Package ‘qpgraph’

November 21, 2016

Title Estimation of genetic and molecular regulatory networks from high-throughput genomics data

Version 2.8.1

Description
Estimate gene and eQTL networks from high-throughput expression and genotyping assays.

License GPL (>= 2)

Depends R (>= 3.0.0)

Imports methods, parallel, Matrix (>= 1.0), grid, annotate, graph (>= 1.45.1), Biobase, S4Vectors, BiocParallel, AnnotationDbi, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, mvtnorm, qtl, Rgraphviz

Suggests RUnit, BiocGenerics, BiocStyle, genefilter, org.EcK12.eg.db, rlecuyer, snow, Category, GOstats

LazyData yes

URL http://functionalgenomics.upf.edu/qpgraph

biocViews Microarray, GeneExpression, Transcription, Pathways, NetworkInference, GraphAndNetwork, GeneRegulation, Genetics, GeneticVariability, SNP, Software

NeedsCompilation yes

Author Robert Castelo [aut, cre], Alberto Roverato [aut]

Maintainer Robert Castelo <robert.castelo@upf.edu>

R topics documented:

 qpgraph-package ... 2
 EcoliOxygen ... 4
 eQTLcross-class .. 5
 eQTLnetwork-class ... 5
 eQTLnetworkEstimate 6
 eQTLnetworkEstimationParam-class 6
 graphParam-class ... 6
 HMgmm-class ... 7
 qpAllICtests ... 8
 qpAnyGraph ... 10
The q-order partial correlation graph learning software, \texttt{qpgraph}.

\textbf{Description}

q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables \(p \) exceeds the available sample size \(n \) as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network.
Functions

- `qpNrr` estimates non-rejection rates for every pair of variables.
- `qpAvgNrr` estimates average non-rejection rates for every pair of variables.
- `qpGenNrr` estimates generalized average non-rejection rates for every pair of variables.
- `qpEdgeNrr` estimates the non-rejection rate of one pair of variables.
- `qpCItest` performs a conditional independence test between two variables given a conditioning set.
- `qpHist` plots the distribution of non-rejection rates.
- `qpGraph` obtains a qp-graph from a matrix of non-rejection rates.
- `qpAnyGraph` obtains an undirected graph from a matrix of pairwise measurements.
- `qpGraphDensity` calculates and plots the graph density as function of the non-rejection rate.
- `qpCliqueNumber` calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.
- `qpClique` calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.
- `qpGetCliques` finds the set of (maximal) cliques of a given undirected graph.
- `qpRndWishart` random generation for the Wishart distribution.
- `qpCov` calculates the sample covariance matrix, just as the function `cov()` but returning a `dspMatrix-class` object which efficiently stores such a dense symmetric matrix.
- `qpG2Sigma` builds a random covariance matrix from an undirected graph. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph.
- `qpUnifRndAssociation` builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables that follow from the number of variables given as input argument.
- `qpK2ParCor` obtains the partial correlation coefficients from a given concentration matrix.
- `qpIPF` performs maximum likelihood estimation of a sample covariance matrix given the independence constraints from an input list of (maximal) cliques.
- `qpPAC` estimates partial correlation coefficients and corresponding P-values for each edge in a given undirected graph, from an input data set.
- `qpPCC` estimates pairwise Pearson correlation coefficients and their corresponding P-values between all pairs of variables from an input data set.
- `qpRndGraph` builds a random undirected graph with a bounded maximum connectivity degree on every vertex.
- `qpPrecisionRecall` calculates the precision-recall curve for a given measure of association between all pairs of variables in a matrix.
- `qpPRscoreThreshold` calculates the score threshold at a given precision or recall level from a given precision-recall curve.
- `qpFunctionalCoherence` estimates functional coherence of a given transcriptional regulatory network using Gene Ontology annotations.
- `qpTopPairs` reports a top number of pairs of variables according to either an association measure and/or occurring in a given reference graph.
• **qpPlotNetwork** plots a network using the Rgraphviz library.

This package provides an implementation of the procedures described in (Castelo and Roverato, 2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks from microarray data is available in the vignette qpTxRegNet and, the same directory, contains a pre-print of a book chapter describing the basic functionality of the package which serves the purpose of a basic user’s guide. This package is a contribution to the Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects.

Author(s)

R. Castelo and A. Roverato

References

EcoliOxygen
Preprocessed microarray oxygen deprivation data and filtered RegulonDB data

Description

The data consist of two classes of objects, one containing normalized gene expression microarray data from Escherichia coli (E. coli) and the other containing a subset of filtered RegulonDB transcription regulatory relationships on E. coli.

Usage

data(EcoliOxygen)

Format

- `gds680.eset`
 ExpressionSet object containing n=43 experiments of various mutants under oxygen deprivation conditions.

- `subset.gds680.eset`
 ExpressionSet object corresponding to a subset of `gds680.eset` defined by the transcription factor genes that were knocked-out in the experiments by Covert et al. (2004) and their putative targets according to the RegulonDB database version 6.1.

- `filtered.regulon6.1`
 Data frame object containing a subset of the E. coli transcriptional network from RegulonDB 6.1 that involves the transcription factor genes which were knocked-out in the experiments by Covert et al. (2004).

- `subset.filtered.regulon6.1`
 Subset of `filtered.regulon6.1` containing the transcriptional regulatory relationships in RegulonDB version 6.1 that involve the transcription factor genes which were knocked-out in the experiments by Covert et al. (2004).
Source

References

Examples

data(EcoliOxygen)
ls()

eQTLcross-class
eQTL experimental cross model class

description

The expression quantitative trait loci (eQTL) experimental cross model class serves the purpose of holding all necessary information to simulate genetical genomics data from an experimental cross.

Author(s)

R. Castelo

eQTLnetwork-class
eQTL network model class

description

The expression quantitative trait loci (eQTL) network class serves the purpose of holding the result of estimating an eQTL network from genetical genomics data.

Author(s)

R. Castelo

See Also

- eQTLNetworkEstimationParam-class
- eQTLcross-class
eQTLnetworkEstimate
Estimation of a eQTL network from genetical genomics data

Description
The methods eQTLnetworkEstimate() perform the estimation of eQTL networks from genetical genomics data using as input an eQTLnetworkEstimationParam object and, eventually, a eQTLnetwork-class object.

Author(s)
R. Castelo

See Also
eQTLnetworkEstimationParam eQTLnetwork-class

eQTLnetworkEstimationParam-class

Description
The expression quantitative trait loci (eQTL) network parameter class serves the purpose of holding the parameter information to estimate an eQTL network from genetical genomics data with the function eQTLnetworkEstimate.

Author(s)
R. Castelo

See Also
eQTLnetworkEstimate eQTLnetwork-class

graphParam-class
Graph parameter classes

Description
Graph parameter classes are defined to ease the simulation of different types of graphs by using a single interface rgraphBAM().

Author(s)
R. Castelo
Description

The "HMgmm" class is the class of homogeneous mixed graphical Markov models defined within the \texttt{qpgraph} package to store, simulate and manipulate this type of graphical Markov models (GMMs).

An homogeneous mixed GMM is a family of multivariate conditional Gaussian distributions on mixed discrete and continuous variables sharing a set of conditional independences encoded by means of a marked graph. Further details can be found in the book of Lauritzen (1996).

Objects from the Class

Objects can be created by calls of the form \texttt{HMgmm(g, ...)} corresponding to constructor methods or \texttt{rHMgmm(n, g, ...)} corresponding to random simulation methods.

Slots

\begin{itemize}
\item \texttt{pI}: Object of class "integer" storing the number of discrete random variables.
\item \texttt{pY}: Object of class "integer" storing the number of continuous random variables.
\item \texttt{g}: Object of class \texttt{graphBAM-class} storing the associated marked graph.
\item \texttt{vtype}: Object of class "factor" storing the type (discrete or continuous) of each random variable.
\item \texttt{dLevels}: Object of class "integer" storing the number of levels of each discrete random variable.
\item \texttt{a}: Object of class "numeric" storing the vector of additive linear effects on continuous variables connected to discrete ones.
\item \texttt{rho}: Object of class "numeric" storing the value of the marginal correlation between two continuous random variables.
\item \texttt{sigma}: Object of class \texttt{dspMatrix-class} storing the covariance matrix.
\item \texttt{mean}: Object of class "numeric" storing the mean vector.
\item \texttt{eta2}: Object of class "numeric" storing for each continuous variable connected to a discrete one, the fraction of variance of the continuous variable explained by the discrete one.
\end{itemize}

Methods

\begin{itemize}
\item \texttt{HMgmm(g)} Constructor method where \texttt{g} can be either an adjacency matrix or a \texttt{graphBAM-class} object.
\item \texttt{rHMgmm(n, g)} Constructor simulation method that allows one to simulate homogeneous mixed GMMs where \texttt{n} is the number of GMMs to simulate and \texttt{g} can be either a \texttt{markedGraphParam} object, an adjacency matrix or a \texttt{graphBAM-class} object.
\item \texttt{names(x)} Accessor method to obtain the names of the elements in the object \texttt{x} that can be retrieved with the \$ accessor operator.
\item \$ Accessor operator to retrieve elements of the object in an analogous way to a \texttt{list}.
\item \texttt{dim(x)} Dimension of the homogeneous mixed GMM corresponding to the number of discrete and continuous random variables.
\item \texttt{dimnames(x)} Names of the discrete and continuous random variables in the homogeneous mixed GMM.
\end{itemize}
show(object) Method to display some bits of information about the input homogeneous mixed GMM specified in object.

summary(object) Method to display a summary of the main features of the input homogeneous mixed GMM specified in object.

plot(x, ...) Method to plot the undirected graph associated to the the input homogeneous mixed GMM specified in x. It uses the plotting capabilities from the Rgraphviz library to which further arguments specified in ... are further passed.

Author(s)
R. Castelo

References

See Also
UGgmm

Tests of conditional independence

Description
Performs a test of conditional independence for every pair of variables.

Usage
```r
## S4 method for signature 'matrix'
qpAllCItests(X, I=NULL, Q=NULL, pairup.i=NULL, pairup.j=NULL,
  long.dim.are.variables=TRUE, exact.test=TRUE,
  use=c("complete.obs", "em"), tol=0.01,
  return.type=c("p.value", "statn", "all"), verbose=TRUE,
  R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
  nAdj2estimateTime=10)
```

Arguments

- **X** data set from where to estimate the non-rejection rates. It can be an Expression-Set object, a data frame or a matrix.
- **I** indexes or names of the variables in X that are discrete. See details below regarding this argument.
- **Q** indexes or names of the variables in X forming the conditioning set.
- **pairup.i** subset of vertices to pair up with subset pairup.j
- **pairup.j** subset of vertices to pair up with subset pairup.i
- **long.dim.are.variables** logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
qPAllCItests

- **exact.test**: logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed. See details below regarding this argument.

- **use**: a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".

- **tol**: maximum tolerance controlling the convergence of the EM algorithm employed when the argument use="em".

- **return.type**: type of value returned by this function. By default "p.value" indicates that a list containing a matrix of p-values from all performed conditional independence (CI) tests will be returned. If return.type="statn" then a list containing the matrix of the statistics and the sample sizes on each CI test, will be returned. If return.type="all" then all previous matrices of values will be returned within a list.

- **verbose**: show progress on the calculations.

- **R.code.only**: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

- **clusterSize**: size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages snow and rlecuyer.

- **estimateTime**: logical; if TRUE then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (default) calculations are performed normally till they finish.

- **nAdj2estimateTime**: number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.

Details

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and Castelo (2014).

