Package ‘plrs’

November 21, 2016

Version 1.14.0
Type Package
Title Piecewise Linear Regression Splines (PLRS) for the association between DNA copy number and gene expression
Author Gwenael G.R. Leday
Maintainer Gwenael G.R. Leday to <gleday@few.vu.nl>
Depends R (>= 2.10), Biobase
Imports BiocGenerics, CGHbase, graphics, grDevices, ic.infer, marray, methods, quadprog, Rsdp, stats, stats4, utils
Suggests mvtnorm, methods
Description The present package implements a flexible framework for modeling the relationship between DNA copy number and gene expression data using Piecewise Linear Regression Splines (PLRS).
License GPL (>=2.0)
biocViews Regression
NeedsCompilation no

R topics documented:

 plrs-package 2
 criteria 3
 modify.conf 4
 neveCN17 5
 neveGE17 5
 plot-methods 6
 plrs 7
 plrs-class 8
 plrs.cb 10
 plrs.select 11
 plrs.select-class 11
 plrs.series 12
 plrs.series-class 12
 plrs.sim 14
 plrs.test 14
 predict.plrs 17
plrs-package

Description

The present package implements a framework for modeling the relationship between DNA copy number and gene expression data using Piecewise Linear Regression Splines (PLRS). It includes (point and interval) estimation, model selection and testing procedures for such models (possibly under biologically motivated constraints).

Details

The use of the present package can be divided into two approaches:

1. Analysis of a single DNA-mRNA relationship

 Main functions are:
 - **plrs**: Fit a single plrs model.
 - **plrs.select**: Model selection based on AIC, AICC, OSAIC or BIC.
 - **plrs.test**: Likelihood ratio test for a given plrs model.
 - **plrs.cb**: Confidence bands for a plrs model.

2. Analysis of multiple DNA-mRNA relationships sequentially

 Main function is:
 - **plrs.series**: point and interval estimation, model selection and testing of DNA-mRNA association for a series of arrays.

 Note: This function extend the aforementioned univariate analysis genomewise in the same spirit as some functions of the **limma** package do.

Author(s)

Gwenael G.R. Leday

Maintainer: Gwenael G.R. Leday <g.g.r.leday@vu.nl>

References

criteria Compute AIC, AICC, BIC and OSAIC for a given plrs model.

Description
Extract AIC, AICC, BIC and OSAIC from an object of class plrs-class.

Usage
criteria(obj, crit = "all")

Arguments
obj object of class plrs-class
crit A character (vector) among "aic", "aicc", "bic", "osaic" or "all".

Value
A list with the following components (if specified):
aic Akaike’s information criterion
aicc Small sample correction of AIC
bic Bayesian Information Criterion
osaic One-Sided AIC. See Hughes and King (2003) for more details.

Author(s)
Gwenael G.R. Leday <g.g.r.leday@vu.nl>

References

Examples

Simulate data
sim <- plrs.sim(n=80, states=4, sigma=0.5)

Fit
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)
criteria(model)
modify.conf

Modify the configuration (of calls) of the plrs model

Description

This function changes the discrete copy number values for a given gene in order to force a minimum number of observations per state.

Usage

modify.conf(cghcall, min.obs = 3, discard = TRUE)

Arguments

cghcall
Vector of called values

min.obs
Minimum number of observations per state

discard
Logical. Whether discrete states with few observations should be discarded from analysis.

Details

Consider that the number of observations of a given state is lower than min.obs, then:
- if discard = FALSE, observations are not discarded and a rearrangement of called values is carried out as follows. The "normal" copy number state is taken as a reference. If the minimum number of observations is not obtained, "losses" will be merged to "normals", "gains" to "normals" and "amplifications" to "gains". Note that this modifies the configuration of the model. Thus, after fitting a model using plrs, original and modified data are stored in the resulting plrs-class object, respectively under slots data and mdata.
- if discard = TRUE, states for which the number of observations is lower than min.obs are discarded (replaced by NAs).

Value

val
Vector of new called values

Note

This function is implemented within function plrs and plrs.series.

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>

Examples

called <- sample(c(rep(-1,5),rep(0,15),rep(1,2),rep(2,1)))
table(called)
table(modify.conf(called, min.obs=3))
neveCN17

Copy number for chromosome 17.

