Package ‘plateCore’

March 23, 2017

Version 1.32.0
Date 2010-04-12
Title Statistical tools and data structures for plate-based flow cytometry
Author Errol Strain, Florian Hahne, and Perry Haaland
Maintainer Errol Strain <estrain@gmail.com>
Depends R (>= 2.10), flowCore, flowViz, lattice, latticeExtra
Imports Biobase, flowCore, graphics, grDevices, lattice, MASS, methods, robustbase, stats, utils, flowStats
Suggests gplots
Description Provides basic S4 data structures and routines for analyzing plate based flow cytometry data.
License Artistic-2.0
URL http://www.bioconductor.org
biocViews FlowCytometry, Infrastructure, CellBasedAssays
NeedsCompilation no

R topics documented:

plateCore-package .. 2
applyControlGates .. 3
compensate .. 4
compensationSet ... 5
densityplot .. 6
fixAutoFl ... 7
flowPlate ... 8
flowPlate-class ... 9
fpbind ... 10
getGroups .. 11
gutterPlot ... 12
mfiPlot ... 12
panel.densityplot.flowPlate 13
panel.xyplot.flowPlate ... 15
pbmcPlate ... 16
plateSet ... 17
plateCore-package

Description

plateCore is a Bioconductor packaged created to make processing and analysis of large, complex flow datasets in R easier. High throughput flow studies are often run in a 96 or 384-well plate format, with a number of different samples, controls, and antibodies-dye conjugates present on the plate. Analyzing the output from the cytometer requires keeping track of the contents of each well, matching sample wells with control wells, gating each well/channel separately, making the appropriate plots, and summarizing the results. plateCore extends the flowCore and flowViz packages to work on flowPlate objects that represent these large flow datasets. For those familiar with flowCore and flowViz, the gating (filtering), transformation, and other data manipulations for flowPlates are very similar to flowSets.

Details

Package: plateCore
Type: Package
Version: 1.2.1
Date: 2009-06-29

Author(s)

Errol Strain, Florian Hahne, and Perry Haaland Maintainer: Errol Strain <estrain@gmail.com>

References

Insert flowCore and flowViz publications.

Examples

```
library(plateCore)
data(plateCore)

## Get the lymphocytes
```
applyControlGates

applyControlGates <- rectGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a flowPlate object from the platePBMC and the wellAnnotation
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

applyControlGates Apply control gates to a flowPlate

Description

Once setControlGates has been used to create gates for a flowPlate object, gates are applied to test
samples using applyControlGates. The applyControlGates function is separated from setControlGates since gates may need be changed outside of setControlGates.

Usage

applyControlGates(data, gateType="Negative.Control", ...)

Arguments

data A flowPlate dataset.
gateType The type of gate to be applied to the flowPlate. Currently only "Negative.Control"
gates are supported.
...
optional arguments

Value

Returns a flowPlate where the wellAnnotation now contains additional columns corresponding
to total number of events in a well (Total.Count), the percentage of cells above background (Percent.Positive), and the number of positive cells (Positive.Count).

Author(s)

Errol Strain

See Also

See Also setControlGates

Examples

library(plateCore)
data(plateCore)

Get the lymphocytes
rectGate <- rectGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")
Description

Flow samples are often stained with multiple types of fluorophores. Unfortunately, the emission spectra for these different fluorophores often overlap, and the signals must be corrected before proceeding with the analysis. Compensate adjusts for spillover using the method implemented in the package flowCore. Unlike flowCore, compensate only adjusts for the dyes/fluorophores listed in wellAnnotation.

Usage

```r
## S4 method for signature 'flowPlate,ANY'
compensate(x, spillover)
```

Arguments

- `x`: A `flowPlate`
- `spillover`: The compensation matrix where the row and column names match the fluorescence channels of the `flowPlate`.

Value

Returns a compensated `flowPlate`.

Author(s)

Errol Strain

See Also

See Also `compensation-class`

Examples

```r
library(plateCore)
data(plateCore)

# Create the compensation matrix
comp.mat <- spillover(x=compensationSet, unstained=sampleNames(compensationSet)[5],
                      patt=".*H", fsc="FSC-H", ssc="SSC-H", method="median")

## Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700), "SSC-H"=c(50,400))
```
Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

apply the compensation matrix
fp <- compensate(fp, comp.mat)

CompensationSet
Sample Compensation Data Set

Description
Sample Compensation Data Set

Usage
data(plateCore)

Format
The format is an object of class `flowSet` composed of 5 `flowFrames`. The `flowSet` consists of 4 stained and one unstained `flowFrames`. Peripheral Blood Mononucleocytes (PBMCs) were stained with FITC (Fluorescein isothiocyanate), PE (phycoerythrin), PerCp (Peridinin-chlorophyll), and APC (Allophycocyanin).