Value

A list with three entries called p.value, statistic and n corresponding to a dspMatrix-class symmetric matrix of p-values for the null hypothesis of conditional independence with the diagonal set to NA values, an analogous matrix of the statistics of each test and of the sample sizes, respectively. These returned values, however, depend on the setting of argument return.type which, by default, enables only returning the matrix of p-values. If arguments pairup.i and pairup.j are employed, those cells outside the constrained pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.
qpAnyGraph

Author(s)

R. Castelo, A. Roverato and I. Tur

References

See Also

qpCItest

Examples

```
library(mvtnorm)

nVar <- 50  ## number of variables
maxCon <- 3  ## maximum connectivity per variable
nObs <- 30   ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

alltests <- qpAllCItests(X, verbose=FALSE)

## distribution of p-values for the present edges
summary(alltests$p.value[upper.tri(alltests$p.value) & A])

## distribution of p-values for the missing edges
summary(alltests$p.value[upper.tri(alltests$p.value) & !A])
```

qpAnyGraph A graph

Description

Obtains an undirected graph from a matrix of pairwise measurements

Usage

```
qpAnyGraph(measurementsMatrix, threshold=NA_real_, remove=c("below", "above"),
          topPairs=NA_integer_, decreasing=TRUE, pairup.i=NULL, pairup.j=NULL)
```
Arguments

measurementsMatrix
matrix of pairwise measurements.

threshold
threshold on the measurements below or above which pairs of variables are assumed to be disconnected in the resulting graph.

remove
direction of the removal with the threshold. It should be either "below" (default) or "above".

topPairs
number of edges from the top of the ranking, defined by the pairwise measurements in measurementsMatrix, to use to form the resulting graph. This parameter is incompatible with a value different from NULL in threshold.

decreasing
logical, only applies when topPairs is set; if TRUE then the ranking is made in decreasing order; if FALSE then is made in increasing order.

pairup.i
subset of vertices to pair up with subset pairup.j

pairup.j
subset of vertices to pair up with subset pairup.i

Details

This is a general purpose function for thresholding a matrix of pairwise measurements to select pairs of variables corresponding to selected edges in an undirected graph.

Value

The resulting undirected graph as a graphBAM object. Note that when some gold-standard graph is available for comparison, a value for the parameter threshold can be found by calculating a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when we specify with topPairs=n that we want a graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

```r
require(mvtnorm)
require(graph)

nVar <- 50  ## number of variables
maxCon <- 5  ## maximum connectivity per variable
nObs <- 30  ## number of observations to simulate

set.seed(123)
```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

estimate Pearson correlations
pcc.estimates <- qpPCC(X)

the higher the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.9,
 remove="below")

the sparser the qp-graph
numEdges(g) / choose(numNodes(g), 2)

the lower the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.5,
 remove="below")

the denser the graph
numEdges(g) / choose(numNodes(g), 2)

qpAvgNrr

Average non-rejection rate estimation

Description

Estimates average non-rejection rates for every pair of variables.

Usage

```r
# S4 method for signature 'ExpressionSet'
qpAvgNrrr(X, qOrders=4, I=NULL, restrict.Q=NULL,
          fix.Q=NULL, nTests=100, alpha=0.05,
          pairup.i=NULL, pairup.j=NULL, type=c("arith.mean"),
          verbose=TRUE, identicalQs=TRUE,
          exact.test=TRUE, use=c("complete.obs", "em"),
          tol=0.01, R.code.only=FALSE, clusterSize=1,
          estimateTime=FALSE, nAdj2estimateTime=10)

# S4 method for signature 'data.frame'
qpAvgNrrr(X, qOrders=4, I=NULL, restrict.Q=NULL,
          fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL,
          pairup.j=NULL, long.dim.are.variables=TRUE,
          type=c("arith.mean"), verbose=TRUE,
          identicalQs=TRUE, exact.test=TRUE,
          use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
          clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

# S4 method for signature 'matrix'
qpAvgNrrr(X, qOrders=4, I=NULL, restrict.Q=NULL, fix.Q=NULL,
          nTests=100, alpha=0.05, pairup.i=NULL,
          pairup.j=NULL, long.dim.are.variables=TRUE,
          type=c("arith.mean"), verbose=TRUE,
          identicalQs=TRUE, exact.test=TRUE,
          use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
          clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
```
Arguments

- **X**: data set from where to estimate the average non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.
- **qOrders**: either a number of partial-correlation orders or a vector of vector of particular orders to be employed in the calculation.
- **I**: indexes or names of the variables in X that are discrete. When X is an ExpressionSet then I may contain only names of the phenotypic variables in X. See details below regarding this argument.
- **restrict.Q**: indexes or names of the variables in X that restrict the sample space of conditioning subsets Q.
- **fix.Q**: indexes or names of the variables in X that should be fixed within every conditioning conditioning subsets Q.
- **nTests**: number of tests to perform for each pair for variables.
- **alpha**: significance level of each test.
- **pairup.i**: subset of vertices to pair up with subset pairup.j
- **pairup.j**: subset of vertices to pair up with subset pairup.i
- **long.dim.are.variables**: logical; if TRUE it is assumed that when the data is a data frame or a matrix, the longer dimension is the one defining the random variables; if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
- **type**: type of average. By now only the arithmetic mean is available.
- **verbose**: show progress on the calculations.
- **identicalQs**: use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.
- **exact.test**: logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.
- **use**: a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".
- **tol**: maximum tolerance controlling the convergence of the EM algorithm employed when the argument use="em".
- **R.code.only**: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.
- **clusterSize**: size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages snow and rlecuyer.
- **estimateTime**: logical; if TRUE then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (default) calculations are performed normally till they finish.
- **nAdj2estimateTime**: number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.
Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to min(p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly within each q value and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and Castelo (2014).

Value

A dspMatrix-class symmetric matrix of estimated average non-rejection rates with the diagonal set to NA values. When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated average non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

See Also

qpNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ### number of variables
maxCon <- 3 ### maximum connectivity per variable
nObs <- 30 ### number of observations to simulate
set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
avgnrr.estimates <- qpAvgNrr(X, verbose=FALSE)

distribution of average non-rejection rates for the present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A])

distribution of average non-rejection rates for the missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A])

Not run:
library(snow)
library(rlecuyer)

only for moderate and large numbers of variables the
use of a cluster of processors speeds up the calculations
nVar <- 500
maxCon <- 3
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE))

End(Not run)

qpBoundary

Maximum boundary size of the resulting qp-graphs

Description

Calculates and plots the size of the largest vertex boundary as function of the non-rejection rate.

Usage

qpBoundary(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, vertexSubset=NULL, plot=TRUE, qpBoundaryOutput=NULL, density.digits=0, logscale.bdsize=FALSE, titlebd="Maximum boundary size as function of threshold", verbose=FALSE)

Arguments

- `nrrMatrix` matrix of non-rejection rates.
- `n` number of observations from where the non-rejection rates were estimated.
- `threshold.lim` range of threshold values on the non-rejection rate.
- `breaks` either a number of threshold bins or a vector of threshold breakpoints.
- `vertexSubset` subset of vertices for which their maximum boundary size is calculated with respect to all other vertices.
- `plot` logical; if TRUE makes a plot of the result; if FALSE it does not.
- `qpBoundaryOutput` output from a previous call to `qpBoundary`. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
density.digits number of digits in the reported graph densities.
logscale.bdsize logical; if TRUE then the scale for the maximum boundary size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).
titlebd main title to be shown in the plot.
verbose show progress on calculations.

Details
The maximum boundary is calculated as the largest degree among all vertices of a given qp-graph.

Value
A list with the maximum boundary size and graph density as function of threshold, the threshold on the non-rejection rate that provides a maximum boundary size strictly smaller than the sample size n and the resulting maximum boundary size.

Author(s)
R. Castelo and A. Roverato

References

See Also
qpHTF qpGraphDensity

Examples
```r
require(mvtnorm)
nVar <- 50  ## number of variables
maxCon <- 5  ## maximum connectivity per variable
nObs <- 30  ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## the higher the q the less complex the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpBoundary(nrr.estimates, plot=FALSE)
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpBoundary(nrr.estimates, plot=FALSE)
```
qpCItest

Conditional independence test

Description

Performs a conditional independence test between two variables given a conditioning set.

Usage

S4 method for signature 'ExpressionSet'
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE, use=c("complete.obs", "em"),
 tol=0.01, R.code.only=FALSE)

S4 method for signature 'cross'
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE, use=c("complete.obs", "em"),
 tol=0.01, R.code.only=FALSE)

S4 method for signature 'data.frame'
qpCItest(X, i=1, j=2, Q=c(), I=NULL, long.dim.are.variables=TRUE,
 exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)

S4 method for signature 'matrix'
qpCItest(X, i=1, j=2, Q=c(), I=NULL, long.dim.are.variables=TRUE,
 exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)

S4 method for signature 'SsdMatrix'
qpCItest(X, i=1, j=2, Q=c(), R.code.only=FALSE)

Arguments

X data set where the test should be performed. It can be either an ExpressionSet object, a qtl::cross object, a data frame, a matrix or an SsdMatrix-class object. In the latter case, the input matrix should correspond to a sample covariance matrix of data on which we want to test for conditional independence. The function qpCov() can be used to estimate such matrices.

i index or name of one of the two variables in X to test.

j index or name of the other variable in X to test.

Q indexes or names of the variables in X forming the conditioning set.

I indexes or names of the variables in X that are discrete. See details below regarding this argument.

long.dim.are.variables logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.

exact.test logical; if FALSE an asymptotic likelihood ratio test of conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact likelihood ratio test of conditional independence with mixed data is employed. See details below regarding this argument.

use a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed when the argument use="em".
R.code.only

logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

When variables in \(i, j \) and \(Q \) are continuous and \(I=NULL \), this function performs a conditional independence test using a t-test for zero partial regression coefficient (Lauritzen, 1996, pg. 150). Note that the size of possible \(Q \) sets should be in the range 1 to \(\min(p,n-3) \), where \(p \) is the number of variables and \(n \) the number of observations. The computational cost increases linearly with the number of variables in \(Q \).

When variables in \(i, j \) and \(Q \) are continuous and discrete (mixed data), indicated with the \(I \) argument when \(X \) is a matrix, then mixed graphical model theory (Lauritzen and Wermuth, 1989) is employed and, concretely, it is assumed that data come from an homogeneous conditional Gaussian distribution. By default, with \(\text{exact.test=TRUE} \), an exact likelihood ratio test for conditional independence is performed (Lauritzen, 1996, pg. 192-194; Tur, Roverato and Castelo, 2014), otherwise an asymptotic one is used.

In this setting further restrictions to the maximum value of \(q \) apply, concretely, it cannot be smaller than \(p \) plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm.

Value

A list with class "htest" containing the following components:

- **statistic**: in case of pure continuous data and \(I=NULL \), the t-statistic for zero partial regression coefficient; when \(I!=NULL \), the value \(\Lambda \) of the likelihood ratio if \(\text{exact.test=TRUE} \) and \(-n \log \Lambda\) otherwise.
- **parameter**: in case of pure continuous data and \(I=NULL \), the degrees of freedom for the t-statistic \((n-q-2)\); when \(I!=NULL \), the degrees of freedom for \(-n \log \Lambda\) of a chi-square distribution under the null hypothesis if \(\text{exact.test=FALSE} \) and the \((a, b)\) parameters of a beta distribution under the null if \(\text{exact.test=TRUE} \).
- **p.value**: the p-value for the test.
- **estimate**: in case of pure continuous data \((I=NULL)\), the estimated partial regression coefficient. In case of mixed continuous and discrete data with \(I!=NULL \), the estimated partial eta-squared: the fraction of variance from \(i \) or \(j \) explained by the other tested variable after excluding the variance explained by the variables in \(Q \). If one of the tested variables \(i \) or \(j \) is discrete, then the partial eta-squared is calculated on the tested continuous variable. If both, \(i \) and \(j \) are continuous, then the partial eta-squared is calculated on variable \(i \).
- **alternative**: a character string describing the alternative hypothesis.
- **method**: a character string indicating what type of conditional independence test was performed.
- **data.name**: a character string giving the name(s) of the random variables involved in the conditional independence test.

