneprofiler(se, genelist = NULL, intgroup = "condition", plotZ = FALSE)
```

Arguments

- `se` A `DESeqDataSet` object, or a `DESeqTransform` object.
- `genelist` An array of characters, including the names of the genes of interest of which the profile is to be plotted.
- `intgroup` A factor, needs to be in the `colnames` of `colData(se)`.
- `plotZ` Logical, whether to plot the scaled expression values. Defaults to FALSE.

Value

A plot of the expression profile for the genes.
genespca

Principal components analysis on the genes

Description

Computes and plots the principal components of the genes, eventually displaying the samples as in a typical biplot visualization.

Usage

```r
genespca(x, ntop, choices = c(1, 2), arrowColors = "steelblue",
groupNames = "group", biplot = TRUE, scale = 1, pc.biplot = TRUE,
obss.scale = 1 - scale, var.scale = scale, groups = NULL,
ellipse = FALSE, ellipse.prob = 0.68, labels = NULL, labels.size = 3,
alpha = 1, var.axes = TRUE, circle = FALSE, circle.prob = 0.69,
varname.size = 4, varname.adjust = 1.5, varname.abbrev = FALSE,
returnData = FALSE, coordEqual = FALSE, scaleArrow = 1,
useRownamesAsLabels = TRUE, point_size = 2, annotation = NULL)
```

Arguments

- **x**: A `DESeqTransform` object, with data in `assay(x)`, produced for example by either `rlog` or `varianceStabilizingTransformation`
- **ntop**: Number of top genes to use for principal components, selected by highest row variance
- **choices**: Vector of two numeric values, to select on which principal components to plot
- **arrowColors**: Vector of character, either as long as the number of the samples, or one single value
- **groupNames**: Factor containing the groupings for the input data. Is efficiently chosen as the (interaction of more) factors in the `colData` for the object provided
- **biplot**: Logical, whether to additionally draw the samples labels as in a biplot representation
- **scale**: Covariance biplot (`scale = 1`), form biplot (`scale = 0`). When `scale = 1`, the inner product between the variables approximates the covariance and the distance between the points approximates the Mahalanobis distance.
- **pc.biplot**: Logical, for compatibility with `biplot.princomp()`
- **obs.scale**: Scale factor to apply to observations
- **var.scale**: Scale factor to apply to variables
- **groups**: Optional factor variable indicating the groups that the observations belong to. If provided the points will be colored according to groups
- **ellipse**: Logical, draw a normal data ellipse for each group
ellipses.prob Size of the ellipse in Normal probability
labels optional Vector of labels for the observations
labels.size Size of the text used for the labels
alpha Alpha transparency value for the points (0 = transparent, 1 = opaque)
var.axes Logical, draw arrows for the variables?
circle Logical, draw a correlation circle? (only applies when prcomp was called with
 scale = TRUE and when var.scale = 1)
circle.prob Size of the correlation circle in Normal probability
varname.size Size of the text for variable names
varname.adjust Adjustment factor the placement of the variable names, >= 1 means farther from
 the arrow
varname.abbrev Logical, whether or not to abbreviate the variable names
returnData Logical, if TRUE returns a data.frame for further use, containing the selected
 principal components for custom plotting
coordEqual Logical, default FALSE, for allowing brushing. If TRUE, plot using equal scale
 cartesian coordinates
scaleArrow Multiplicative factor, usually >=1, only for visualization purposes, to allow for
 distinguishing where the variables are plotted
useRownamesAsLabels Logical, if TRUE uses the row names as labels for plotting
point.size Size of the points to be plotted for the observations (genes)
annotation A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids)
 and a column, gene_name, containing e.g. HGNC-based gene symbols

Details

The implementation of this function is based on the beautiful ggbiplot package developed by
Vince Vu, available at https://github.com/vqv/ggbiplot. The adaptation and additional parameters
are tailored to display typical genomics data such as the transformed counts of RNA-seq experi-
ments

Value

An object created by ggplot, which can be assigned and further customized.

Examples