Author(s)
Errol Strain

Source
Sample data set from BD FACS CAP analysis.

See Also
See Also `compensation-class`

Examples
library(plateCore)
data(plateCore)

Create the compensation matrix
comp.mat <- spillover(x=compensationSet, unstained=sampleNames(compensationSet)[5], patt=".*H", fsc="FSC-H", ssc="SSC-H", method="median")
densityplot

One-dimensional density plots for flowPlates

Description

This function is a modified version of densityplot from the flowViz package that allows for multiple
flowFrames per panel. flowViz densityplot plots the density curves in a one per panel style, while
the flowPlate densityplot can overlay densities.

Usage

S4 method for signature 'formula,flowPlate'
densityplot(x, data, xlab,
prepanel=prepanel.densityplot.flowPlate,
panel = panel.densityplot.flowPlate,
as.table=TRUE,
filterResult=NULL,
...)

Arguments

x A formula describing the layout of the plots.
data A flowPlate.
xlab Label for the x-axis
prepanel Lattice-flowViz prepanel function.
panel Lattice-flowViz panel function.
as.table Defaults to table layout.
filterResult filterResult can either take the character string "Negative.Control" and have the
negative control wells added to the panels, or if filterResult is a flowFrame then
the density curve for the flowFrame will be added to each panel.

... optional arguments Other arguments are identical to densityPlot from flowViz.

See Also

flowViz::densityplot

Examples

Load the plateCore package and data
library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

densityplot(~ `FSC-H`, fp[1:3], groups=name, auto.key=TRUE)
\textbf{Description}

The \texttt{fixAutoFl} function uses the method of Hahne et al. 2006 (Genome Biology) to fit a robust, log-log linear regression to the fluorescence channel of interest versus forward scatter (FSC). The current implementation scales the corrected data so the median fluorescence intensity (MFI) is the same before and after \texttt{fixAutoFl}.

\textbf{Usage}

\begin{verbatim}
fixAutoFl(fp,fsc="FSC.A",chanCols,unstain,...)
\end{verbatim}

\textbf{Arguments}

- \texttt{fp} \hspace{1cm} A \texttt{flowPlate}
- \texttt{chanCols} \hspace{1cm} Selected channels to correct for autofluorescence.
- \texttt{unstain} \hspace{1cm} Name(s) of the unstained samples. The function will try to find samples with \texttt{Sample.Type}="Unstained" if no names are given. If there are multiple unstained samples the function will average the slopes.
- \texttt{fsc} \hspace{1cm} Name of the FSC parameter.
- ... \hspace{1cm} optional arguments

\textbf{Value}

Returns a \texttt{flowPlate} with autofluorescence due to cell size (FSC) corrected.

\textbf{Author(s)}

Errol Strain

\textbf{Examples}

\begin{verbatim}
library(plateCore)
data(plateCore)

Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a \texttt{flowPlate} object from the platePBMC and the \texttt{wellAnnotation}
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

fp <- fixAutoFl(fp,fsc="FSC-H",chanCols=c("FL1-H","FL2-H","FL3-H","FL4-H"))
\end{verbatim}
flowPlate

Create a flowPlate

Description

Constructor for a flowPlate object. sampleNames for the flowSet should match the Well.Id column of wellAnnotation. Well.Ids must be unique to sampleNames, which is usually ensured by using the 3 character designations for wells (e.g. "A01","A02",...,"H12").

Usage

flowPlate(data,wellAnnotation,plateName,...)

Arguments

data flowSet object to be made into a flowPlate
wellAnnotation data.frame describing the layout and contents of the flowPlate
plateName Name of the flowPate, should be unique within the set flowPlates under consideration
... optional arguments

Value

Returns a flowPlate object.

Author(s)

Errol Strain

Examples

library(plateCore)
data(plateCore)

Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a flowPlate object from the platePBMC and the wellAnnotation
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

Subset the flowPlate, creating another flowPlate
fpSmall <- fp["A01"]

Extract a flowFrame from a flowPlate
ff <-fp["A01"][]

Retrieve sample names from flowPlate
sampNames <- sampleNames(fp)

Retrieve the annotatedDataFrame describing the flowPlate
adf <- phenoData(fp)
The flowPlate class.

