Package ‘qpcrNorm’

April 26, 2017

Type Package

Title Data-driven normalization strategies for high-throughput qPCR data.

Version 1.34.0

Date 2009-11-08

Author Jessica Mar

Maintainer Jessica Mar <jess@jimmy.harvard.edu>

Description The package contains functions to perform normalization of high-throughput qPCR data. Basic functions for processing raw Ct data plus functions to generate diagnostic plots are also available.

License LGPL (>= 2)

Depends methods, Biobase, limma, affy

Collate qpcrNormsource.R

bioCViews Preprocessing, GeneExpression

NeedsCompilation no

R topics documented:

calcCV ................................................................. 2
normQpcrHouseKeepingGenes .................................. 2
normQpcrQuantile .................................................. 3
normQpcrRankInvariant .......................................... 4
plotVarMean ......................................................... 5
qpcrBatch-class .................................................. 6
qpcrBatch.object .................................................. 7
readQpcr ............................................................. 8
readQpcrBatch ..................................................... 9
writeQpcr .......................................................... 10

Index 11
calcCV

Calculates the Average Gene-Specific Coefficient of Variation

Description
This function calculates the coefficient of variation for each gene in the qPCR experiment, and returns the average coefficient of variation across all genes.

Usage
calcCV(qBatch)

Arguments
qBatch A qpcrBatch object.

Value
A numeric value.

Author(s)
Jess Mar <jess@jimmy.harvard.edu>

Examples
data(qpcrBatch.object)
mynormRI.data <- normQpcrRankInvariant(qpcrBatch.object, 1)
mynormQuant.data <- normQpcrQuantile(qpcrBatch.object)
barplot(c(calcCV(mynormRI.data), calcCV(mynormQuant.data)), col=c("red", "blue"))

normQpcrHouseKeepingGenes

Function for Housekeeping Gene Normalization of qPCR Data.

Description
Implements housekeeping gene normalization for a qpcrBatch object.

Usage
normQpcrHouseKeepingGenes(qBatch, hkeep.genes)

Arguments
qBatch A qpcrBatch object to be normalized.
hkeep.genes Character vector, specifying which housekeeping genes to be used for normalization.
**normQpcrQuantile**

**Details**

The names in `hkeep.genes` must be a subset of the gene or primer pair names slot in the `qpcrBatch` object.

**Value**

A `qpcrBatch` object, the normalized slot is now set at TRUE.

**Author(s)**

Jess Mar <jess@jimmy.harvard.edu>

**See Also**

* `normQpcrQuantile`, `normQpcrRankInvariant`

**Examples**

```r
data(qpcrBatch.object)
mynormHK.data <- normQpcrHouseKeepingGenes(qpcrBatch.object, c("Gpx4"))
```

---

**Description**

Implements quantile normalization for a `qpcrBatch` object. We have adapted this algorithm from the function `normalizeBetweenArrays` from the `limma` package.

Data in a `qpcrBatch` object is normalized such that within an experiment, the expression distributions across plates are more or less identical, and across experiments, the expression distributions are also now more or less identical.

**Usage**

`normQpcrQuantile(qBatch)`

**Arguments**

- `qBatch` A link `qpcrBatch` object.

**Value**

A link `qpcrBatch` object, the normalized slot is now set at TRUE.

**Author(s)**

Jess Mar <jess@jimmy.harvard.edu>

**See Also**

* `normQpcrRankInvariant`, `normalizeBetweenArrays`
Example

```r
data(qpcrBatch.object)
mynormQuant.data <- normQpcrQuantile(qpcrBatch.object)
```

---

**normQpcrRankInvariant**  *Function for Rank-Invariant Set Normalization for qPCR Data.*

**Description**

Implements rank-invariant set normalization for a `qpcrBatch` object. We have adapted this algorithm from the function `normalize.invariantset` from the `affy` package.

**Usage**

```r
normQpcrRankInvariant(qBatch, refType, rem.highCt = FALSE, thresh.Ct = 30)
```

**Arguments**

- `qBatch`: A `qpcrBatch` object.
- `refType`: Indicates what reference sample should be used, can be an integer or character string. See Details below.
- `rem.highCt`: Logical indicator, TRUE if user wishes to remove genes with high Ct values (very low expression) that may be associated poor data quality.
- `thresh.Ct`: Numerical value indicating the Ct value cutoff threshold, if `rem.highCt = FALSE`, genes with Ct values > `thresh.Ct` are removed from the data set.

**Details**

The algorithm computes all rank-invariant sets of genes between pairwise comparisons where each experimental sample in the `qpcrBatch` object is paired against a reference. There are several ways to specify what a sensible choice for the reference sample should be.