```r
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3,betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
groups <- colData(dds)$condition
groups <- factor(groups,levels=unique(groups))
cols <- scales::hue_pal()(2)[groups]
genespca(rlt,ntop=100,arrowColors=cols,groupName=groups)

groups_multi <- interaction(as.data.frame(colData(rlt)[,c("condition","tissue")]))
groups_multi <- factor(groups_multi,levels=unique(groups_multi))
cols_multi <- scales::hue_pal()(length(levels(groups_multi)))[factor(groups_multi)]
genespca(rlt,ntop=100,arrowColors=cols_multi,groupName=groups_multi)
```
get_annotation
Get an annotation data frame from biomaRt

Description

Get an annotation data frame from biomaRt.

Usage

```
get_annotation(dds, biomart_dataset, idtype)
```

Arguments

- **dds**: A `DESeqDataSet` object
- **biomart_dataset**: A biomaRt dataset to use. To see the list, type `mart = useMart('ensembl')`, followed by `listDatasets(mart)`.
- **idtype**: Character, the ID type of the genes as in the row names of `dds`, to be used for the call to `getBM`.

Value

A data frame for ready use in `pcaExplorer`, retrieved from biomaRt.

Examples

```
library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
                                          colData = colData(airway),
                                          design=~dex+cell)

## Not run:
get_annotation(dds_airway,"hsapiens_gene_ensembl","ensembl_gene_id")

## End(Not run)
```

get_annotation_orgdb
Get an annotation data frame from org db packages

Description

Get an annotation data frame from org db packages.

Usage

```
get_annotation_orgdb(dds, orgdb_species, idtype)
```
Arguments

dds A DESeqDataSet object
orgdb_species Character string, named as the org.XX.eg.db package which should be available in Bioconductor
idtype Character, the ID type of the genes as in the row names of dds, to be used for the call to mapIds

Value

A data frame for ready use in pcaExplorer, retrieved from the org db packages

Examples

library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
colData = colData(airway),
design=~dex+cell)
Not run:
get_annotation_orgdb(dds_airway,"org.Hs.eg.db","ENSEMBL")
End(Not run)

high_loadings

Extract genes with highest loadings

Description

Extract genes with highest loadings

Usage

hi_loadings(pcaobj, whichpc = 1, topN = 10, exprTable = NULL,
annotation = NULL, title = "Top/bottom loadings - ")

Arguments

pcaobj A prcomp object
whichpc An integer number, corresponding to the principal component of interest
topN Integer, number of genes with top and bottom loadings
exprTable A matrix object, e.g. the counts of a DESeqDataSet. If not NULL, returns the counts matrix for the selected genes
annotation A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols
title The title of the plot

Value

A base plot object, or a matrix, if exprTable is not null
Examples

```r
dds <- makeExampleDESeqDataSet_multifac(betaSD = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(SummarizedExperiment::assay(rlt)))
hi_loadings(pcaobj,topN = 20)
hi_loadings(pcaobj,topN = 10,exprTable=dds)
hi_loadings(pcaobj,topN = 10,exprTable=counts(dds))
```

limmaquickpca2go

Functional interpretation of the principal components, based on simple overrepresentation analysis

Description

Extracts the genes with the highest loadings for each principal component, and performs functional enrichment analysis on them using the simple and quick routine provided by the limma package.

Usage

```r
limmaquickpca2go(se, pca_ngenes = 10000, inputType = "ENSEMBL",
                 organism = "Mm", loadings_ngenes = 500, background_genes = NULL,
                 scale = FALSE, ...)
```

Arguments

- `se`: A `DESeqTransform` object, with data in `assay(se)`, produced for example by either `rlog` or `varianceStabilizingTransformation`.
- `pca_ngenes`: Number of genes to use for the PCA.
- `inputType`: Input format type of the gene identifiers. Defaults to `ENSEMBL`, that then will be converted to ENTREZ ids. Can assume values such as `ENTREZID`, `GENENAME` or `SYMBOL`, like it is normally used with the `select` function of `AnnotationDbi`.
- `organism`: Character abbreviation for the species, using `org.XX.eg.db` for annotation.
- `loadings_ngenes`: Number of genes to extract the loadings (in each direction).
- `background_genes`: Which genes to consider as background.
- `scale`: Logical, defaults to `FALSE`, scale values for the PCA.
- `...`: Further parameters to be passed to the topGO routine.

Value

A nested list object containing for each principal component the terms enriched in each direction. This object is to be thought in combination with the displaying feature of the main `pcaExplorer` function.
Examples