Author(s)

R. Castelo and A. Roverato
References

See Also

qpCov qpNrr qpEdgeNrr

Examples

```r
require(mvtnorm)

nObs <- 100 ## number of observations to simulate

## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,
              TRUE, FALSE, TRUE, TRUE,
              TRUE, TRUE, FALSE, FALSE,
              TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)

Sigma <- qpG2Sigma(A, rho=0.5)

X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpCItest(X, i=3, j=4, Q=1, long.dim.are.variables=FALSE)

qpCItest(X, i=3, j=4, Q=c(1,2), long.dim.are.variables=FALSE)
```

qpClique

Complexity of the resulting qp-graphs

Description

Calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.

Usage

```r
qpClique(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE,
          exact.calculation=TRUE, approx.iter=100,
          qpCliqueOutput=NULL, density.digits=0,
          logscale.clqsize=FALSE,
          titleclq="maximum clique size as function of threshold",
          verbose=FALSE)
```
Arguments

- **nrrMatrix**: matrix of non-rejection rates.
- **n**: number of observations from where the non-rejection rates were estimated.
- **threshold.lim**: range of threshold values on the non-rejection rate.
- **breaks**: either a number of threshold bins or a vector of threshold breakpoints.
- **plot**: logical; if TRUE makes a plot of the result; if FALSE it does not.
- **exact.calculation**: logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.
- **approx.iter**: number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE).
- **qpCliqueOutput**: output from a previous call to **qpClique**. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
- **density.digits**: number of digits in the reported graph densities.
- **logscale.clqsize**: logical; if TRUE then the scale for the maximum clique size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).
- **titleclq**: main title to be shown in the plot.
- **verbose**: show progress on calculations.

Details

The estimate of the complexity of the resulting qp-graphs is calculated as the area enclosed under the curve of maximum clique sizes.

The maximum clique size, or clique number, is obtained by calling the function **qpCliqueNumber**. The calculation of the clique number of an undirected graph is an NP-complete problem which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). Therefore, giving breakpoints between 0.95 and 1.0 may result into very dense graphs which can lead to extremely long execution times. If it is necessary to look at that range of breakpoints it is recommended either to use the lower bound on the clique number (exact.calculation=FALSE) or to look at **qpGraphDensity**.

Value

A list with the maximum clique size and graph density as function of threshold, an estimate of the complexity of the resulting qp-graphs across the thresholds, the threshold on the non-rejection rate that provides a maximum clique size strictly smaller than the sample size n and the resulting maximum clique size.

Author(s)

R. Castelo and A. Roverato

References

qpCliqueNumber

See Also

qpCliqueNumber qpGraphDensity

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

the higher the q the less complex the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity

qpCliqueNumber Clique number

Description

Calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.

Usage

qpCliqueNumber(g, exact.calculation=TRUE, return.vertices=FALSE, approx.iter=100, verbose=TRUE, R.code.only)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.

exact.calculation logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.

return.vertices logical; if TRUE a set of vertices forming a maximal clique of maximum size is returned; if FALSE only the maximum clique size is returned.

approx.iter number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE.

verbose show progress on calculations.
Details

The calculation of the clique number of an undirected graph is one of the basic NP-complete problems (Karp, 1972) which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003) based on the, probably the fastest to date, algorithm by Ostergard (2002).

The lower bound on the maximum clique size is calculated by ranking the vertices by their connectivity degree, put the first vertex in a set and go through the rest of the ranking adding those vertices to the set that form a clique with the vertices currently within the set. Once the entire ranking has been examined a large clique should have been built and eventually one of the largests ones. This process is repeated a number of times (approx.iter) each of which the ranking is altered with increasing levels of randomness acyclically (altering 1 to p vertices and again). Larger values of approx.iter should provide tighter lower bounds although it has been proven that no polynomial time algorithm can approximate the maximum clique size within a factor of n^ϵ ($\epsilon > 0$), unless P=NP (Feige et al, 1991; Pardalos and Xue, 1994).

Value

a lower bound of the size of the largest maximal clique in the given graph, also known as its clique number.

Author(s)

R. Castelo

References

See Also

qpClique
Examples

```r
require(graph)

nVar <- 50
set.seed(123)

g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
qpCliqueNumber(g1, verbose=FALSE)

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
qpCliqueNumber(g2, verbose=FALSE)
```

Calculation of the sample covariance matrix

Description

Calculates the sample covariance matrix, just as the function `cov()` but returning a `dspMatrix-class` object which efficiently stores such a dense symmetric matrix.

Usage

```r
qpCov(X, corrected=TRUE)
```

Arguments

- **X**: data set from where to calculate the sample covariance matrix. As the `cov()` function, it assumes the columns correspond to random variables and the rows to multivariate observations.
- **corrected**: flag set to `TRUE` when calculating the sample covariance matrix (default; and set to `FALSE` when calculating the uncorrected sum of squares and deviations.

Details

This function makes the same calculation as the `cov` function but returns a sample covariance matrix stored in the space-efficient class `dspMatrix-class` and, moreover, allows one for calculating the uncorrected sum of squares and deviations which equals \((n-1) \times \text{cov()})\).

Value

A sample covariance matrix stored as a `dspMatrix-class` object. See the Matrix package for full details on this object class.

Author(s)

R. Castelo

See Also

`qpPCC`
Examples

```r
require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

S <- qpCov(X)

## estimate Pearson correlation coefficients by scaling the sample covariance matrix
R <- cov2cor(as(S, "matrix"))

## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

## Pearson correlation coefficients of the present edges
summary(abs(R[upper.tri(R) & A]))

## Pearson correlation coefficients of the missing edges
summary(abs(R[upper.tri(R) & !A]))
```

qpEdgeNrr

Non-rejection rate estimation for a pair of variables

Description

Estimates the non-rejection rate for one pair of variables.

Usage

```r
## S4 method for signature 'ExpressionSet'
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,
nTests=100, alpha=0.05, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature 'data.frame'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature 'matrix'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)
```
S4 method for signature 'SsdMatrix'

```r
def qedgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, R.code.only=FALSE)

Arguments

- **X**: data set from where the non-rejection rate should be estimated. It can be either an ExpressionSet object a data frame, a matrix or an SsdMatrix-class object. In the latter case, the input matrix should correspond to a sample covariance matrix of data from which we want to estimate the non-rejection rate for a pair of variables. The function `qpCov()` can be used to estimate such matrices.

- **i**: index or name of one of the two variables in `X` to test.

- **j**: index or name of the other variable in `X` to test.

- **q**: order of the conditioning subsets employed in the calculation.

- **I**: indexes or names of the variables in `X` that are discrete when `X` is a matrix or a data frame.

- **restrict.Q**: indexes or names of the variables in `X` that restrict the sample space of conditioning subsets `Q`.

- **fix.Q**: indexes or names of the variables in `X` that should be fixed within every conditioning conditioning subsets `Q`.

- **nTests**: number of tests to perform for each pair for variables.

- **alpha**: significance level of each test.

- **long.dim.are.variables**: logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.

- **exact.test**: logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed. See details below regarding this argument.

- **use**: a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".

- **tol**: maximum tolerance controlling the convergence of the EM algorithm employed when the argument `use="em"`.

- **R.code.only**: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests that accept the null hypothesis of conditional independence given a set of randomly sampled q-order conditionals.

Note that the possible values of `q` should be in the range 1 to `min(p, n-3)`, where `p` is the number of variables and `n` the number of observations. The computational cost increases linearly with `q`.

When `I` is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of `q` apply, concretely, it cannot be smaller than `p`. 

plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with `exact.test=TRUE`, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and Castelo (2014).

The argument `I` specifying what variables are discrete actually applies only when `X` is a matrix object since in the other cases data types are specified for each data columns or slot.

**Value**

An estimate of the non-rejection rate for the particular given pair of variables.

**Author(s)**

R. Castelo and A. Roverato

**References**


**See Also**

`qpNrr` `qpAvgNrr` `qpHist` `qpGraphDensity` `qpClique` `qpCov`

**Examples**

```r
require(mvtnorm)

nObs <- 100 ## number of observations to simulate

the following adjacency matrix describes an undirected graph
where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,
 TRUE, FALSE, TRUE, TRUE,
 TRUE, TRUE, FALSE, FALSE,
 TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE)
qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE)
```
qpFunctionalCoherence  Functional coherence estimation

Description

Estimates functional coherence for a given transcriptional regulatory network specified either as an adjacency matrix with a list of transcription factor gene identifiers or as a list of transcriptional regulatory modules, whose element names determine which genes encode for transcription factor proteins.

Usage

## S4 method for signature 'lsCMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),
chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

## S4 method for signature 'lspMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),
chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

## S4 method for signature 'lsyMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),
chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

## S4 method for signature 'matrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),
chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

## S4 method for signature 'list'
qpFunctionalCoherence(object, geneUniverse=unique(c(names(object), unlist(object, use.names=FALSE)),
chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

Arguments

object object containing the transcriptional regulatory modules for which we want to estimate their functional coherence. It can be an adjacency matrix of the undirected graph representing the transcriptional regulatory network or a list of gene target sets where the name of the entry should be the transcription factor gene identifier.

TFgenes when the input object is a matrix, it is required to provide a vector of transcription factor gene identifiers (which should match somewhere in the row and column names of the matrix.

geneUniverse vector of all genes considered in the analysis. By default it equals the rows and column names of object when it is a matrix, or the set of all different gene identifiers occurring in object when it is a list.

chip name of the .db package containing the Gene Ontology (GO) annotations.

minRMsize minimum size of the target gene set in each regulatory module where functional enrichment will be calculated and thus where functional coherence will be estimated.
removeGOterm

word, or regular pattern, matching GO terms that should be excluded in the transcription factor gene GO annotations, and in the target gene if the regulatory module has only one gene, prior to the calculation of functional coherence.

verbose

logical; if TRUE the function will show progress on the calculations; if FALSE the function will remain quiet (default).

clusterSize

size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages snow and rlecuyer.

Details

This function estimates the functional coherence of a transcriptional regulatory network represented by means of an undirected graph encoded by either an adjacency matrix and a vector of transcription factor genes, or a list of regulatory modules each of them defined by a transcription factor gene and its targets. The functional coherence of a transcriptional regulatory network is calculated as specified by Castelo and Roverato (2009) and corresponds to the distribution of individual functional coherence values of every of the regulatory modules of the network each of them defined as a transcription factor and its set of putatively regulated target genes. In the calculation of the functional coherence value of a regulatory module, Gene Ontology (GO) annotations are employed through the given annotation .db package and the conditional hyper-geometric test implemented in the GOstats package from Bioconductor.

When a regulatory module has only one target gene, then no functional enrichment is calculated and, instead, the GO trees, grown from the GO annotations of the transcription factor gene and its target, are directly compared.

Value

A list with the following elements: the transcriptional regulatory network as a list of regulatory modules and their targets; the previous list of regulatory modules but excluding those with no enriched GO BP terms. When the regulatory module has only one target, then instead the GO BP annotations of the target gene are included; a vector of functional coherence values.

Author(s)

R. Castelo and A. Roverato

References


See Also

qpAvgNrr qpGraph

Examples

## example below takes about minute and a half to execute and for
## that reason it is not executed by default
## Not run:
library(GOstats)
library(org.EcK12.eg.db)
```r
load RegulonDB data from this package
data(EcoliOxygen)

pick two TFs from the RegulonDB data in this package
TFgenes <- c("mhpR", "iscR")

get their Entrez Gene Identifiers
TFgenesEgIDs <- unlist(mget(TFgenes, AnnotationDbi::revmap(org.EcK12.egSYMBOL)))

get all genes involved in their regulatory modules from
the RegulonDB data in this package
mt <- match(filtered.regulon6.1[,"EgID_TF"], TFgenesEgIDs)
allGenes <- as.character(unique(as.vector(
as.matrix(filtered.regulon6.1![is.na(mt),
c("EgID_TF","EgID_TG")]))))

mtTF <- match(filtered.regulon6.1[,"EgID_TF"],allGenes)
mtTG <- match(filtered.regulon6.1[,"EgID_TG"],allGenes)

select the corresponding subset of the RegulonDB data in this package
subset.filtered.regulon6.1 <- filtered.regulon6.1![is.na(mtTF) & !is.na(mtTG),]
TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"], allGenes)
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"], allGenes)
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1, idx_TF=TFi, idx_TG=TGi)

build an adjacency matrix representing the transcriptional regulatory
relationships from these regulatory modules
p <- length(allGenes)
adjacencyMatrix <- matrix(FALSE, nrow=p, ncol=p)
ownames(adjacencyMatrix) <- colnames(adjacencyMatrix) <- allGenes
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])
adjacencyMatrix[idxTFTG] <-
adjacencyMatrix[cbind(idxTFTG[,2],idxTFTG[,1])] <- TRUE

calculate functional coherence on these regulatory modules
fc <- qpFunctionalCoherence(adjacencyMatrix, TFgenes=TFgenesEgIDs,
chip="org.EcK12.eg.db")

print(sprintf("the %s module has a FC value of %.2f",
 names(fc$functionalCoherenceValues),org.EcK12.egSYMBOL),
 fc$functionalCoherenceValues))