Description

flowPlates are the basic data containers for the plateCore package. A flowPlate is essentially a flowSet-class, plus a data.frame describing the layout of the plate and contents of individual wells.

Slots

plateName: A character string containing the name of the plate.

plateSet: A flowSet-class containing FCS event data. Prior to creating a flowPlate, the FCS files are first read into a flowSet-class using read.flowSet.

wellAnnotation: A data.frame describing the layout of the plate. Each row describes one channel for a well.

Methods

[, [[Subsetting. x[i] where i is either a scalar or character corresponding to a sample name, returns a flowPlate object, and x[[i]] a flowFrame object.

Usage:

flowSet[i]
flowSet[[i]]

Author(s)

Errol Strain, Florian Hahne, Perry Haaland

Examples

library(plateCore)
data(plateCore)

##Look at the wellAnnotation
wellAnnotation[1:4,]

Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a flowPlate object from the platePBMC and the wellAnnotation
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

Subset the flowPlate, creating another flowPlate
fpSmall <- fp["A01"]

Extract a flowFrame from a flowPlate
ff <-fp["A01"]

fpbind

Merge multiple flowPlates into a single virtual flowPlate

Description

A function to combine multiple flowPlates into a single flowPlate object. The plateName identifiers for the flowPlates must be unique within the set to be bound, otherwise the bind will fail.

Usage

fpbind(p1, p2, ...)

Arguments

p1 First flowPlate
p2 Second flowPlate
... Additional flowPlates

Value

Returns a flowPlate

Author(s)

Errol Strain

Examples

library(plateCore)
data(plateCore)

Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmPlate <- Subset(pbmPlate, rectGate)

Create a flowPlate object from the platePBMC and the wellAnnotation
fp1 <- flowPlate(pbmPlate,wells,plateName="P1")
fp2 <- flowPlate(pbmPlate,wells,plateName="P2")

Combine the plates.
virtPlate <- fpbind(fp1,fp2)
getGroups

Retrieve Negative control groups from a flowPlate

Description

Retrieve a list of negative control-based groups from a flowPlate, based on the information in wellAnnotation.

Usage

getGroups(data,type="Negative.Control",chan, ...)

Arguments

data A flowPlate dataset.
type Currently only Negative.Control groups are supported.
chan Fluorescence channel of interest ("FL1-H", "PE-H", etc.)
... optional arguments

Value

Returns a list of groups, where each group contains a single negative control well and the associated test well for a particular channel.

Author(s)

Errol Strain

Examples

library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

Create a set of negative control gates and then apply them
negCon <- getGroups(fp,chan="FL1-H")
negCon[1:2]
gutterPlot

Description

A Quality Control plot to check the number of events in each channel that are at either their minimum or maximum value. A large number of these events may indicate a problem with the sample.

Usage

gutterPlot(fp, chans = c("FSC-H", "SSC-H", "FL1-H", "FL2-H", "FL3-H", "FL4-H"), ...)

Arguments

- **fp**: A `flowPlate`.
- **chans**: Channels of interest to show on the `gutterPlot`.
- **...**: optional arguments

Value

Creates a plot where the x-axis is the different wells in a `flowPlate`, and the y-axis is the fraction of events at the boundary.

Author(s)

Jon Gosink and Errol Strain

Examples

```r
library(plateCore)
data(plateCore)

## Create a flowPlate
fp <- flowPlate(pbmcPlate, wellAnnotation, "p1001")
gutterPlot(fp, chans = c("FSC-H", "SSC-H", "FL1-H", "FL2-H", "FL3-H", "FL4-H"))
```

mfiPlot

Description

A Quality Control plot that shows the MFI Ratio versus the percentage of positive cells in a `flowPlate`. The robust logistic regression is performed using `gmlrob` from the `robustbase` package.

Usage

```r
mfiPlot(fp, thresh=2, Sample.Type="Test", Events="Percentage", ...)
```
Arguments

- **fp**: A flowPlate.
- **thresh**: Points more than "thresh" number of standard deviations away from the best fit line will be colored red.
- **Sample.Type**: Type of sample to show on plot. Defaults to "Test".
- **Events**: The robust logistic regression can be performed using either the percentage of events above the negative control gate ("Percentage") or the actual number of events above the gate ("Actual").
- ... optional arguments to plot and points.