```r
library(airway)
library(DESeq2)
library(limma)
data(airway)

airway

dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)
## Not run:
rl_d_airway <- rlogTransformation(dds_airway)
goquick_airway <- limmaquickpca2go(rl_d_airway,
  pca_ngenes = 10000,
  inputType = "ENSEMBL",
  organism = "Hs")
## End(Not run)
```

makeExampleDESeqDataSet_multifac

Make a simulated DESeqDataSet for two or more experimental factors

Description

Constructs a simulated dataset of Negative Binomial data from different conditions. The fold changes between the conditions can be adjusted with the betaSD_condition and the betaSD_tissue arguments.

Usage

```r
makeExampleDESeqDataSet_multifac(n = 1000, m = 12, betaSD_condition = 1,
  betaSD_tissue = 3, interceptMean = 4, interceptSD = 2,
  dispMeanRel = function(x) 4/x + 0.1, sizeFactors = rep(1, m))
```

Arguments

- `n` number of rows (genes)
- `m` number of columns (samples)
- `betaSD_condition` the standard deviation for condition betas, i.e. beta ~ N(0,betaSD)
- `betaSD_tissue` the standard deviation for tissue betas, i.e. beta ~ N(0,betaSD)
- `interceptMean` the mean of the intercept betas (log2 scale)
- `interceptSD` the standard deviation of the intercept betas (log2 scale)
- `dispMeanRel` a function specifying the relationship of the dispersions on 2^trueIntercept
- `sizeFactors` multiplicative factors for each sample

Details

This function is designed and inspired following the proposal of `makeExampleDESeqDataSet` from the DESeq2 package. Credits are given to Mike Love for the nice initial implementation.
Value

a `DESeqDataSet` with true dispersion, intercept for two factors (condition and tissue) and beta values in the metadata columns. Note that the true betas are provided on the log2 scale.

Examples

dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3,betaSD_tissue = 1)
dds

dds2 <- makeExampleDESeqDataSet_multifac(betaSD_condition = 1,betaSD_tissue = 4)
dds2

Description

Pairwise scatter and correlation plot of counts

Usage

`pair_corr(df, method = "pearson")`

Arguments

df A data frame, containing the (raw/normalized/transferred) counts
method Character string, one of `pearson` (default), `kendall`, or `spearman` as in `cor`

Value

A plot with pairwise scatter plots and correlation coefficients

Examples

library(airway)
data(airway)
airway

dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
 colData = colData(airway),
 design=~dex+cell)

pair_corr(counts(dds_airway)[1:100,]) # use just a subset for the example
pca2go

Functional interpretation of the principal components

Description

Extracts the genes with the highest loadings for each principal component, and performs functional enrichment analysis on them using routines and algorithms from the *topGO* package.

Usage

```r
pca2go(se, pca_ngenes = 10000, annotation = NULL, 
       inputType = "geneSymbol", organism = "Mm", ensToGeneSymbol = FALSE, 
       loadings_ngenes = 500, background_genes = NULL, scale = FALSE, ...)```

**Arguments**

- `se`: A *DESeqTransform* object, with data in `assay(se)`, produced for example by either *rlog* or *varianceStabilizingTransformation*.
- `pca_ngenes`: Number of genes to use for the PCA.
- `annotation`: A *data.frame* object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, `gene_name`, containing e.g. HGNC-based gene symbols.
- `inputType`: Input format type of the gene identifiers. Will be used by the routines of *topGO*.
- `organism`: Character abbreviation for the species, using `org.XX.eg.db` for annotation.
- `ensToGeneSymbol`: Logical, whether to expect ENSEMBL gene identifiers, to convert to gene symbols with the annotation provided.
- `loadings_ngenes`: Number of genes to extract the loadings (in each direction).
- `background_genes`: Which genes to consider as background.
- `scale`: Logical, defaults to FALSE, scale values for the PCA.
- `...`: Further parameters to be passed to the topGO routine.