End(Not run)
```
qpG2Sigma

Usage

qpG2Sigma(g, rho=0, matrix.completion=c("HTF", "IPF"), tol=0.001,
    verbose=FALSE, R.code.only=FALSE)

Arguments

g  undirected graph specified either as a graphNEL object or as an adjacency matrix.
rho  real number between -1/(n.var-1) and 1 corresponding to the mean marginal correlation
matrix.completion  algorithm to employ in the matrix completion operations employed to construct a positive definite matrix with the zero pattern specified in g
tol  tolerance under which the matrix completion algorithm stops.
verbose  show progress on the calculations.
R.code.only  logical; if FALSE then the faster C implementation is used in the internal call to the HTF, or IPF, algorithm (default); if TRUE then only R code is executed.

Details

The random covariance matrix is built by first generating a random matrix with the function `qpRndWishart` from a Wishart distribution whose expected value is a matrix with unit diagonal and constant off-diagonal entries equal to rho.

Value

A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical model with graph G.

Author(s)

A. Roverato

References


See Also

`qpRndGraph` `qpGetCliques` `qpIPF` `qpRndWishart` `rmvnorm`

Examples

```r
set.seed(123)
G <- qpRndGraph(p=5, d=2)
Sigma <- qpG2Sigma(G, rho=0.5)
round(solve(Sigma), digits=2)
as(G, "matrix")
```
Description

Estimates generalized non-rejection rates for every pair of variables from two or more data sets.

Usage

```r
S4 method for signature 'ExpressionSet'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
 fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
 pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE,
 exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
 R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
 nAdj2estimateTime=10)

S4 method for signature 'data.frame'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
 fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
 pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
 verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
 use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
 clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'matrix'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
 fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
 pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
 verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
 use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
 clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
```

Arguments

- **X**: data set from where to estimate the average non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.
- **datasetIdx**: either a single number, or a character string, indicating the column in the phenotypic data of the ExpressionSet object, or in the input matrix or data frame, containing the indexes to the data sets. Alternatively, it can be a vector of these indexes with as many positions as samples.
- **qOrders**: either a NULL value (default) indicating that a default guess on the q-order will be employed for each data set or a vector of particular orders with one for each data set. The default guess corresponds to the floor of the median value among the valid q orders of the data set.
- **I**: indexes or names of the variables in **X** that are discrete. When **X** is an ExpressionSet then **I** may contain only names of the phenotypic variables in **X**. See details below regarding this argument.
- **restrict.Q**: indexes or names of the variables in **X** that restrict the sample space of conditioning subsets **Q**.
- **fix.Q**: indexes or names of the variables in **X** that should be fixed within every conditioning conditioning subsets **Q**.
return.all logical; if TRUE all intervening non-rejection rates will be return in a matrix per dataset within a list; FALSE (default) if only generalized non-rejection rates should be returned.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i

long.dim.are.variables logical; if TRUE it is assumed that when the data is a data frame or a matrix, the longer dimension is the one defining the random variables; if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.

verbose show progress on the calculations.

identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (default) calculations are performed normally till they finish.

nAdj2estimateTime number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to min(p,n-3), where p is the number of variables and n the number of observations for the corresponding data set. The computational cost increases linearly within each q value and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p.
plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and Castelo (2014).

Value

A list containing the following two or more entries: a first one with name genNrr with a dspMatrix-class symmetric matrix of estimated generalized non-rejection rates with the diagonal set to NA values. When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value; a second one with name qOrders with the q-orders employed in the calculation for each data set; if return.all=TRUE then there will be one additional entry for each data set containing the matrix of the non-rejection rates estimated from that data set with the corresponding q-order, using the indexing value of the data set as entry name.

Note, however, that when estimateTime=TRUE, then instead of the list with matrices of estimated (generalized) non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References


See Also

qpNrr qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

```r
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)

simulate two independent Gaussian graphical models determined
by two undirected d-regular graphs
model1 <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)
model2 <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)

simulate two independent data sets from the previous graphical models
X1 <- rmvnorm(nObs, model1)
dim(X1)
X2 <- rmvnorm(nObs, model2)
dim(X2)

estimate generalized non-rejection rates from the joint data
nrr.estimates <- qpGenNrr(rbind(X1, X2),
 datasetIdx=rep(1:2, each=nObs),
```
## Description

Finds the set of (maximal) cliques of a given undirected graph.

## Usage

qpGetCliques(g, clqspervtx=FALSE, verbose=TRUE)

## Arguments

- **g**: either a graphNEL object or an adjacency matrix of the given undirected graph.
- **clqspervtx**: logical; if TRUE then the resulting list returned by the function includes additionally p entries at the beginning (p=number of variables) each corresponding to a vertex in the graph and containing the indices of the cliques where that vertex belongs to; if FALSE these additional entries are not included (default).
- **verbose**: show progress on calculations.
To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979). For this reason, this is an extremely time and memory consuming computation for large dense graphs. The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003).

A list of maximal cliques. When clqspervtx=TRUE the first p entries (p=number of variables) contain, each of them, the indices of the cliques where that particular vertex belongs to.

R. Castelo


require(graph)
set.seed(123)
nVar <- 50
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
clqs1 <- qpGetCliques(g1, verbose=FALSE)
length(clqs1)
summary(sapply(clqs1, length))

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
length(clqs2)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
summary(sapply(clqs2, length))
The “qpGraph” class is the class to store and manipulate q-order (partial) correlation graphs, or qp-graphs for short. See Castelo and Roverato (2006, 2009) for a mathematical and statistical definition of a qp-graph.

In earlier versions 1.x of the qpgraph package there was a function called qpGraph() to obtain a qp-graph from a matrix of non-rejection rates. This function, as it was written, has been deprecated and replaced by this class and corresponding constructor methods of the same name. The main difference with respect to earlier 1.x versions is that the argument threshold is now called epsilon, the argument return.type has been removed and the current version returns an object of this class qpGraph described in this manual page.

Arguments

- epsilon: maximum cutoff value met by the edges present in the qp-graph.
- topPairs: number of edges from the top of the ranking, defined by the non-rejection rates in nrrMatrix, to use to form the resulting qp-graph. This parameter is incompatible with a value different from NULL in epsilon.
- pairup.i: subset of vertices to pair up with subset pairup.j.
- pairup.j: subset of vertices to pair up with subset pairup.i.
- q: q-order employed to derive the input matrix of non-rejection rates nrrMatrix.
- n: when the input matrix of non-rejection rates nrrMatrix has been estimated from data, this is the number of observations in the data set.

Objects from the Class

Objects can be created by calls of the form qpGraph(nrrMatrix, ...) corresponding to constructor methods that take as input a matrix of non-rejection rates, calculated with qpNrr.

Slots

- p: number of vertices, in one-to-one correspondence with random variables.
- q: order of the qp-graph, always smaller than p-2.
- n: when the qp-graph has been estimated from data, this is the number of observations in the data set, which must be larger than q+2.
- epsilon: maximum cutoff value of the non-rejection rate met by the edges that are present in the qp-graph.
- g: undirected graph structure of the qp-graph stored as a graphBAM-class object.

Methods

qpGraph(nrrMatrix, ...) Constructor method where nrrMatrix is a matrix of non-rejection rates.

show(object) Method to display some bits of information about the qp-graph stored in the input argument object.
**qpGraphDensity**

**Author(s)**

R. Castelo

**References**


**See Also**

qpNrr

---

**qpGraphDensity**  
*Densities of resulting qp-graphs*

**Description**

Calculates and plots the graph density as function of the non-rejection rate.

**Usage**

```r
qpGraphDensity(nrrMatrix, threshold.lim=c(0,1), breaks=5, plot=TRUE, qpGraphDensityOutput=NULL, density.digits=0, titlegd="graph density as function of threshold")
```

**Arguments**

- **nrrMatrix**  
  matrix of non-rejection rates.
- **threshold.lim**  
  range of threshold values on the non-rejection rate.
- **breaks**  
  either a number of threshold bins or a vector of threshold breakpoints.
- **plot**  
  logical; if TRUE makes a plot of the result; if FALSE it does not.
- **qpGraphDensityOutput**  
  output from a previous call to *qpGraphDensity*. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
- **density.digits**  
  number of digits in the reported graph densities.
- **titlegd**  
  main title to be shown in the plot.

**Details**

The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area enclosed under the curve of graph densities.
Value

A list with the graph density as function of threshold and an estimate of the sparseness of the resulting qp-graphs across the thresholds.

Author(s)

R. Castelo and A. Roverato

References


See Also

qpNrr qpAvgNrr qpEdgeNrr qpClique

Examples

```r
require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

the higher the q the sparser the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
```

---

qpHist  

**Histograms of non-rejection rates**

Description

Plots the distribution of non-rejection rates.

Usage

```r
qpHist(nrrMatrix, A=NULL,
 titlehist = "all estimated\nnon-rejection rates", freq=TRUE)
```
Arguments

nrrMatrix matrix of non-rejection rates.
A adjacency matrix of an undirected graph whose present and missing edges will be employed to show separately the distribution of non-rejection rates.
titlehist main title of the histogram(s).
freq logical; if TRUE, the histograms show frequencies (counts) of occurrence of the different non-rejection rate values; if FALSE, then probability densities are plotted

Details

This function plots histograms using the R-function hist and therefore the way they are displayed follows that of this R-function.

Value

None

Author(s)

R. Castelo and A. Roverato

References


See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraphDensity qpClique

Examples

require(mvtnorm)
nVar <- 50  ## number of variables
maxCon <- 5  ## maximum connectivity per variable
nObs <- 30  ## number of observations to simulate
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpHist(nrr.estimates, A)
qpHTF

**Hastie Tibshirani Friedman iterative regression algorithm**

**Description**

Performs maximum likelihood estimation of a covariance matrix given the independence constraints from an input undirected graph.

**Usage**