Description
Preprocessed copy number data of Neve et al. (2006) for chromosome 17.

Usage
neveCN17

Format
An object of class cghCall

Source
M. Neve et al. in Gray Lab at LBL. Neve2006: expression and CGH data on breast cancer cell lines. R package version 0.1.10.

References

Examples
data(neveCN17)
dim(neveCN17)
head(fData(neveCN17))

neveGE17

mRNA expression for chromosome 17.

Description
Normalized gene expression data of Neve et al. (2006) for chromosome 17.

Usage
neveGE17

Format
An object of class ExpressionSet

Source
M. Neve et al. in Gray Lab at LBL. Neve2006: expression and CGH data on breast cancer cell lines. R package version 0.1.10.
References

Examples

data(neveGE17)
dim(neveGE17)
head(fData(neveGE17))

plot-methods

Plot functions in package 'plrs'

Description

Methods plot in package 'plrs'

Usage

S3 method for class 'plrs'
plot(x, col.line = "black", col.pts = c("red", "blue", "green2", "green4"),
col.cb = "yellow", xlim = c(floor(min(x@data$cghseg)), ceiling(max(x@data$cghseg))),
ylim = c(floor(min(x@data$expr)), ceiling(max(x@data$expr))),
pch = 16, lwd=4, cex = 1.2, xlab="", ylab="", main = "",
add = FALSE, lty = 1, lin = FALSE, ...)

Arguments

x An object of class plrs-class or plrs.select-class
col.line Color of the fitted line
col.pts Vector of length 4, for colors associated with each state
col.cb Color for the confidence band
xlim The x limits of the plot
ylim The y limits of the plot
pch See par
lwd See par
cex See par
xlab Title of the x-axis
ylab Title of the y-axis
main Main title for the plot
add If the plot should be added to the current device. Default is FALSE
lty See par
lin Logical. Whether the simple linear model should also be plotted
... Other arguments, see par
Details

plot.plrs plots the observed points, the fitted line and potentially the confidence band.

Methods

signature(x = "plrs") Plot observed points and the fitted line
signature(x = "plrs.select") Plot observed points and the fitted line of the selected model.

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>

plrs

Fit a (constrained) piecewise linear regression spline

Description

The function fits a piecewise linear regression spline to explain gene expression by the segmented
DNA copy number. The called copy number values are used as a template for model building.

Usage

plrs(expr, cghseg, cghcall=NULL, probloss = NULL, probnorm = NULL, probgain = NULL, probamp = NULL, knots = NULL, continuous = FALSE, constr = TRUE, constr.slopes = 2, constr.intercepts = TRUE, min.obs = 3, discard.obs = TRUE)

Arguments

expr Vector of gene expression values
cghseg Vector of segmented copy number values
cghcall Vector of called copy number values. If not provided, we are reduced to a simple linear model.
probloss Vector of call probabilities associated with state "loss". Default is NULL.
probnorm Vector of call probabilities associated with state "normal". Default is NULL.
probgain Vector of call probabilities associated with state "gain". Default is NULL.
probamp Vector of call probabilities associated with state "amplification". Default is NULL.
knots knots or change points. If NULL (default), there are estimated. See details.
continuous Logical, whether the model is continuous (no jump) or not.
constr Logical, whether the model is constrained or not. (this has been implemented to turn on and off easily the constraints)
constr.slopes Type of non-negativity constraints applied on slopes. Either 1 or 2 (default). See details.
constr.intercepts If TRUE (default) jumps from state to state are also constrained to be non-negative
min.obs See modify.conf
discard.obs See modify.conf
Details

If cghcall=NULL, discrete copy number values are omitted, which results in fitting a simple linear model.

If constr.slopes=1, all slopes are constrained to be non-negative. If constr.slopes=2, the slope associated with state "normal" is constrained to be non-negative and all others are forced to be at least equal to the latter.

Two methods are implemented for the estimation of knots. If call probabilities are provided, a knot is determined so that the sum of (the two adjacent) states membership probabilities is maximized. Otherwise, this is defined as the midpoint of the interval between the two consecutive states.

The constrained least squares problem is solved using function solve.QP of package quadprog.