Value

Creates a plot where the x-axis is MFI Ratio and the y-axis is the percentage of cells above the negative control gate.

Author(s)

Errol Strain

Examples

```r
library(plateCore)
data(plateCore)

## Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

# Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

# Create a set of negative control gates and then apply them
fp <- setControlGates(fp, gateType="Negative.Control")
fp <- applyControlGates(fp, gateType="Negative.Control")

# Compute summary statistics
fp <- summaryStats(fp)

## Create an MFI plot
mfiPlot(fp, thresh=2.5, xlab="MFI Ratio (Test MFI / Isotype MFI)", xlim=c(0.1,250),
ylab="Percentage of cells above the isotype gate", pch=23)
```

Description

This function should not be called directly, use `densityplot`.
Usage

panel.densityplot.flowPlate(x, frames, channel, wellAnnotation, groups=NULL, subscripts, col = superpose.symbol$col, col.points = col, col.line = col, filterResult=NULL, ...)

Arguments

x character
frames flowFrames
channel channel of interest
wellAnnotation wellAnnotation data.frame
groups density plot groups parameter
subscripts densityplot subscripts parameter
col densityplot col parameter
col.points densityplot col.points parameter
col.line densityplot col.line parameter
filterResult densityplot filterResult parameter
...
optional arguments

Author(s)

Errol Strain

See Also

See Also densityplot

Examples

Load the plateCore package and data
library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmPlate, wellAnnotation, plateName="P1")

Overlay the first 3 flowFrames. If the groups argument was
omitted, then the flowFrames would be combined into a single
density curve.
densityplot(~ FSC-H, fp[1:3], groups=name, auto.key=TRUE)
panel.xyplot.flowPlate

Lattice-flowViz style panel function for flowPlate xyplot.

Description

This function should not be called directly, use xyplot.

Usage

panel.xyplot.flowPlate(x, frames, channel.x, channel.y, channel.x.name, channel.y.name, filter = NULL, filterResults = NULL, displayFilter = TRUE, pch, smooth, wellAnnotation = NULL, col = superpose.symbol$col, ...)

Arguments

x character
frames flowFrames
channel.x xyplot channel.x parameter
channel.y xyplot channel.y parameter
channel.x.name xyplot channel.x.name parameter
channel.y.name xyplot channel.y.name parameter
filter xyplot filter parameter
filterResults xyplot filterResults parameter
displayFilter xyplot displayFilter parameter
pch xyplot pch parameter
smooth xyplot smooth parameter
wellAnnotation wellAnnotation data.frame
col xyplot col parameter
...
optional arguments

Author(s)

Errol Strain

See Also

See Also xyplot
library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

Create a rectangle filter
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

xyplot(~grave.Var
SSC-H ~ FSC-H | as.factor(name),
fp[1], smooth=FALSE, filter=rectGate, displayFilter=FALSE)

 pbmcPlate

 pbmcPlate Data Set

Description

One 96-well plate from a BD FACS CAP analysis of Peripheral Blood Mononucleocyte (PMBC) cells.

Usage

data(plateCore)

Format

The format is an object of class flowSet composed of 96 flowFrames. Each flowFrame corresponds to one well from the plate.

Details

BD FACS CAP (http://www.bd.com/technologies/discovery_platform/BD_FACS_CAP.asp) is a platform for screening a large number of antibodies (200+) on human samples. Antibodies are arrayed 3-per well on a 96-well plate, along with the appropriate controls. In this experiment, an early version of FACS CAP was used to screen PBMCs from 2 donors for 189 different human cell surface markers. The complete data set is available from the FICCS site shown below. The pbmcPlate include with plateCore is a lymphocyte enriched subset of one of the replicate plates for donor 1.

Source

Complete dataset available at http://www.ficcs.org/software.html#Data_Files, the Flow Informatics and Computational Cytometry Society website (FICCS)

References

Add reference for plateCore paper (when/if published).
plateSet

Get the flowSet from a flowPlate object

Description

A function to retrieve the flowSet from a flowPlate.

Usage

```r
plateSet(fp, ...)
```

Arguments

- `fp` : A flowPlate
- `...` : optional arguments

Value

Returns a flowSet

Author(s)

Errol Strain

Examples

```r
code
```

plotPlate

plotPlate

Description

Make a row vs. column plot of a plate, where the wells are colored according to some value of choice (number of events, median signal intensity, percent positive, etc.).