```r
qpHTF(S, g, tol = 0.001, verbose = FALSE, R.code.only = FALSE)
```

**Arguments**

- `S`: input matrix, in the context of this package, the sample covariance matrix.
- `g`: input undirected graph.
- `tol`: tolerance under which the iterative algorithm stops.
- `verbose`: show progress on calculations.
- `R.code.only`: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

**Details**

This is an alternative to the Iterative Proportional Fitting (IPF) algorithm (see, Whittaker, 1990, pp. 182-185 and `qpIPF`) which also adjusts the input matrix to the independence constraints in the input undirected graph. However, differently to the IPF, it works by going through each of the vertices fitting the marginal distribution over the corresponding vertex boundary. It stops when the adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or equal than a given tolerance value. This algorithm is described by Hastie, Tibshirani and Friedman (2009, pg. 634), hence we name it here HTF, and it has the advantage over the IPF that it does not require the list of maximal cliques of the graph which may be exponentially large. In contrast, it requires that the maximum boundary size of the graph is below the number of samples where the input sample covariance matrix `S` was estimated. For the purpose of exploring qp-graphs that meet such a requirement, one can use the function `qpBoundary`.

**Value**

The input matrix adjusted to the constraints imposed by the input undirected graph, i.e., a maximum likelihood estimate of the sample covariance matrix that includes the independence constraints encoded in the undirected graph.

**Note**

Thanks to Giovanni Marchetti for bringing us our attention to this algorithm and sharing an early version of its implementation on the R package `ggm`.

**Author(s)**

R. Castelo
References


See Also

qpBoundary qpIPF qpPAC

Examples

```r
require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

MLE of the sample covariance matrix
S <- cov(X)

more efficient MLE of the sample covariance matrix using HTF
S_htf <- qpHTF(S, g)

get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

entries in S and S_htf for present edges in g should coincide
max(abs(S_htf[A==1] - S[A==1]))

entries in the inverse of S_htf for missing edges in g should be zero
max(solve(S_htf)[A==0])
```

---

**qpImportNrr**

*Import non-rejection rates*

**Description**

Imports non-rejection rates from an external flat file.

**Usage**

`qpImportNrr(filename, nTests)`
Arguments

- **filename**: name of the flat file with the data on the non-rejection rates.
- **nTests**: number of tests performed in the estimation of these non-rejection rates.

Details

This function expects a flat file with three tab-separated columns corresponding to, respectively, 0-based index of one of the variables, 0-based index of the other variable, number of non-rejected tests for the pair of variables of that row in the text file. An example of a few lines of that file would be:

```
6 3 95
6 4 98
6 5 23
7 0 94
7 1 94
```

After reading the file the function builds a matrix of non-rejection rates by dividing the number of non-rejected tests by nTests. Note that if the flat file to be imported would eventually have directly the rates instead of the number of tests, these can be also imported by setting nTests=1.

This function is thought to be used to read files obtained from the standalone parallel version of qpNrr which can be downloaded from [http://functionalgenomics.upf.edu/qp](http://functionalgenomics.upf.edu/qp).

Value

A symmetric matrix of non-rejection rates with the diagonal set to the NA value.

Author(s)

R. Castelo and A. Roverato

References


See Also

- **qpNrr**

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints from an input list of (maximal) cliques.

Usage

```
qpIPF(vv, clqlst, tol = 0.001, verbose = FALSE, R.code.only = FALSE)
```
Arguments
vv  input matrix, in the context of this package, the sample covariance matrix.
ciqlst  list of maximal cliques obtained from an undirected graph by using the function qpGetCliques.
tol  tolerance under which the iterative algorithm stops.
verbose  show progress on calculations.
R.code.only  logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details
The Iterative proportional fitting algorithm (see, Whittaker, 1990, pp. 182-185) adjusts the input matrix to the independence constraints in the undirected graph from where the input list of cliques belongs to, by going through each of the cliques fitting the marginal distribution over the clique for the fixed conditional distribution of the clique. It stops when the adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or equal than a given tolerance value.

Value
The input matrix adjusted to the constraints imposed by the list of cliques, i.e., a maximum likelihood estimate of the sample covariance matrix that includes the independence constraints encoded in the undirected graph formed by the given list of cliques.

Author(s)
R. Castelo and A. Roverato

References

See Also
qpGetCliques qpPAC

Examples
require(graph)
require(mvtnorm)

nVar <- 50  # number of variables
nObs <- 100  # number of observations to simulate
set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## MLE of the sample covariance matrix
S <- cov(X)

## more efficient MLE of the sample covariance matrix using IPF
clqs <- qpGetCliques(g, verbose=FALSE)
S_ipf <- qpIPF(S, clqs)

## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

## entries in S and S_ipf for present edges in g should coincide
max(abs(S_ipf[A==1] - S[A==1]))

## entries in the inverse of S_ipf for missing edges in g should be zero
max(solve(S_ipf)[A==0])

qpK2ParCor

### Description
Obtains partial correlation coefficients from a given concentration matrix.

### Usage
qpK2ParCor(K)

### Arguments
- **K**
  - positive definite matrix, typically a concentration matrix.

### Details
This function applies `cov2cor` to the given concentration matrix and then changes the sign of the off-diagonal entries in order to obtain a partial correlation matrix.

### Value
A partial correlation matrix.

### Author(s)
R. Castelo and A. Roverato

### References


### qpNrr

**See Also**

qpG2Sigma

**Examples**

```r
require(graph)

n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
K <- solve(Sigma)
round(qpK2ParCor(K), digits=2)

as(g, "matrix")
```

### qpNrr

Non-rejection rate estimation

**Description**

Estimates non-rejection rates for every pair of variables.

**Usage**

```r
S4 method for signature 'ExpressionSet'
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,
 alpha=0.05, pairup.i=NULL, pairup.j=NULL,
 verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
 use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
 clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'cross'
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,
 alpha=0.05, pairup.i=NULL, pairup.j=NULL, verbose=TRUE,
 identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"),
 tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
 nAdj2estimateTime=10)

S4 method for signature 'data.frame'
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,
 alpha=0.05, pairup.i=NULL, pairup.j=NULL,
 long.dim.are.variables=TRUE, verbose=TRUE,
 identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"),
 tol=0.01, R.code.only=FALSE, clusterSize=1,
 estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'matrix'
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,
 alpha=0.05, pairup.i=NULL, pairup.j=NULL,
 long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE,
 exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
 R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
 nAdj2estimateTime=10)
```
Arguments

\textit{X} \hspace{1cm} \text{data set from where to estimate the non-rejection rates. It can be an ExpressionSet object, a qtl/cross object, a data.frame object or a matrix object.}

\textit{q} \hspace{1cm} \text{partial-correlation order to be employed.}

\textit{I} \hspace{1cm} \text{indexes or names of the variables in X that are discrete. See details below regarding this argument.}

\textit{restrict.Q} \hspace{1cm} \text{indexes or names of the variables in X that restrict the sample space of conditioning subsets Q.}

\textit{fix.Q} \hspace{1cm} \text{indexes or names of the variables in X that should be fixed within every conditioning conditioning subsets Q.}

\textit{nTests} \hspace{1cm} \text{number of tests to perform for each pair for variables.}

\textit{alpha} \hspace{1cm} \text{significance level of each test.}

\textit{pairup.i} \hspace{1cm} \text{subset of vertices to pair up with subset pairup.j}

\textit{pairup.j} \hspace{1cm} \text{subset of vertices to pair up with subset pairup.i}

\textit{long.dim.are.variables} \hspace{1cm} \text{logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.}

\textit{verbose} \hspace{1cm} \text{show progress on the calculations.}

\textit{identicalQs} \hspace{1cm} \text{use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.}

\textit{exact.test} \hspace{1cm} \text{logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed. See details below regarding this argument.}

\textit{use} \hspace{1cm} \text{a character string defining the way in which calculations are done in the presence of missing values. It can be either "complete.obs" (default) or "em".}

\textit{tol} \hspace{1cm} \text{maximum tolerance controlling the convergence of the EM algorithm employed when the argument use="em".}

\textit{R.code.only} \hspace{1cm} \text{logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.}

\textit{clusterSize} \hspace{1cm} \text{size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages snow and rlecuyer.}

\textit{estimateTime} \hspace{1cm} \text{logical; if TRUE then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (default) calculations are performed normally till they finish.}

\textit{nAdj2estimateTime} \hspace{1cm} \text{number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.}
Details

Note that for pure continuous data the possible values of q should be in the range 1 to \( \min(p, n-3) \), where \( p \) is the number of variables and \( n \) the number of observations. The computational cost increases linearly with \( q \) and quadratically in \( p \). When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on \( p \) and \( q \)) while asymptotically the estimation of the non-rejection rate converges to the same value. Full details on the calculation of the non-rejection rate can be found in Castelo and Roverato (2006).

When \( I \) is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of \( q \) apply, concretely, it cannot be smaller than \( p \) plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and Castelo (2014).

The argument \( I \) specifying what variables are discrete actually applies only when \( X \) is a matrix object since in the other cases data types are specified for each data columns or slot.

In the case that \( X \) is a qtl/cross object, the default NULL values in arguments pairup.i and pairup.j actually imply pairing all markers and phenotypes with numerical phenotypes only (including integer phenotypes). Likewise, the default argument restrict.Q=NULL implies setting restrict.Q to all numeric phenotypes. Setting these arguments to values other than NULL allows the user to use those particular values being set.

Value

- A dspMatrix-class symmetric matrix of estimated non-rejection rates with the diagonal set to NA values. If arguments pairup.i and pairup.j are employed, those cells outside the constrained pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

- R. Castelo, A. Roverato and I. Tur

References


See Also

- qpAvgNrr
- qpEdgeNrr
- qpHist
- qpGraphDensity
- qpClique

Examples

```r
nVar <- 50 # number of variables
maxCon <- 3 # maximum connectivity per variable
nObs <- 30 # number of observations to simulate
```
set.seed(123)

## simulate an undirected Gaussian graphical model
## determined by some random undirected d-regular graph
model <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)

## simulate data from this model
X <- rmvnorm(nObs, model)
dim(X)

## estimate non-rejection rates with q=3
nrr.estimates <- qpNrr(X, q=3, verbose=FALSE)

## create an adjacency matrix of the undirected graph
## determining the undirected Gaussian graphical model
A <- as(model$g, "matrix") == 1

## distribution of non-rejection rates for the present edges
summary(nrr.estimates[upper.tri(nrr.estimates) & A])

## distribution of non-rejection rates for the missing edges
summary(nrr.estimates[upper.tri(nrr.estimates) & !A])

## Not run:
## using R code only this would take much more time
qpNrr(X, q=3, R.code.only=TRUE, estimateTime=TRUE)

## only for moderate and large numbers of variables the
## use of a cluster of processors speeds up the calculations

library(snow)
library(rlecuyer)

nVar <- 500
maxCon <- 3
model <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)
X <- rmvnorm(nObs, model)

system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE))

system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE, clusterSize=4))

## End(Not run)

qpPAC

Estimation of partial correlation coefficients

Description

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected graph G and their corresponding P-values for the hypothesis of zero partial correlations.

Usage

## S4 method for signature 'ExpressionSet'
### qpPAC

qpPAC(X, g, return.K=FALSE, tol=0.001,
       matrix.completion=c("HTF", "IPF"), verbose=TRUE,
       R.code.only=FALSE)

## S4 method for signature 'data.frame'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,
       tol=0.001, matrix.completion=c("HTF", "IPF"),
       verbose=TRUE, R.code.only=FALSE)

## S4 method for signature 'matrix'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,
       tol=0.001, matrix.completion=c("HTF", "IPF"),
       verbose=TRUE, R.code.only=FALSE)

### Arguments

- **X**: data set from where to estimate the partial correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.
- **g**: either a graphNEL object or an adjacency matrix of the given undirected graph.
- **return.K**: logical; if TRUE this function also returns the concentration matrix K; if FALSE it does not return it (default).
- **long.dim.are.variables**: logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
- **tol**: maximum tolerance in the application of the IPF algorithm.
- **matrix.completion**: algorithm to employ in the matrix completion operations employed to construct a positive definite matrix with the zero pattern specified in g.
- **verbose**: show progress on the calculations.
- **R.code.only**: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

### Details

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the existence of MLEs that the sample size $n$ is larger than the clique number $w(G)$ of the graph $G$.

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the `qpIPF` function and the P-values are calculated based on the estimation of the standard errors (see Roverato and Whittaker, 1996).

### Value

A list with two matrices, one with the estimates of the PACs and the other with their P-values.

### Author(s)

R. Castelo and A. Roverato
### References


### See Also

`qpGraph` `qpCliqueNumber` `qpClique` `qpGetCliques` `qpIPF`

### Examples