1. **The reference is an experimental sample in the `qpcrBatch` object.**
   Specify `refType` as an integer value, corresponding to the index of which experimental sample is the reference.

2. **The reference is the sample which is closest to mean of all the experiments.**
   Specify `refType` = "mean".

3. **The reference is the sample which is closest to median of all the experiments.**
   Specify `refType` = "median".

4. **The reference is the mean of all experiments in the `qpcrBatch` object.**
   Specify `refType` = "pseudo.mean".

5. **The reference is the median of all experiments in the `qpcrBatch` object.**
   Specify `refType` = "pseudo.median".
Value

A `qpcrBatch` object, the normalized slot is now set at TRUE. The names of the rank-invariant genes used for normalization are stored as a vector in the `normGenes` slot of the `qpcrBatch` object returned. To retrieve the rank-invariant gene names, use `qpcrBatch@normGenes`.

Author(s)

Jess Mar <jess@jimmy.harvard.edu>

See Also

`normQpcrQuantile`, `normalize.invariantset`

Examples

data(qpcrBatch.object)
mynormRI.data <- normQpcrRankInvariant(qpcrBatch.object, 1)
mynormRI.data@normGenes # retrieves names of genes in the rank-invariant set

---

**plotVarMean**

*Constructs scatter plot to compare the effects of two normalization algorithms on a qPCR dataset.*

Description

This function makes a scatter plot which serves as a useful exploratory tool in evaluating whether one normalization algorithm has been more effective than another on a given qPCR dataset.

Usage

```r
plotVarMean(qpcrBatch1, qpcrBatch2, normTag1 = "Normalization Type1", normTag2 = "Normalization Type2", ...)
```

Arguments

- `qpcrBatch1` A `qpcrBatch` object.
- `qpcrBatch2` A `qpcrBatch` object.
- `normTag1` Character string denoting what normalization algorithm was used for this data set.
- `normTag2` Character string denoting what normalization algorithm was used for this data set.
- `...` Further arguments can be supplied to the `plot` function.

Details

For each gene, the function plots its log-transformed ratio of its expression variance in one normalized dataset versus another normalized dataset, i.e. let `G_{ij}` be the variance of the expression values of gene `i` that have been normalized with method `j`. We plot the natural log-transformed ratio of `G_{ij}` to `G_{ik}` on the y-axis, and the average expression of gene `i` on the x-axis for all genes. /cr The red curve represents a smoothed lowess curve that has been fitted to reflect the overall trend of the data. When the red curve drops below `y = 0` (the blue dotted line) we know that method `j` effects a
greater reduction in the variation of the data over method k. Similarly, when the red curve is above
y = 0, method k is more effective in reducing the variation in the data than method j. If the data
from both methods have similar variances then the red curve should remain at y = 0. Bolstad et al.
(2003) originally used these plots for variance comparisons of different normalization methods for
high density oligonucleotide array data.

Value
A plot object.

Author(s)
Jess Mar <jess@jimmy.harvard.edu>

References
Bolstad B et al. A comparison of normalization methods for high density oligonucleotide array data

See Also
plot

Examples
# data(qpcrBatch.object)
# mynormRI.data <- normQpcrRankInvariant(qpcrBatch.object, 1)
# mynormQuant.data <- normQpcrQuantile(qpcrBatch.object)
# plotVarMean(mynormRI.data, mynormQuant.data, normTag1="Rank-Invariant", normTag2="Quantile", main="Comparing Two Data-driven Methods")

qpcrBatch-class

Class qpcrBatch

Description
This is a class representation for qPCR expression data.

Objects from the Class
Objects can be created using the function readQpcr or readQpcrBatch to read in raw data from a
text file(s). Objects can also be created by using new("qpcrBatch", ...).

Slots
geneNames: Character vector denoting gene or primer pair names.
plateIndex: Character vector denoting plate indices.
exprs: Matrix of qPCR expression values, normally these are the Ct values.
normalized: Logical value, TRUE if expression data has been normalized.
normGenes: Character vector of genes used by the normalization algorithm.
Methods

No methods have yet been defined with class "qpcrBatch" in the signature.

Note

This class is better describe in the vignette.

Author(s)

Jess Mar <jess@jimmy.harvard.edu>

Examples

```r
## load example data
data(qpcrBatch.object)
class(qpcrBatch.object)
```

---

**qpcrBatch.object**  
qpcrBatch instance qpcrBatch.object

Description

This is an artifically generated qPCR data set. The data set has been closely simulated from original data for 2396 genes on 13 time points. Each measurement within the one sample was repeated over three replicate wells, across multiple plates.

Usage

```r
data(qpcrBatch.object)
```

Format

A data frame with 2396 observations on the following 41 variables.