Value

An object of class plrs-class

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>

Examples

Simulate data
sim <- plrs.sim(n=80, states=4, sigma=0.5)

Fit a model
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)

Methods
coef(model)
effects(model)
fitted(model)
knots(model)
model.matrix(model)
plot(model)
predict(model, newcghseg=seq(0,5, length.out=100))
residuals(model)
summary(model)
Slots

- **coefficients**: Object of class numeric containing spline coefficients
- **fitted.values**: Object of class numeric containing the fitted values
- **residuals**: Object of class numeric containing the residuals
- **X**: Object of class matrix containing the design matrix
- **data**: Object of class list containing input data
- **mdata**: Object of class list containing (possibly modified) data used to fit the model (See `modify.conf`).
- **QP**: Object of class list containing input elements used for quadratic programming. If the model is unconstrained this contains a light version of an `lm` object.
- **test**: Object of class list containing results from testing.
- **cb**: Object of class list containing lower and upper bounds for predicted values.
- **selected**: Object of class logical indicating whether the model results from a selection procedure.
- **type**: Object of class character giving the type of model
- **call.arg**: Object of class list containing the input arguments (for reproducibility)

Methods

- **coef** Returns the coefficients
- **criteria** See `criteria`
- **effects** Returns matrix of effects
- **fitted** Returns the fitted values
- **knots** Returns the knots
- **model.matrix** Returns the design matrix
- **plot** See `plot.plrs`
- **predict** See `predict.plrs`
- **print** Print the object information
- **residuals** Returns the residuals
- **show** Print the object information
- **summary** Print a summary of the object information

Author(s)

Gwenaël G.R. Leday <g.g.r.leday@vu.nl>
plrs.cb Uniform confidence bands (CB) for plrs models

Description
Determine uniform confidence intervals for predicted values of a 'plrs' model.

Usage
plrs.cb(object, alpha=0.05, newcgh=NULL)

Arguments
object An object of class plrs-class.
alpha Significance level
newcgh Vector of segmented values. Support for building CB.

Details
The input object of class plrs-class has to result from function plrs.test.

The problem of finding (at a given x) a confidence interval for the mean response is expressed as a semi-definite optimization problem and solved using function csdp of package Rcsdp.

Value
An object of class plrs-class that contains CB information.

Author(s)
Gwenaël G.R. Leday <g.g.r.leday@vu.nl>

References

See Also
plrs.test

Examples

Simulate data
sim <- plrs.sim(n=80, states=4, sigma=0.5)

Fit a model
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)

Confidence bands
model <- plrs.test(model)
model <- plrs.cb(model, alpha=0.05)
plot(model)

plrs.select Model selection

Description
Selection of a model based on an information criterion (AIC, AICC, BIC or OSAIC).

Usage
plrs.select(object, crit = ifelse(object@call.arg$constr,"osaic","aic"))

Arguments
object An object of class plrs-class
crit Character corresponding to the criterion to use. See criteria.

Value
An object of class plrs.select-class

Author(s)
Gwenael G.R. Leday <g.g.r.leday@vu.nl>

plrs.select-class Class plrs.select

Description
An S4 class representing the output of the plrs.select function.

Slots
table: Object of class matrix containing the criterion value for all models
model: Object of class plrs containing the selected model
crit: Object of class character containing the criterion used for model selection

Methods
plot See plot.plrs
print Print the object information
show Print the object information
summary Print a summary of the object information

Author(s)
Gwenael G.R. Leday <g.g.r.leday@vu.nl>
plrs.series

Fit plrs models for a series of arrays.

Description

The function fits plrs models for a series of arrays. Model selection and testing procedures may be applied.

Usage

plrs.series(expr, cghseg, cghcall=NULL,
probloss = NULL, probnorm = NULL, probgain = NULL, probamp = NULL,
control.model = list(continuous = FALSE,
 constr = TRUE,
 constr.slopes = 2,
 constr.intercepts = TRUE,
 min.obs = 3,
 discard.obs = TRUE),
control.select = list(crit = ifelse(control.model$constr, "osaic","aic")),
control.test = list(testing = TRUE,
 cb = FALSE,
 alpha = 0.05),
control.output = list(save.models = FALSE,
 save.plots = FALSE,
 plot.lin = FALSE,
 type = "jpeg")