```r
require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
nrr.estimates <- qpNrr(X, verbose=FALSE)
g <- qpGraph(nrr.estimates, threshold=0.5)
pac.estimates <- qpPAC(X, g=g, verbose=FALSE)

distribution absolute values of the estimated partial correlation coefficients of the present edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A]))

distribution absolute values of the estimated partial correlation coefficients of the missing edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A]))
```

### Description

Calculates the path weight for a path of an undirected graph.

### Usage

```r
S4 method for signature 'matrix'
qpPathWeight(X, path, Q=integer(0), normalized=TRUE, R.code.only=TRUE)
```
Arguments

- **X**: covariance matrix.
- **path**: character vector of consecutive vertex names defining a path in an undirected graph.
- **Q**: indexes or names of the variables in `sigma` that should be used for conditioning.
- **normalized**: logical; TRUE (default) when the calculated path weight should be normalized so that weights are comparable between paths with different endpoints, and false otherwise.
- **R.code.only**: logical; if FALSE then the faster C implementation is used (not yet available); if TRUE then only R code is executed (default).

Details

Calculation of path weights. This implementation is still under development and will give only correct results with either population covariance matrices or sample covariance matrices estimated from data with n » p. Consult (Roverato and Castelo, accepted) for further details.

Value

The calculated path weight for the given path.

Author(s)

R. Castelo and A. Roverato

References


Examples

```r
example in Figure 1 from (Castelo and Roverato, accepted)
undirected graph on 9 vertices
deg <- matrix(c(1, 4,
 2, 4,
 3, 4,
 4, 5,
 5, 6,
 5, 7,
 8, 9),
 ncol=2, byrow=TRUE)

create a corresponding synthetic precision matrix with
partial correlation values set to ~0.4 for all present edges
K <- matrix(0, nrow=9, ncol=9, dimnames=list(1:9, 1:9))
K[deg] <- -0.4
K <- K + t(K)
diag(K) <- 1

calculate the corresponding covariance matrix
S <- solve(K)
```
### calculate networked partial correlations for all present edges

```
npc <- sapply(1:nrow(edg), function(i) qpPathWeight(S, edg[i,]))
```

### note that while all partial correlations are zero for missing edges and are equal to -0.4 for present edges, the corresponding networked partial correlations are also zero for missing edges but may be different between them for present edges, depending on the connections between the vertices

```
cbind(edg, npc)
```

---

**qpPCC**

*Estimation of Pearson correlation coefficients*

**Description**

Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all pairs of variables from an input data set.

**Usage**

```
S4 method for signature 'ExpressionSet'
qpPCC(X)
S4 method for signature 'data.frame'
qpPCC(X, long.dim.are.variables=TRUE)
S4 method for signature 'matrix'
qpPCC(X, long.dim.are.variables=TRUE)
```

**Arguments**

- `X`  
  data set from where to estimate the Pearson correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.

- `long.dim.are.variables`  
  logical; if TRUE it is assumed that when `X` is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.

**Details**

The calculations made by this function are the same as the ones made for a single pair of variables by the function `cor.test` but for all the pairs of variables in the data set.

**Value**

A list with two matrices, one with the estimates of the PCCs and the other with their P-values.

**Author(s)**

R. Castelo and A. Roverato
**qpPlotMap**

Plots a map of associated pairs

### Description

Plots a map of associated pairs defined by adjusted p-values

### Usage

```r
qpPlotMap(p.valueMatrix, markerPos, genePos, chrLen,
 p.value=0.05, adjust.method="holm",
 xlab="Ordered Markers", ylab="Ordered Genes",
 main="", ...)```

Arguments

- **p.valueMatrix**: squared symmetric matrix with raw p-values for all pairs.
- **markerPos**: two-column matrix containing chromosome and position of each genetic marker.
- **genePos**: two-column matrix containing chromosome and position of each gene.
- **chrLen**: named vector with chromosome lengths. Vector names should correspond to chromosome names, which are displayed in the axes of the plot. This vector should be ordered following the same convention for chromosomes in arguments `markerPos` and `genePos`.

See Also

- `qpPAC`

Examples

```r
require(graph)
require(mvtnorm)

nVar <- 50  # number of variables
nObs <- 10  # number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

pcc.estimates <- qpPCC(X)

## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

## Pearson correlation coefficients of the present edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A]))

## Pearson correlation coefficients of the missing edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !A)]))
```
p.value
adjusted p-value cutoff.

adjust.method
method employed to adjust the raw p-values. It is passed in a call to \texttt{p.adjust()} in its \texttt{method} argument.

xlab
label for the x-axis.

ylab
label for the y-axis.

main
main title of the plot, set to the empty string by default.

...
further arguments passed to the \texttt{plot()} function.

Details

This function plots a map of present associations, typically between genetic markers and gene expression profiles (i.e., eQTL associations), according to the chromosomal locations of both the genetic markers and the genes. The input argument \texttt{p.valueMatrix} should contain the raw p-values of these associations. Present associations are selected by a cutoff given in the \texttt{p.value} argument applied to the adjusted p-values.

The input raw p-values can be obtained with the function \texttt{qpAllCItests}.

Value

The selected present associations are invisibly returned.

Author(s)

R. Castelo

See Also

\texttt{qpAllCItests}

Examples

```r
## generate uniformly random p-values for synthetic associations
## between \textit{m} genetic markers and \textit{g} genes into a symmetric matrix
m <- 100
g <- 100
p <- m + g
markerids <- paste0("m", 1:m)
geneids <- paste0("g", 1:g)
rndpvalues <- matrix(0, nrow=p, ncol=p,
                      dimnames=list(c(markerids, geneids), c(markerids, geneids)))
rndpvalues[1:m,(m+1):p] <- runif(m*g)

## put significant cis associations
rndpvalues[cbind(1:m, (m+1):p)] <- rnorm(m, mean=1e-4, sd=1e-2)^2

## put one hotspot locus with significant, but somewhat weaker, trans associations
hotspotmarker <- sample(1:m, size=1)
rndpvalues[cbind(hotspotmarker, (m+1):p)] <- rnorm(g, mean=1e-2, sd=1e-2)^2

## make matrix symmetric
rndpvalues <- rndpvalues + t(rndpvalues)
stopifnot(isSymmetric(rndpvalues))
```
create chromosomal map

def chrlen <- c("chr1"=1000)
def posmarkers <- matrix(rep(1, m), seq(1, chrlen, length.out=m), nrow=m)
def posgenes <- matrix(rep(1, g), seq(1, chrlen, length.out=g), nrow=g)
rownames(posmarkers) <- paste0("m", 1:m)
rownames(posgenes) <- paste0("g", 1:g)

qpPlotMap(rndpvalues, posmarkers, posgenes, chrlen, cex=3)

qpPlotNetwork

Plots a graph

Description

Plots a graph using the Rgraphviz library

Usage

```r
qpPlotNetwork(g, vertexSubset=graph::nodes(g), boundary=FALSE,
             minimumSizeConnComp=2, pairup.i=NULL, pairup.j=NULL,
             highlight=NULL, annotation=NULL, layout=c("twopi", "dot", "neato", "circo", "fdp"))
```

Arguments

- `g`: graph to plot provided as a graphNEL-class object.
- `vertexSubset`: subset of vertices that define the induced subgraph to be plotted.
- `boundary`: flag set to `TRUE` when we wish that the subset specified in `vertexSubset` also includes the vertices connected to them; `FALSE` otherwise.
- `minimumSizeConnComp`: minimum size of the connected components to be plotted.
- `pairup.i`: subset of vertices to pair up with subset `pairup.j`.
- `pairup.j`: subset of vertices to pair up with subset `pairup.i`.
- `highlight`: subset of vertices to highlight by setting the color font to red.
- `annotation`: name of an annotation package to transform gene identifiers into gene symbols when vertices correspond to genes.
- `layout`: layout argument for the Rgraphviz library that plots the network. Possible values are `twopi` (default), `dot`, `neato`, `circo`, `fdp`.

Details

This function acts as a wrapper for the functionality provided by the Rgraphviz package to plot graphs in R. It should help to plot networks obtained with methods from the qpgraph package.

Value

The plotted graph is invisibly returned as a graphNEL-class object.

Author(s)

R. Castelo
See Also

qpGraph qpAnyGraph

Examples

```r
## Not run:
require(Rgraphviz)
	rndassociations <- qpUnifRndAssociation(10)
g <- qpAnyGraph(abs(rndassociations), threshold=0.7, remove="below")
qpPlotNetwork(g) ## this does not work at the moment and should be fixed
## End(Not run)
```

Calculation of precision-recall curves

description

Calculates the precision-recall curve (see Fawcett, 2006) for a given measure of association between all pairs of variables in a matrix.

Usage

```r
qpPrecisionRecall(measurementsMatrix, refGraph, decreasing=TRUE, pairup.i=NULL, pairup.j=NULL, recallSteps=seq(0, 1, by=0.1))
```

Arguments

- **measurementsMatrix**: matrix containing the measure of association between all pairs of variables.
- **refGraph**: a reference graph from which to calculate the precision-recall curve provided either as an adjacency matrix, a two-column matrix of edges, a graphNEL-class object or a graphAM-class object.
- **decreasing**: logical; if TRUE then the measurements are ordered in decreasing order; if FALSE then in increasing order.
- **pairup.i**: subset of vertices to pair up with subset pairup.j.
- **pairup.j**: subset of vertices to pair up with subset pairup.i.
- **recallSteps**: steps of the recall on which to calculate precision.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not be taken into account. That is an alternative way to restricting the variable pairs with the parameters pairup.i and pairup.j.

Value

A matrix where rows correspond to recall steps and columns correspond, respectively, to the actual recall, the precision, the number of true positives at that recall rate and the threshold score that yields that recall rate.
qpPRscoreThreshold

Author(s)
R. Castelo and A. Roverato

References

See Also
qpPRscoreThreshold qpGraph qpAvgNrr qpPCC

Examples

```r
require(mvtnorm)

nVar <- 50  ## number of variables
maxCon <- 5  ## maximum connectivity per variable
nObs <- 30  ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

## estimate Pearson correlation coefficients
pcc.estimates <- qpPCC(X)

## calculate area under the precision-recall curve
## for both sets of estimated values of association
nrr.prerec <- qpPrecisionRecall(nrr.estimates, refGraph=A, decreasing=FALSE,
                                recallSteps=seq(0, 1, 0.1))
f <- approxfun(nrr.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value

pcc.prerec <- qpPrecisionRecall(abs(pcc.estimates$R), refGraph=A,
                                recallSteps=seq(0, 1, 0.1))
f <- approxfun(pcc.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value
```

Description
Calculates the score threshold at a given precision or recall level from a given precision-recall curve.

Usage
```r
qpPRscoreThreshold(preRecFun, level, recall.level=TRUE, max.score=9999999)
```
Arguments

- **preRecFun**: precision-recall function (output from `qpPrecisionRecall`).
- **level**: recall or precision level.
- **recall.level**: logical; if TRUE then it is assumed that the value given in the level parameter corresponds to a desired level of recall; if FALSE then it is assumed a desired level of precision.
- **max.score**: maximum score given by the method that produced the precision-recall function to an association.