- **Primer**  Character vector of gene or primer pair names.
- **Plate_Index**  Numeric vector denoting plate indices.
- **Time1_Rep1**  Ct values for first time point, first replicate.
- **Time1_Rep2**  Ct values for first time point, second replicate.
- **Time1_Rep3**  Ct values for first time point, third replicate.

Examples

```r
data(qpcrBatch.object)
```
**readQpcr**

**Data Input Function for a Single qPCR Experiment.**

**Description**

This function reads in data from a single qPCR experiment. The text file must have the following structure:

1st column = names denoting genes or primer pairs
2nd column = plate index of each gene or primer pair
remaining columns = (replicate) Ct values.

**Usage**

```r
readQpcr(fileName, header = FALSE, qc = FALSE, quote = "\", dec = ".", fill = TRUE, comment.char = "")
```

**Arguments**

- **fileName** Character string.
- **header** Logical value. TRUE if the file contains the names of the variables as its first line.
- **qc** Logical value. TRUE if a QC filter `ctQc` should be applied to the data. If qc = F, the replicate Ct values will be averaged.
- **quote** Set of quoting characters. To disable quoting, set quote = "". See `scan` for behaviour on quotes embedded in quotes.
- **dec** Character used for decimal points.
- **fill** Logical value. TRUE if in case rows have unequal length, blank fields are implicitly added. See `read.table`.
- **comment.char** Character vector of length one containing a single character or an empty string. Use "" to turn off the interpretation of comments altogether.
- **...** Further arguments to be passed to `read.table`.

**Details**

Note: the majority of arguments to readQpcr are identical to those supplied to read.table. These have been included to give the user greater control over data input, should the data deviate from a standard tab-delimited file structure. For a standard tab-delimited text file (without column headings), specifying the `fileName` should be sufficient.

**Value**

A `qpcrBatch` object.

**Author(s)**

Jess Mar <jess@jimmy.harvard.edu>

**See Also**

`readQpcrBatch, ctQc`
## Examples

```r
## onerun.data <- readQpcr("singleQpcrRun.txt")
```

### Description

This function reads in data from multiple qPCR experiments from the one batch. Each text file in the batch must meet the structure required by `readQpcr`.

Note: In order to qualify as a batch, it is assumed that the same set of primers are being analyzed in each experiment.

### Usage

```r
readQpcrBatch(..., filenames = character(), header = FALSE, qc = FALSE)
```

### Arguments

- `...`: Filenames separated by a comma.
- `filenames`: Character vector specifying file names.
- `header`: Logical value, TRUE if the file contains the names of the variables as its first line.
- `qc`: Logical value, TRUE if a QC filter `ctQc` should be applied to the data. If `qc = F`, the replicate Ct values will be averaged. See `ctQc`.

### Details

If the function is called with no arguments `readQpcrBatch()` all the files in the working directory are read and put into a `qpcrBatch` object. All files must conform to the following structure:

1. 1st column = names denoting genes or primer pairs
2. 2nd column = plate index of each gene or primer pair
3. remaining columns = (replicate) Ct values

Note: The majority of arguments to `readQpcr` are identical to those supplied to `read.table`. These have been included to give the user greater control over data input, should the data deviate from a standard tab-delimited file structure. For a set of standard tab-delimited text files (without column headers), specifying the `filenames` should be sufficient.

### Value

A `qpcrBatch` object.

### Author(s)

Jess Mar <jess@jimmy.harvard.edu>

### See Also

`ctQc`, `readQpcr`, `setwd`
Examples

```r
## writeQpcr(qpcrBatch.object, "output1.txt")
```
Index

*Topic IO
  readQpcr, 8
  readQpcrBatch, 9
  writeQpcr, 10

*Topic aplot
  plotVarMean, 5

*Topic classes
  qpcrBatch-class, 6

*Topic datasets
  qpcrBatch.object, 7

*Topic methods
  normQpcrHouseKeepingGenes, 2
  normQpcrQuantile, 3
  normQpcrRankInvariant, 4

*Topic univar
  calcCV, 2
  calcCV, 2
  ctQc, 8, 9

  normalize, qpcrBatch-class
  (qpcrBatch-class), 6
  normalize.invariantset, 4, 5
  normalizeBetweenArrays, 3
  normQpcrHouseKeepingGenes, 2
  normQpcrQuantile, 3, 3, 5
  normQpcrRankInvariant, 3, 4

  plot, 5, 6
  plotVarMean, 5

  qpcrBatch, 2–5, 8–10
  qpcrBatch (qpcrBatch-class), 6
  qpcrBatch-class, 6
  qpcrBatch.object, 7

  read.table, 8
  readQpcr, 6, 8, 9
  readQpcrBatch, 6, 8, 9

  scan, 8
  setwd, 9

  write.table, 10
  writeQpcr, 10, 10