**Value**

A nested list object containing for each principal component the terms enriched in each direction. This object is to be thought in combination with the displaying feature of the main *pcaExplorer* function.

**Examples**

```r
library(airway)
library(DESeq2)
data(airway)
airway

dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)
Not run:
rld_airway <- rlogTransformation(dds_airway)```

```r
# To get an example of pca2go:
library(airway)
library(DESeq2)
data(airway)
airway

dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)
## Not run:
rld_airway <- rlogTransformation(dds_airway)
```
constructing the annotation object
anno_df <- data.frame(gene_id = rownames(dds_airway),
 stringsAsFactors=FALSE)
library("AnnotationDbi")
library("org.Hs.eg.db")
anno_df$gene_name <- mapIds(org.Hs.eg.db,
 keys=anno_df$gene_id,
 column="SYMBOL",
 keytype="ENSEMBL",
 multiVals="first")
rownames(anno_df) <- anno_df$gene_id
bg_ids <- rownames(dds_airway)[rowSums(counts(dds_airway)) > 0]
library(topGO)
pca2go_airway <- pca2go(rld_airway,
 annotation = anno_df,
 organism = "Hs",
 ensToGeneSymbol = TRUE,
 background_genes = bg_ids)

End(Not run)

c pcaExplorer

pcaExplorer: analyzing time-lapse microscopy imaging, from detection to tracking

Description
pcaExplorer provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.
Launch a Shiny App for interactive exploration of a dataset from the perspective of Principal Components Analysis

Usage
pcaExplorer(dds = NULL, rlt = NULL, countmatrix = NULL, coldata = NULL,
pca2go = NULL, annotation = NULL)

Arguments
- **dds**: A DESeqDataSet object. If not provided, then a countmatrix and a coldata need to be provided. If none of the above is provided, it is possible to upload the data during the execution of the Shiny App.
- **rlt**: A DESeqTransform object. Can be computed from the dds object if left NULL. If none is provided, then a countmatrix and a coldata need to be provided. If none of the above is provided, it is possible to upload the data during the execution of the Shiny App.
- **countmatrix**: A count matrix, with genes as rows and samples as columns. If not provided, it is possible to upload the data during the execution of the Shiny App.
pcaplot

coldata A data.frame containing the info on the covariates of each sample. If not provided, it is possible to upload the data during the execution of the Shiny App

pca2go An object generated by the pca2go function, which contains the information on enriched functional categories in the genes that show the top or bottom loadings in each principal component of interest. If not provided, it is possible to compute live during the execution of the Shiny App

annotation A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols

Details

pcaExplorer provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.

Value

A Shiny App is launched for interactive data exploration

Author(s)

Federico Marini <marinif@uni-mainz.de>, 2016

Maintainer: Federico Marini <marinif@uni-mainz.de>

Examples

library(airway)
data(airway)
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
 colData = colData(airway),
 design=~dex+cell)

Not run:
rld_airway <- DESeq2::rlogTransformation(dds_airway)
pcaExplorer(dds_airway,rld_airway)
pcaExplorer(countmatrix = counts(dds_airway), coldata = colData(dds_airway))
pcaExplorer() # and then upload count matrix, covariate matrix (and eventual annotation)

End(Not run)

Description

Sample PCA plot for transformed data

Plots the results of PCA on a 2-dimensional space
Usage

pcaplot(x, intgroup = "condition", ntop = 500, returnData = FALSE, title = NULL, pcX = 1, pcY = 2, text_labels = TRUE, point_size = 3, ellipse = TRUE, ellipse.prob = 0.95)

Arguments

x A DESeqTransform object, with data in assay(x), produced for example by either rlog or varianceStabilizingTransformation
intgroup Interesting groups: a character vector of names in colData(x) to use for grouping
ntop Number of top genes to use for principal components, selected by highest row variance
returnData logical, if TRUE returns a data.frame for further use, containing the selected principal components and intgroup covariates for custom plotting
title The plot title
pcX The principal component to display on the x axis
pcY The principal component to display on the y axis
text_labels Logical, whether to display the labels with the sample identifiers
point_size Integer, the size of the points for the samples
ellipse Logical, whether to display the confidence ellipse for the selected groups
ellipse.prob Numeric, a value in the interval [0;1)

Value

An object created by ggplot, which can be assigned and further customized.

Examples

dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaplot(rlt, ntop=200)

dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)

pcaplot3d

Sample PCA plot for transformed data

Description

Plots the results of PCA on a 3-dimensional space, interactively

Usage

pcaplot3d(x, intgroup = "condition", ntop = 500, returnData = FALSE, title = NULL, pcX = 1, pcY = 2, pcZ = 3, text_labels = TRUE, point_size = 3)
Arguments

\textbf{x} \quad \text{A DESeqTransform object, with data in \texttt{assay(x)}, produced for example by either \texttt{rlog} or \texttt{varianceStabilizingTransformation}}

\textbf{intgroup} \quad \text{Interesting groups: a character vector of names in \texttt{colData(x)} to use for grouping}

\textbf{ntop} \quad \text{Number of top genes to use for principal components, selected by highest row variance}

\textbf{returnData} \quad \text{logical, if \texttt{TRUE} returns a data.frame for further use, containing the selected principal components and intgroup covariates for custom plotting}

\textbf{title} \quad \text{The plot title}

\textbf{pcX} \quad \text{The principal component to display on the x axis}

\textbf{pcY} \quad \text{The principal component to display on the y axis}

\textbf{pcZ} \quad \text{The principal component to display on the z axis}

\textbf{text_labels} \quad \text{Logical, whether to display the labels with the sample identifiers}

\textbf{point_size} \quad \text{Integer, the size of the points for the samples}

Value

A html-based visualization of the 3d PCA plot

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaplot3d(rlt, ntop=200)
```