Arguments

expr Either a matrix of expression profiles or an ExpressionSet object.
cghseg Either a matrix of segmented copy number values or objects of class cghSeg or cghCall
cghcall Matrix of called copy number
probloss Matrix of call probabilities associated with state "loss". Default is NULL.
probnorm Matrix of call probabilities associated with state "normal". Default is NULL.
probgain Matrix of call probabilities associated with state "gain". Default is NULL.
probamp Matrix of call probabilities associated with state "amplification". Default is NULL.
control.model See details
control.select See details
control.test See details
control.output See details
Details

If DNA and mRNA input data are matrices, rows should correspond to genes and columns to arrays. Alternatively, expression data may be provided as an ExpressionSet object and aCGH data as cghSeg or cghCall objects. A cghCall object contain all data from the calling step, thus arguments probloss, probnorm, probnorm and probamp can be omitted. An object of class cghSeg does not contain such data so only simple linear models will be fitted.

control.model allows the user to specify the type of model that has to be fitted. This must be a list with one or more of the following components: constr, constr.slopes, constr.intercepts, min.obs and discard.obs. See functions plrs and modify.conf for more details.

control.select allows the user to specify whether model selection should be done and how. This must be a list with a component named crit. See function plrs.select for more details. If control.select = NULL then no model selection is done.

control.output allows the user to plot and save each plrs model. This must be a list with components: save.models, a logical. This will create within the work directory a new directory named "plrsSeriesObjects" that will contain all objects. save.plots, a logical. This will create within the work directory a new directory named "plrsSeriesPlots" that will contains all saved plots. plot.lin, a logical. Whether the simple linear model should also be plotted. type, a character. Format of file. To pass through function savePlot.

Value

An object of class plrs.series-class

Author(s)

Gwenaël G.R. Leday <g.g.r.leday@vu.nl>

Examples

Simulate data
ngenes <- 10
narray <- 48
rna <- dnaseg <- dnacal <- matrix(NA, ngenes, narray)
idx <- sample(1:4, ngenes, replace=TRUE, prob=rep(1/4,4))
for(i in 1:ngenes){
 Sim <- plrs.sim(n=narray, states=idx[i], sigma=0.5)
 rna[i,] <- Sim$expr
dnaseg[i,] <- Sim$seg
dnacal[i,] <- Sim$cal
}

Screening procedure with linear model
series <- plrs.series(expr = rna, cghseg = dnaseg, cghcall = NULL, control.select = NULL)

Screening procedure with full plrs model
series <- plrs.series(expr = rna, cghseg = dnaseg, cghcall = dnacal, control.select = NULL)
Model selection

```r
series <- plrs.series(expr = rna, cghseg = dnaseg, cghcall = dnacal)
```

plrs.series-class

Class plrs.series

<table>
<thead>
<tr>
<th>Description</th>
<th>An S4 class representing the output of the <code>plrs.series</code> function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slots</td>
<td>coefficients: Matrix containing coefficients of models</td>
</tr>
<tr>
<td></td>
<td>effects: List containing effects</td>
</tr>
<tr>
<td></td>
<td>test: Matrix containing results from testing.</td>
</tr>
<tr>
<td></td>
<td>general: Matrix providing the distribution of the number genes and arrays regarding the copy number states</td>
</tr>
<tr>
<td></td>
<td>modelsType: List providing models’ type</td>
</tr>
<tr>
<td></td>
<td>call.arg: List providing details on the type of models that have been fitted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>print Print the object information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show Print the object information</td>
</tr>
<tr>
<td></td>
<td>summary Print a summary of the object information</td>
</tr>
</tbody>
</table>

| **Author(s)**| Gwenael G.R. Leday <g.g.r.leday@vu.nl> |

plrs.sim

Simulation of a plrs model

<table>
<thead>
<tr>
<th>Description</th>
<th>Simulation of a piecewise relationship.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The function has been only implemented for convenience of simulations and R examples.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
<th><code>plrs.sim(n = 80, states = 4, sigma = 0.1, x = NULL)</code></th>
</tr>
</thead>
</table>
Arguments

- **n**: Number of simulated data points
- **states**: Number of states for the model
- **sigma**: Noise
- **x**: Segmented values.

Details

To be written...