Usage

```r
plotPlate(fp, x = NA, method = "median", main, col, values, width = 1, na.action = "zero", ...)
```
Arguments

- **fp**
 A `flowPlate`.

- **x**
 A character indicating the variable of interest. Valid choices are "events", any single channel name (e.g. FSC-H, SSC-H, FL1-H, etc.), or vector of channel names if the method is mahalanobis.

- **method**
 Valid choices are mean, median, sd, mad, mahalanobis, or one of the numeric columns in the `wellAnnotation` data.frame (e.g. Percent.Positive, Positive.Count, MFI, MFI.Ratio)

- **main**
 Main text for the plot

- **col**
 Character vector of two colors.

- **values**
 Optional list of values, with names corresponding to `sampleNames`, that will be used for plotting.

- **width**
 Width of the well.

- **na.action**
 Handling of NA values, either "zero" or "omit".

- **...**
 Optional arguments

Value

Plots the plate to the standard output.

Author(s)

Jon Gosink and Errol Strain

References

The original version of this plot came from the `prada` package.

Examples

```r
library(plateCore)
data(plateCore)

## Create a flowPlate
fp <- flowPlate(pbmcPlate,wellAnnotation,"p1001")

plotPlate(transform("FL1-H"=log10) %on% fp,x="FL1-H",method="mean",col=c("yellow", "darkblue"))
```

Description

This function should not be called directly, use `densityplot`.

Usage

`prepanel.densityplot.flowPlate(x, frames, channel,...)`
Arguments

x Character
frames flowFrames
channel Character string for channel name.
... optional arguments

Author(s)

Errol Strain

See Also

See Also densityplot

Examples

Load the plateCore package and data
library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

Overlay the first 3 flowFrames. If the groups argument was omitted, then the flowFrames would be combined into a single density curve.
densityplot(~ `FSC-H`, fp[1:3], groups=name, auto.key=TRUE)
setControlGates

Create control gates for a flowPlate

Description

A function to estimate the threshold between positive and negative cells. This threshold corresponds to a one-dimensional gate, and cells above the gate are considered positive. The default value of `numMads=5` generally works well on the linear scale, but will need to be adjusted for transformed data. If each well contains a large number of events for the cell type of interest (>1000), then using the 99.5th quantile usually gives similar values.

Usage

```r
setControlGates(data, gateType, threshType="MAD", numMads=5, isoquantile=.995, ...)
```

Arguments

- `data` A flowPlate
- `gateType` The type of gate to be set. Currently only "Negative.Control" gates are supported.
- `threshType` Values can be either "MAD", for median absolute deviation based gating, or "isoQuant" for quantile based gating.
- `numMads` Number of median absolute deviations above the median to set the initial gate.
- `isoquantile` Quantile setting for "isoQuant" threshType.
- `...` optional arguments.

Value

Returns a flowPlate
Author(s)
Errol Strain

Examples

library(plateCore)
data(plateCore)

Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

Create a set of negative control gates and then apply them
fp <- setControlGates(fp,gateType="Negative.Control")

There should now be a Negative.Control.Gate column in wellAnnotation
head(wellAnnotation(fp))

Subset

Description
Select a subset of events in a flowPlate. If a flowPlate and filter are supplied, then this function calls the Subset function from flowCore. Additionally, the plateCore version of Subset also makes it easy to filter individual flowFrames and keep the flowPlate structure.

Usage

S4 method for signature 'flowPlate,ANY'
Subset(x, subset, select=NULL,...)

Arguments

 x A flowPlate
 subset A filter object
 select An optional vector of either sample names or Well.IDs.
 ... optional arguments

Value

 Returns a flowPlate

Author(s)
Errol Strain
Examples

```r
library(plateCore)
data(plateCore)

# Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

## Create a rectangle filter
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

## Apply the filter only to sample A01. The other flowFrames
## are not filtered.
fp <- Subset(fp, rectGate, 'A01')
```

summaryStats

Compute summary statistics on a flowPlate

Description

This function computes the median fluorescence intensity (MFI) and the MFI ratio (ratio of test well
MFI to negative control MFI) for each well/channel in a flowPlate. The predicted percent positive
(Predict.PP) and gate score (Gate.Score) come from a robust logistic regression of the MFI ratio to
either the percentage of positive cells or the actual count of positive cells. Predict.PP is the estimated
percent positive based on the MFI ratio and Gate.Score is the number of standardized residuals the
sample data point is away from the best fit line. The glmrob function from the robustbase package is
used for the regression. Results from summaryStats are stored in the wellAnnotation data.frame.