pcascree \quad \textit{Scree plot of the PCA on the samples}

Description

Produces a scree plot for investigating the proportion of explained variance, or alternatively the cumulative value

Usage

```
pcascree(obj, type = c("pev", "cev"), pc_nr = NULL, title = NULL)
```

Arguments

\textbf{obj} \quad \text{A \texttt{prcomp} object}

\textbf{type} \quad \text{Display absolute proportions or cumulative proportion. Possible values: "pev" or "cev"}

\textbf{pc_nr} \quad \text{How many principal components to display max}

\textbf{title} \quad \text{Title of the plot}

Value

An object created by \texttt{ggplot}, which can be assigned and further customized.
Examples

```r
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(SummarizedExperiment::assay(rlt)))
pcascree(pcaobj,type="pev")
pcascree(pcaobj,type="cev",title="Cumulative explained proportion of variance - Test dataset")
```

<table>
<thead>
<tr>
<th><code>plotPCcorrs</code></th>
<th>Plot significance of (cor)relations of covariates VS principal components</th>
</tr>
</thead>
</table>

Description

Plots the significance of the (cor)relation of each covariate vs a principal component

Usage

```r
plotPCcorrs(pccorrs, pc = 1, logp = TRUE)
```

Arguments

- `pccorrs`: A `data.frame` object generated by `correlatePCs`
- `pc`: An integer number, corresponding to the principal component of interest
- `logp`: Logical, defaults to `TRUE`, displays the \(-\log_{10}\) of the pvalue instead of the pvalue itself

Value

A base plot object

Examples

```r
library(DESeq2)
.dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
res <- correlatePCs(pcaobj,colData(dds))
plotPCcorrs(res)
```
topGOtable