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>

Examples

```r
# Simulate 1-state model
sim <- plrs.sim(n=80, states=1, sigma=0.5)
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)
plot(model)

# Simulate 2-state model
sim <- plrs.sim(n=80, states=2, sigma=0.5)
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)
plot(model)

# Simulate 3-state model
sim <- plrs.sim(n=90, states=3, sigma=0.5)
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)
plot(model)

# Simulate 4-state model
sim <- plrs.sim(n=80, states=4, sigma=0.5)
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)
plot(model)
```

plrs.test

Likelihood ratio test for a plrs model

Description

Test whether copy number has an effect on mRNA expression.

Usage

`plrs.test(object, alpha=0.05)`

Arguments

- **object**: An object of class `plrs-class`
- **alpha**: Significance level
Details

Two cases present themselves:

1. The model is unconstrained. Thus, the model under the null hypothesis is the intercept and an F-test is performed.

2. The model is constrained and the following hypothesis are tested:
 H0: All constraints are actives (=)
 H1: At least one constraint is strict (>)

Under H0, we always have the intercept model. Indeed, if constr.slopes = 1 (or 2) and constr.intercepts = T, then the only parameter free of inequality constraint is the overall intercept. If constr.intercepts = F, the local intercepts are additionally constrained to be 0 in order to obtain the intercept model under the null. The likelihood ratio statistic (unknown variance) is asymptotically distributed as a weighted mixture of Beta distribution (cf Gromping (2010)). Calculation of p-values is based on functions ic.weights and pbetabar of package ic.infer. The package mvtnorm is also involved.

In both cases the input model is taken as the model under the alternative.

Value

A list object with the following components:

- `stat`: Test statistic
- `pvalue`: Calculated pvalue
- `wt.bar`: Weights (if the model is constrained)
- `df.bar`: Degrees of freedom.
- `unconstr`: Unconstrained model of class plrs-class
- `qbetabar`: (1-alpha) quantile of the beta mixture distribution
- `alpha`: Significance level

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>

References

Examples

```r
# Simulate data
sim <- plrs.sim(n=80, states=2, sigma=0.5)

# Fit a model
model <- plrs(expr=sim$expr, cghseg=sim$seg, cghcall=sim$cal)

# Testing
model <- plrs.test(model)
model
```
predict.plrs

Description

Determine predicted values based on a given plrs model

Usage

```r
## S3 method for class 'plrs'
predict(object, newcghseg, ...)
```

Arguments

- `object`: An object of class `plrs-class`
- `newcghseg`: A vector of new segmented CGH values
- `...`: Further arguments

Value

A vector containing the fitted values.

Author(s)

Gwenael G.R. Leday <g.g.r.leday@vu.nl>
Index

Topic copy number, gene expression, regression splines, model selection, constrained inference.

plrs-package, 2

cghCall. 5, 12, 13
cghSeg. 12, 13
coeff, plrs-method (plrs-class), 8
criteria, 3, 9, 11
criteria, plrs-method (criteria), 3
effects, plrs-method (plrs-class), 8
ExpressionSet, 5, 12, 13
fitted, plrs-method (plrs-class), 8
knots, plrs-method (plrs-class), 8
model.matrix, plrs-method (plrs-class), 8
modify.conf, 4, 7, 9, 13

neveCN17, 5
neveGE17, 5

par, 6
plot, ANY (plot-methods), 6
plot, plrs, ANY-method (plot-methods), 6
plot, plrs.select, ANY-method (plot-methods), 6
plot-methods, 6
plot.plrs, 9, 11
plot.plrs (plot-methods), 6
plrs, 2, 4, 7, 8, 13
plrs, ANY (plrs), 7
plrs-class, 8
plrs-package, 2
plrs.cb, 2, 10
plrs.select, 2, 11, 11, 13
plrs.select, ANY (plrs.select), 11
plrs.select-class, 11
plrs.series, 2, 4, 12, 14
plrs.series-class, 14
plrs.sim, 14
plrs.test, 2, 10, 15
(predict, plrs-method (plrs-class), 8
predict.plrs, 9, 17
print, plrs-method (plrs-class), 8
print, plrs.select-method (plrs.select-class), 11
print, plrs.series-method (plrs.series-class), 14
residuals, plrs-method (plrs-class), 8
savePlot, 13
show, plrs-method (plrs-class), 8
show, plrs.select-method (plrs.select-class), 11
show, plrs.series-method (plrs.series-class), 14
summary, plrs-method (plrs-class), 8
summary, plrs.select-method (plrs.select-class), 11
summary, plrs.series-method (plrs.series-class), 14)