Usage

```
summaryStats(data, Events="Percentage", ...)
```

Arguments

- `data`: A flowPlate
- `Events`: The robust logistic regression can be performed using either the percentage of
events above the negative control gate ("Percentage") or the actual number of
events above the gate ("Actual").
- `...`: optional arguments

Value

Returns a flowPlate

Author(s)

Errol Strain
Examples

```r
library(plateCore)
data(plateCore)

## Get the lymphocytes
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))
pbmcPlate <- Subset(pbmcPlate, rectGate)

# Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate,wellAnnotation,plateName="P1")

# Create a set of negative control gates and then apply them
fp <- setControlGates(fp,gateType="Negative.Control")
fp <- applyControlGates(fp,gateType="Negative.Control")

# Compute summary statistics
fp <- summaryStats(fp)

# There should now be MFI and MFI.ratio columns in the wellAnnotation
head(wellAnnotation(fp))
```

wellAnnotation

Retrieve a data.frame describing the content of a flowPlate

Description

wellAnnotation returns the tall data.frame describing the layout of a flowPlate, where each row corresponds to one well-channel.

Usage

```r
wellAnnotation(fp, ...)
```

Arguments

- `fp`: A flowPlate dataset.
- `...`: optional arguments

Value

Returns a data.frame.

Author(s)

Errol Strain
Examples

```r
library(plateCore)
data(plateCore)

# Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

# Look at the top of wellAnnotation
head(wellAnnotation(fp))
```

xyplot

Scatter plots (dotplots) for flowPlates.

Description

A function to create dotplots, and smoothed scatter plots, from flowPlates. This function is a slightly modified version of xyplot from flowViz. The flowPlate xyplot allows users to overlay plots of test samples versus controls, and makes creating informative flowStrips easier. Refer to the documentation for xyplot from flowViz and lattice for more detailed information.

Usage

```r
## S4 method for signature 'formula,flowPlate'
xyplot(x, data, xlab, ylab,
as.table = TRUE,
prepanel = prepanel.xyplot.flowPlate,
panel = panel.xyplot.flowPlate,
pch = ".", smooth = TRUE,
filter = NULL,
filterResults = NULL,
displayFilter = TRUE,
flowStrip=NULL,
flowStripCex=1,
strip=function(...,style=1) strip.default(...,style=1),
...)
```

Arguments

- `x` A formula describing the layout of the plots. Plots for flowPlates usually condition on either `as.factor(name)` or `as.factor(Well.Id)` since only one flowFrame can be shown on each panel (with the exception of Negative.Control overlays).
- `data` A flowPlate.
- `xlab` Label for x-axis.
- `ylab` Label for y-axis.
- `as.table` Defaults to table layout.
- `prepanel` Lattice-flowViz prepanel function.
- `panel` Lattice-flowViz panel function.
- `pch` Plotting character.
smooth Plot a smoothed scatterplot by default.
filter A flowCore filter to apply to each flowFrame.
filterResults If filterResults="Negative.Control", the negative control wells corresponding to
 a test well are overlayed in the test well plots.
displayFilter Defaults to displaying filter on the plot.
flowStrip Character vector indicating additional information to be printed on the strip.
 Values can include any combination of "Well.Id", "MFI", "MFI.Ratio", and "Percent.Positive".
flowStripCex Font size for the flowStrip.
strip Lattice strip function.
... Optional arguments

Author(s)
Errol Strain

See Also
flowViz::xyplot

Examples
library(plateCore)
data(plateCore)

Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

Create a rectangle filter
rectGate <- rectangleGate("FSC-H"=c(300,700), "SSC-H"=c(50,400))

xyplot('SSC-H' ~ 'FSC-H' | as.factor(name),
 fp[1], smooth=FALSE, filter=rectGate, displayFilter=FALSE)

Methods for Function %on% in Package 'plateCore'

Description
This operator is used to construct a transformFilter that first applies a transformList to the
data before applying the filter operation to a flowPlate.