Value

The score threshold at which a given level of precision or recall is attained by the given precision-recall function. For levels that do not form part of the given function their score is calculated by linear interpolation and for this reason is important to carefully specify a proper value for the `max.score` parameter.

Author(s)

R. Castelo and A. Roverato

References

See Also

- `qpPrecisionRecall`
- `qpGraph`

Examples

```r
require(mvtnorm)

nVar <- 50  ## number of variables
maxCon <- 5  ## maximum connectivity per variable
nObs <- 30  ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
nrr.prerec <- qpPrecisionRecall(nrr.estimates, A, decreasing=FALSE, recallSteps=seq(0, 1, by=0.1))

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=TRUE, max.score=0)

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=FALSE, max.score=0)
```
Undirected random d-regular graphs

Description
Samples an undirected d-regular graph approximately uniformly at random.

Usage
qpRndGraph(p=6, d=2, labels=1:p, exclude=NULL, verbose=FALSE, return.type=c("adjacency.matrix", "edge.list", "graphBAM", "graphNEL"), R.code.only=FALSE)

Arguments
- **p**: number of vertices.
- **d**: degree of every vertex.
- **labels**: vertex labels.
- **exclude**: vector of vertices inducing edges that should be excluded from the sampled d-regular graph.
- **verbose**: show progress on the calculations.
- **return.type**: class of object to be returned by the function.
- **R.code.only**: logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details
This function implements the algorithm from Steger and Wormald (1999) for sampling undirected d-regular graphs from a probability distribution of all d-regular graphs on p vertices which is approximately uniform. More concretely, for all vertex degree values d that grow as a small power of p, all d-regular graphs on p vertices will have in the limit the same probability as p grows large. Steger and Wormald (1999, pg. 396) believe that for d \(\gg \sqrt{p} \) the resulting probability distribution will no longer be approximately uniform.

This function is provided in order to generate a random undirected graph as input to the function `qpG2Sigma` which samples a random covariance matrix whose inverse (aka, precision matrix) has zeroes on those cells corresponding to the missing edges in the input graph. d-regular graphs are useful for working with synthetic graphical models for two reasons: one is that d-regular graph density is a linear function of d and the other is that the minimum connectivity degree of two disconnected vertices is an upper bound of their outer connectivity (see Castelo and Roverato, 2006, pg. 2646).

Value
The adjacency matrix of the resulting graph.

Author(s)
R. Castelo and A. Roverato
References

See Also

`qpG2Sigma`

Examples

```r
set.seed(123)
A <- qpRndGraph(p=50, d=3)
summary(apply(A, 1, sum))
```

qpRndWishart

Random Wishart distribution

Description

Random generation for the \((n.\text{var} \times n.\text{var})\) Wishart distribution (see Press, 1972) with matrix parameter \(A=\text{diag}(\text{delta})\%\%P\%\%\text{diag}(\text{delta})\) and degrees of freedom \(df\).

Usage

`qpRndWishart(delta=1, P=0, df=NULL, n.var=NULL)`

Arguments

- `delta`: a numeric vector of `n.var` positive values. If a scalar is provided then this is extended to form a vector.
- `P`: a \((n.\text{var} \times n.\text{var})\) positive definite matrix with unit diagonal. If a scalar is provided then this number is used as constant off-diagonal entry for `P`.
- `df`: degrees of freedom.
- `n.var`: dimension of the Wishart matrix. It is required only when both `delata` and `P` are scalar.

Details

The degrees of freedom are \(df > n.\text{var}-1\) and the expected value of the distribution is equal to \(df \times A\). The random generator is based on the algorithm of Odell and Feiveson (1966).

Value

A list of two \(n.\text{var} \times n.\text{var}\) matrices `rW` and `meanW` where `rW` is a random value from the Wishart and `meanW` is the expected value of the distribution.
Author(s)

A. Roverato

References

See Also

qpG2Sigma

Examples

```r
## Construct an adjacency matrix for a graph on 6 vertices
nVar <- 6
A <- matrix(0, nVar, nVar)
A=A + t(A)
A
set.seed(123)
M <- qpRndWishart(delta=sqrt(1/nVar), P=0.5, n.var=nVar)
M
set.seed(123)
d=1:6
M <- qpRndWishart(delta=d, P=0.7, df=20)
M
```

qpTopPairs

Report pairs of variables

Report a top number of pairs of variables according to either some association measure and/or occurring in a given reference graph.

Usage

```r
qpTopPairs(measurementsMatrix=NULL, refGraph=NULL, n=6L, file=NULL, decreasing=FALSE, pairup.i=NULL, pairup.j=NULL, annotation=NULL, fcOutput=NULL, fcOutput.na.rm=FALSE, digits=NULL)
```
Arguments

measurementsMatrix
 matrix containing the measure of association between all pairs of variables.

refGraph
 a reference graph containing the pairs that should be reported and provided either as an adjacency matrix, a graphNEL-class object or a graphAM-class object.

n
 number of pairs to report, 6 by default, use Inf for reporting all of them.

file
 file name to dump the pairs information as tab-separated column text.

decreasing
 logical; if TRUE then the measurements are employed to be ordered in decreasing order; if FALSE then in increasing order.

pairup.i
 subset of vertices to pair up with subset pairup.j.

pairup.j
 subset of vertices to pair up with subset pairup.i.

annotation
 name of an annotation package to transform gene identifiers into gene symbols when variables correspond to genes.

fcOutput
 output of qpFunctionalCoherence.

fcOutput.na.rm
 flag set to TRUE when pairs with NA values from fcOutput should not be reported; FALSE (default) otherwise.

digits
 number of decimal digits reported in the values of measurementsMatrix and functional coherence values. By default digits=NULL, and therefore, no rounding is performed.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not be taken into account. That is an alternative way to restricting the variable pairs with the parameters pairup.i and pairup.j. The same holds for refGraph. One of these two, should be specified.

Value

The ranking of pairs is invisibly returned.

Author(s)

R. Castelo

See Also

qpGraph qpPrecisionRecall qpFunctionalCoherence

Examples

qpTopPairs(matrix(runif(100), nrow=10, dimnames=list(1:10,1:10)))
qpUnifRndAssociation

Description

Builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables that follow from the number of variables given as input argument.

Usage

qpUnifRndAssociation(n.var, var.names=as.character(1:n.var))

Arguments

n.var number of variables.
var.names names of the variables to use as row and column names in the resulting matrix.

Details

This function simply generates uniformly random association values with no independence pattern associated to them. For generating a random covariance matrix that reflects such a pattern use the function qpG2Sigma.

Value

A symmetric matrix of uniformly random association values between -1 and +1.

Author(s)

R. Castelo

See Also

qpG2Sigma

Examples

rndassociation <- qpUnifRndAssociation(100)
summary(rndassociation[upper.tri(rndassociation)])
qpUpdateCliquesRemoving

Update clique list when removing one edge

Description

Updates the set of (maximal) cliques of a given undirected graph when removing one edge.

Usage

```r
qpUpdateCliquesRemoving(g, clqlst, v, w, verbose=TRUE)
```

Arguments

- `g` either a `graphNEL` object or an adjacency matrix of the given undirected graph.
- `clqlst` list of cliques of the graph encoded in `g`. This list should start on element `n+1` (for `n` vertices) while between elements 1 to `n` there should be references to the cliques to which each of the 1 to `n` vertices belong to (i.e., the output of `qpGetCliques` with parameter `clqspervtx=TRUE`).
- `v` vertex of the edge being removed.
- `w` vertex of the edge being removed.
- `verbose` show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979). For this reason, this is an extremely time and memory consuming computation for large dense graphs. If we spend the time to obtain one such list of cliques and we remove one edge of the graph with this function we may be able to update the set of maximal cliques instead of having to generate it again entirely with `qpGetCliques` but it requires that in the first call to `qpGetCliques` we set `clqspervtx=TRUE`. It calls a C implementation of the algorithm from Stix (2004).

Value

The updated list of maximal cliques after removing one edge from the input graph. Note that because the corresponding input clique list had to be generated with the argument `clqspervtx=TRUE` in the call to `qpGetCliques`, the resulting updated list of cliques also includes in its first `p` entries (p=number of variables) the indices of the cliques where that particular vertex belongs to. Notice also that although this strategy might be in general more efficient than generating again the entire list of cliques, when removing one edge from the graph, the clique enumeration problem remains NP-hard (see Garey and Johnson, 1979) and therefore depending on the input graph its computation may become unfeasible.

Author(s)

R. Castelo
SsdMatrix-class

References

See Also

qpCliqueNumber qpGetCliques qpIPF

Examples

the example below takes about 30 seconds to execute and for that reason
it is not executed by default
Not run:
require(graph)
set.seed(123)
nVar <- 1000
g1 <- randomEGraph(V=as.character(1:nVar), p=0.1)
g1
clqs1 <- qpGetCliques(g1, clqspervtx=TRUE, verbose=FALSE)
length(clqs1)
g2 <- removeEdge(from="1", to=edges(g1)[["1"]][1], g1)
g2
system.time(clqs2a <- qpGetCliques(g2, verbose=FALSE))

End(Not run)

SsdMatrix-class

Sum of squares and deviations Matrices

Description

The "SsdMatrix" class is the class of symmetric, dense matrices in packed storage (just as a dspMatrix-class, i.e., only the upper triangle is stored) defined within the qpgraph package to store corrected, or uncorrected, matrices of the sum of squares and deviations (SSD) of pairs of random variables. A corrected SSD matrix corresponds to a sample covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("SsdMatrix", ...) or by using qpCov() which estimates a sample covariance matrix from data returning an object of this class.
UGgmm-class

Slots

- **ssd**: Object of class `dspMatrix-class` storing the SSD matrix.
- **n**: Object of class "numeric" storing the sample size employed to estimate the SSD matrix stored in the slot `ssd`. This is specially relevant when the SSD matrix was estimated from data with missing values by using complete observations only, which is the default mode of operation of `qpCov()`.

Extends

"SsdMatrix" extends class "dspMatrix", directly.

Methods

- `dim` signature(x = "SsdMatrix")
- `dimnames` signature(x = "SsdMatrix")
- `show` signature(object = "SsdMatrix")
- `det` signature(object = "SsdMatrix")
- `determinant` signature(object = "SsdMatrix", logarithm = "missing")
- `determinant` signature(object = "SsdMatrix", logarithm = "logical")

Description

The "UGgmm" class is the class of undirected Gaussian graphical Markov models defined within the `qpgraph` package to store simulate and manipulate this type of graphical Markov models (GMMs).

An undirected Gaussian GMM is a family of multivariate normal distributions sharing a set of conditional independences encoded by means of an undirected graph. Further details can be found in the book of Lauritzen (1996).

Objects from the Class

Objects can be created by calls of the form `UGgmm(g, ...)` corresponding to constructor methods or `rUGgmm(n, g, ...)` corresponding to random simulation methods.

Slots

- **p**: Object of class "integer" storing the dimension of the undirected Gaussian GMM corresponding to the number of random variables.
- **g**: Object of class `graphBAM-class` storing the associated undirected labeled graph.
- **mean**: Object of class "numeric" storing the mean vector.
- **sigma**: Object of class `dspMatrix-class` storing the covariance matrix.
Methods

\texttt{UGgmm(g)} Constructor method where \(g \) can be either an adjacency matrix or a \texttt{graphBAM-class} object.

\texttt{rUGgmm(n, g)} Constructor simulation method that allows one to simulate undirected Gaussian GMMs where \(n \) is the number of GMMs to simulate and \(g \) can be either a \texttt{graphParam} object, an adjacency matrix or a \texttt{graphBAM-class} object.

\texttt{names(x)} Accessor method to obtain the names of the elements in the object \(x \) that can be retrieved with the \$ accessor operator.

\$ Accessor operator to retrieve elements of the object in an analogous way to a list.

\texttt{dim(x)} Dimension of the undirected Gaussian GMM corresponding to the total number of random variables.