Extract functional terms enriched in the DE genes, based on topGO

Description
A wrapper for extracting functional GO terms enriched in the DE genes, based on the algorithm and the implementation in the topGO package

Usage
topGOtable(DEgenes, BGgenes, ontology = "BP", annot = annFUN.org, mapping = "org.Mm.eg.db", geneID = "symbol", topTablerows = 200, fullNamesInRows = TRUE, addGeneToTerms = TRUE, plotGraph = FALSE, plotNodes = 10, writeOutput = FALSE, outputFile = "")

Arguments
- **DEgenes**: A vector of (differentially expressed) genes
- **BGgenes**: A vector of background genes, e.g. all (expressed) genes in the assays
- **ontology**: Which Gene Ontology domain to analyze: BP (Biological Process), MF (Molecular Function), or CC (Cellular Component)
- **annot**: Which function to use for annotating genes to GO terms. Defaults to annFUN.org
- **mapping**: Which org.XX.eg.db to use for annotation - select according to the species
- **geneID**: Which format the genes are provided. Defaults to symbol, could also be entrez or ENSEMBL
- **topTablerows**: How many rows to report before any filtering
- **fullNamesInRows**: Logical, whether to display or not the full names for the GO terms
- **addGeneToTerms**: Logical, whether to add a column with all genes annotated to each GO term
- **plotGraph**: Logical, if TRUE additionally plots a graph on the identified GO terms
- **plotNodes**: Number of nodes to plot
- **writeOutput**: Logical, if TRUE additionally writes out the result to a file
- **outputFile**: Name of the file the result should be written into

Value
A table containing the computed GO Terms and related enrichment scores

Examples
```r
library(airway)
library(DESeq2)
data(airway)
airway
dds_airway <- DESeqDataSet(airway, design=~ cell + dex)

# Example, performing extraction of enriched functional categories in
```
detected significantly expressed genes

Not run:

```r
dds_airway <- DESeq(dds_airway)
res_airway <- results(dds_airway)
library("AnnotationDbi")
library("org.Hs.eg.db")
res_airway$symbol <- mapIds(org.Hs.eg.db,
  keys=row.names(res_airway),
  column="SYMBOL",
  keytype="ENSEMBL",
  multiVals="first")
res_airway$entrez <- mapIds(org.Hs.eg.db,
  keys=row.names(res_airway),
  column="ENTREZID",
  keytype="ENSEMBL",
  multiVals="first")
resOrdered <- as.data.frame(res_airway[order(res_airway$padj),])
de_df <- resOrdered[resOrdered$padj < .05 & !is.na(resOrdered$padj),]
de_symbols <- de_df$symbol
bg_ids <- rownames(dds_airway)[rowSums(counts(dds_airway)) > 0]
bg_symbols <- mapIds(org.Hs.eg.db,
  keys=bg_ids,
  column="SYMBOL",
  keytype="ENSEMBL",
  multiVals="first")
library(topGO)
topgoDE_airway <- topGOtable(de_symbols, bg_symbols,
  ontology = "BP",
  mapping = "org.Hs.eg.db",
  geneID = "symbol")

## End(Not run)
Index

correlatePCs, 2, 16
DESeqDataSet, 3, 6, 7, 10, 12
DESeqTransform, 3, 4, 8, 11, 12, 14, 15
distro_expr, 3

geneprofiler, 3
genespca, 4
get_annotation, 6
get_annotation_orgdb, 6
getBM, 6

hi_loadings, 7

limmaquickpca2go, 8

makeExampleDESeqDataSet, 9
makeExampleDESeqDataSet_multifac, 9
mapIds, 7

pair_corr, 10
pca2go, 11, 13
pcaExplorer, 8, 11, 12
pcaExplorer-package (pcaExplorer), 12
pcaplot, 13
pcaplot3d, 14
pcascree, 15
plotPCcorrs, 16

rlog, 4, 8, 11, 14, 15

topGOTable, 17

varianceStabilizingTransformation, 4, 8, 11, 14, 15