Author(s)
Errol Strain
Examples

```r
library(plateCore)
data(plateCore)

# Create a flowPlate from the sample data in plateCore
fp <- flowPlate(pbmcPlate, wellAnnotation, plateName="P1")

## Create a rectangle filter
rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

xyplot('FL1-H' ~ 'FSC-H' | as.factor(name),
transform("FL1-H"=log10) %on% fp, smooth=FALSE, filter=rectGate, displayFilter=FALSE)
```
Index

*Topic datasets
 compensationSet, 5
 pbmcPlate, 16
*Topic dplot
 densityplot, 6
 xyPlot, 24
*Topic methods
 %on%, 25
 applyControlGates, 3
 compensate, 4
 densityplot, 6
 fixAutoFl, 7
 flowPlate, 8
 flowPlate-class, 9
 fpbind, 10
 getGroups, 11
 gutterPlot, 12
 mfiPlot, 12
 panel.densityplot.flowPlate, 13
 panel.xyplot.flowPlate, 15
 plateSet, 17
 plotPlate, 17
 prepPanel.densityplot.flowPlate, 18
 prepPanel.xyplot.flowPlate, 19
 setControlGates, 20
 Subset, 21
 summaryStats, 22
 wellAnnotation, 23
 xyplot, 24
*Topic package
 plateCore-package, 2
 [,flowPlate,ANY-method
 (flowPlate-class), 9
][,flowPlate,ANY-method
 (flowPlate-class), 9
 %on%,ANY,flowPlate-method (%on%), 25
 %on%-methods (%on%), 25
 %on%, 25
 applyControlGates, 3
 applyControlGates,flowPlate-method
 (applyControlGates), 3
 applyControlGates-methods
 (applyControlGates), 3
 compensate, 4
 compensate,flowPlate,ANY-method
 (compensate), 4
 compensate-method(compensate), 4
 compensationSet, 5
 densityplot, 6, 13, 14, 18, 19
 densityplot,formula,flowPlate,ANY,ANY,ANY,missing-method
 (densityplot), 6
 densityplot,formula,flowPlate-method
 (densityplot), 6
 densityplot-method (densityplot), 6
 fixAutoFl, 7
 fixAutoFl,flowPlate-method (fixAutoFl), 7
 fixAutoFl-method (fixAutoFl), 7
 flowFrame, 9
 flowPlate, 8, 8
 flowPlate,flowSet-method (flowPlate), 8
 flowPlate-class, 9
 flowPlate-method (flowPlate), 8
 flowViz::densityplot, 6
 flowViz::xyplot, 25
 fpbind, 10
 fpbind,flowPlate,flowPlate-method
 (fpbind), 10
 fpbind-method (fpbind), 10
 getGroups, 11
 getGroups,flowPlate-method (getGroups), 11
 getGroups-method (getGroups), 11
 gutterPlot, 12
 gutterPlot,flowPlate-method
 (gutterPlot), 12
 gutterPlot-method (gutterPlot), 12
 mfiPlot, 12
 mfiPlot,flowPlate-method (mfiPlot), 12
 mfiPlot-method (mfiPlot), 12
 panel.densityplot.flowPlate, 13
 panel.xyplot.flowPlate, 15
 pbmcPlate, 16
phenoData, flowPlate-method (flowPlate), 8
plateCore (plateCore-package), 2
plateCore-package, 2
plateSet, 17
plateSet, flowPlate-method (plateSet), 17
plateSet-method (plateSet), 17
plotPlate, 17
plotPlate, flowPlate-method (plotPlate), 17
plotPlate-method (plotPlate), 17
prepanel.densityplot.flowPlate, 18
prepanel.xyplot.flowPlate, 19
read.flowSet, 9
sampleNames, flowPlate-method (flowPlate), 8
setControlGates, 3, 20
setControlGates, flowPlate-method (setControlGates), 20
setControlGates-method (setControlGates), 20
Subset, 21
Subset, flowPlate, ANY-method (Subset), 21
Subset, flowPlate-method (Subset), 21
Subset-method (Subset), 21
summaryStats, 22
summaryStats, flowPlate-method (summaryStats), 22
summaryStats-method (summaryStats), 22
wellAnnotation, 23
wellAnnotation, flowPlate-method (wellAnnotation), 23
wellAnnotation-method (wellAnnotation), 23
xyplot, 15, 19, 20, 24
xyplot, formula, flowPlate-method (xyplot), 24
xyplot-method (xyplot), 24