\texttt{dimnames(x)} Names of the random variables in the undirected Gaussian GMM.

\texttt{show(object)} Method to display some bits of information about the input undirected Gaussian GMM specified in \(\text{object} \).

\texttt{summary(object)} Method to display a summary of the main features of the input undirected Gaussian GMM specified in \(\text{object} \).

\texttt{plot(x, \ldots)} Method to plot the undirected graph associated to the the input undirected Gaussian GMM specified in \(x \). It uses the plotting capabilities from the \texttt{Rgraphviz} library to which further arguments specified in \ldots are further passed.

Author(s)

R. Castelo

References

See Also

\texttt{HMgmm}
Index

*Topic** classes
- eQTLcross-class, 5
- eQTLnetwork-class, 5
- eQTLnetworkEstimate, 6
- eQTLnetworkEstimationParam-class, 6
- graphParam-class, 6
- HMgmm-class, 7
- qpGraph-class, 36
- SsdMatrix-class, 65
- UGgmm-class, 66

*Topic** datasets
- EcoliOxygen, 4

*Topic** graphs
- qpgraph-package, 2

*Topic** models
- qpAllCItests, 8
- qpAnyGraph, 10
- qpAvgNrr, 12
- qpBoundary, 15
- qpCItest, 17
- qpClique, 19
- qpCliqueNumber, 21
- qpCov, 23
- qpEdgeNrr, 24
- qpFunctionalCoherence, 27
- qpG2Sigma, 29
- qpGenNrr, 31
- qpGetCliques, 34
- qpgraph-package, 2
- qpGraphDensity, 37
- qpHist, 38
- qpHTF, 40
- qpImportNrr, 41
- qpIPF, 42
- qpK2ParCor, 44
- qpNrr, 45
- qpPAC, 48
- qpPathWeight, 50
- qpPCC, 52
- qpPlotMap, 53
- qpPlotNetwork, 55
- qpPrecisionRecall, 56
- qpPRscoreThreshold, 57
- qpRndGraph, 59
- qpRndWishart, 60
- qpTopPairs, 61
- qpUniFRndAssociation, 63
- qpUpdateCliquesRemoving, 64

*Topic** multivariate
- qpAllCItests, 8
- qpAnyGraph, 10
- qpAvgNrr, 12
- qpBoundary, 15
- qpCItest, 17
- qpClique, 19
- qpCliqueNumber, 21
- qpCov, 23
- qpEdgeNrr, 24
- qpFunctionalCoherence, 27
- qpG2Sigma, 29
- qpGenNrr, 31
- qpGetCliques, 34
- qpgraph-package, 2
- qpGraphDensity, 37
- qpHist, 38
- qpHTF, 40
- qpImportNrr, 41
- qpIPF, 42
- qpK2ParCor, 44
- qpNrr, 45
- qpPAC, 48
- qpPathWeight, 50
- qpPCC, 52
- qpPlotMap, 53
- qpPlotNetwork, 55
- qpPrecisionRecall, 56
- qpPRscoreThreshold, 57
- qpRndGraph, 59
- qpRndWishart, 60
- qpTopPairs, 61
- qpUniFRndAssociation, 63
- qpUpdateCliquesRemoving, 64

*Topic** package
- qpgraph-package, 2
- $\text{, HMgmm-method (HMgmm-class)}, 7
geneAnnotation, eQTLnetwork-method
 (eQTLnetwork-class), 5
geneAnnotation, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
geneNames
 (eQTLnetworkEstimationParam-class), 6
geneNames, eQTLcross-method
 (eQTLcross-class), 5
geneNames, eQTLnetwork-method
 (eQTLnetwork-class), 5
geneNames, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
geneticMap
 (eQTLnetworkEstimationParam-class), 6
geneticMap, eQTLnetwork-method
 (eQTLnetwork-class), 5
geneticMap, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
ggData
 (eQTLnetworkEstimationParam-class), 6
ggData, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
graph
 (eQTLnetwork-class), 5
graph, eQTLnetwork-method
 (eQTLnetwork-class), 5
graphParam, 67
graphParam-class, 6
hist, 39
HMgmm, 67
HMgmm, (HMgmm-class), 7
HMgmm, graphBAM-method (HMgmm-class), 7
HMgmm, matrix-method (HMgmm-class), 7
HMgmm, missing-method (HMgmm-class), 7
HMgmm-class, 7
markedGraphParam, 7
markedGraphParam-class
 (graphParam-class), 6
markerNames
 (eQTLnetworkEstimationParam-class), 6
markerNames, eQTLcross-method
 (eQTLcross-class), 5
markerNames, eQTLnetwork-method
 (eQTLnetwork-class), 5
markerNames, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
names, eQTLcross-method
 (eQTLcross-class), 5
names, HMgmm-method (HMgmm-class), 7
names, UGgmm-method (UGgmm-class), 66
physicalMap
 (eQTLnetworkEstimationParam-class), 6
physicalMap, eQTLnetwork-method
 (eQTLnetwork-class), 5
physicalMap, eQTLnetworkEstimationParam-method
 (eQTLnetworkEstimationParam-class), 6
plot, eQTLcross, ANY-method
 (eQTLcross-class), 5
plot, eQTLnetwork, ANY-method
 (eQTLnetwork-class), 5
plot, graphBAM, ANY-method
 (graphParam-class), 6
plot, HMgmm, ANY-method (HMgmm-class), 7
plot, UGgmm, ANY-method (UGgmm-class), 66
qpAllCItests, 8, 54
qpAllCItests, matrix-method
 (qpAllCItests), 8
qpAnyGraph, 3, 10, 56
qpAvgNrr, 3, 11, 12, 26, 28, 33, 38, 39, 47, 57
qpAvgNrr, data.frame-method (qpAvgNrr), 12
qpAvgNrr, ExpressionSet-method
 (qpAvgNrr), 12
qpAvgNrr, matrix-method (qpAvgNrr), 12
qpBoundary, 15, 15, 40, 41
qpCITest, 3, 10, 17
qpCITest, cross-method (qpCITest), 17
qpCITest, data.frame-method (qpCITest), 17
qpCITest, ExpressionSet-method
 (qpCITest), 17
qpCITest, matrix-method (qpCITest), 17
qpCITest, SsdMatrix-method (qpCITest), 17
qpClique, 3, 11, 14, 19, 20, 22, 26, 33, 38, 39, 47, 50
qpCliqueNumber, 3, 20, 21, 23, 25, 26, 65
qpCov, 3, 17, 19, 23, 25, 26, 65, 66
qpEdgeCor (qpEdgeNrr), 24
qpEdgeCor, matrix-method (qpEdgeNrr), 24
qpEdgeCor, UGgmm-method (qpEdgeNrr), 24
qpEdgeNrr, 3, 11, 14, 19, 24, 33, 38, 39, 47
INDEX

qpEdgeNrr, data.frame-method (qpEdgeNrr), 24
qpEdgeNrr, ExpressionSet-method (qpEdgeNrr), 24
qpEdgeNrr, matrix-method (qpEdgeNrr), 24
qpEdgeNrr, SsdMatrix-method (qpEdgeNrr), 24
qpFunctionalCoherence, 3, 27, 62
qpFunctionalCoherence, list-method (qpFunctionalCoherence), 27
qpFunctionalCoherence, lsCMatrix-method (qpFunctionalCoherence), 27
qpFunctionalCoherence, lspMatrix-method (qpFunctionalCoherence), 27
qpFunctionalCoherence, matrix-method (qpFunctionalCoherence), 27
qpG2Sigma, 3, 29, 45, 59–61, 63
qpGenNrr, 3, 31
qpGenNrr, data.frame-method (qpGenNrr), 31
qpGenNrr, ExpressionSet-method (qpGenNrr), 31
qpGenNrr, list-method (qpGenNrr), 31
qpGenNrr, matrix-method (qpGenNrr), 31
qpGetCliques, 3, 30, 34, 43, 50, 64, 65
qpGraph, 3, 11, 28, 50, 56–58, 62
qpGraph (qpGraph-class), 36
qpgraph, 7, 36, 65, 66
qpgraph (qpgraph-package), 2
qpGraph, dspMatrix-method (qpGraph-class), 36
qpGraph, matrix-method (qpGraph-class), 36
qpGraph-class, 36
qpgraph-package, 2
qpGraphDensity, 3, 11, 14, 16, 20, 21, 26, 33, 37, 39, 47
qpHist, 3, 14, 26, 33, 38, 47
qpHTF, 16, 40
qpImportNrr, 41
qpIPF, 3, 30, 35, 40, 41, 42, 49, 50, 65
qpK2ParCor, 3, 44
qpNrr, 3, 11, 14, 19, 26, 33, 36–39, 42, 45
qpNrr, cross-method (qpNrr), 45
qpNrr, data.frame-method (qpNrr), 45
qpNrr, ExpressionSet-method (qpNrr), 45
qpNrr, matrix-method (qpNrr), 45
qpPAC, 3, 41, 43, 48, 53
qpPAC, data.frame-method (qpPAC), 48
qpPAC, ExpressionSet-method (qpPAC), 48
qpPAC, matrix-method (qpPAC), 48
qpPathWeight, 50
qpPathWeight, matrix-method (qpPathWeight), 50
qpPCC, 3, 23, 52, 57
qpPCC, data.frame-method (qpPCC), 52
qpPCC, ExpressionSet-method (qpPCC), 52
qpPCC, matrix-method (qpPCC), 52
qpPlotMap, 53
qpPlotNetwork, 4, 55
qpPrecisionRecall, 3, 11, 56, 58, 62
qpPRsCoreThreshold, 3, 11, 57, 57
qpRndGraph, 3, 30, 59
qpRndWhishart, 3, 30, 60
qpTopPairs, 3, 61
qpUnifRndAssociation, 3, 63
qpUpdateCliquesRemoving, 64

rcmvnorm (HMgmm-class), 7
rcmvnorm, ANY, HMgmm-method (HMgmm-class), 7
reQTLcross (eQTLcross-class), 5
reQTLcross, eQTLcross, missing-method (eQTLcross-class), 5
reQTLcross, eQTLcrossParam, missing-method (eQTLcross-class), 5
reQTLcross, integer, eQTLcross-method (eQTLcross-class), 5
reQTLcross, integer, eQTLcrossParam-method (eQTLcross-class), 5
reQTLcross, missing, eQTLcross-method (eQTLcross-class), 5
reQTLcross, missing, eQTLcrossParam-method (eQTLcross-class), 5
reQTLcross, numeric, eQTLcross-method (eQTLcross-class), 5
reQTLcross, numeric, eQTLcrossParam-method (eQTLcross-class), 5
resetCutoffs (eQTLnetwork-class), 5
resetCutoffs, eQTLnetwork-method (eQTLnetwork-class), 5
rgraphBAM (graphParam-class), 6
rgraphBAM, dRegularGraphParam, missing-method (graphParam-class), 6
rgraphBAM, erGraphParam, missing-method (graphParam-class), 6
rgraphBAM, graphParam, missing-method (graphParam-class), 6
rgraphBAM, integer, dRegularGraphParam-method (graphParam-class), 6
rgraphBAM, integer, erGraphParam-method (graphParam-class), 6
transeQTL (eQTLcross-class), 5
transeQTL, eQTLcross, missing-method
(eQTLcross-class), 5
transeQTL, eQTLcross, numeric-method
(eQTLcross-class), 5

UGgmm, 8
UGgmm (UGgmm-class), 66
UGgmm, graphBAM-method (UGgmm-class), 66
UGgmm, matrix-method (UGgmm-class), 66
UGgmm, missing-method (UGgmm-class), 66
UGgmm-class, 66

varExplained (eQTLnetwork-class), 5
varExplained, eQTLnetworkEstimationParam, eQTLnetwork-method
(eQTLnetwork-class), 5