Package ‘rGREAT’

January 22, 2017

Type Package

Title Client for GREAT Analysis

Version 1.6.0

Date 2016-9-26

Author Zuguang Gu

Maintainer Zuguang Gu <z.gu@dkfz.de>

Depends R (>= 3.1.2), GenomicRanges, IRanges, methods

Imports rjson, GetoptLong (>= 0.0.9), RCurl, utils

Suggests testthat (>= 0.3), knitr, circlize

VignetteBuilder knitr

bioCViews GeneSetEnrichment, GO, Pathways, Software, Sequencing, WholeGenome, GenomeAnnotation, Coverage

Description This package makes GREAT (Genomic Regions Enrichment of Annotations Tool) analysis automatic by constructing a HTTP POST request according to user's input and automatically retrieving results from GREAT web server.

URL https://github.com/jokergoo/rGREAT

License GPL (>= 2)

Repository Bioconductor

Date/Publication 2016-9-26 00:00:00

NeedsCompilation no

R topics documented:

availableCategories-GreatJob-method ... 2
availableOntologies-GreatJob-method ... 2
getEnrichmentTables-GreatJob-method .. 3
GreatJob-class ... 4
plotRegionGeneAssociationGraphs-GreatJob-method 5
submitGreatJob ... 6

Index 9
availableCategories-GreatJob-method

Available ontology categories

Description
Available ontology categories

Usage

```r
## S4 method for signature 'GreatJob'
availableCategories(job)
```

Arguments

- `job`: a `GreatJob-class` instance

Details
The values of the supported categories sometime change. You should run the function to get the real-time values. The meaning of categories returned is quite self-explained by the name.

Value
The returned value is a vector of categories.

Author(s)
Zuguang gu <z.gu@dkfz.de>

Examples

```r
job = readRDS(system.file("extdata", "job.rds", package = "rGREAT"))
availableCategories(job)
```

availableOntologies-GreatJob-method

All available ontology names

Description
All available ontology names

Usage

```r
## S4 method for signature 'GreatJob'
availableOntologies(job, category = NULL)
```
Arguments

job a GreatJob-class instance
category one or multiple categories. All available categories can be get by availableCategories

Details

The values of the supported ontologies sometime change. You should run the function to get the real-time values. The meaning of ontology returned is quite self-explained by the name.

Value

The returned values is a vector of ontologies.

Author(s)

Zuguang gu <z.gu@dkfz.de>

Examples

job = readRDS(system.file("extdata", "job.rds", package = "rGREAT"))
availableOntologies(job)
availableOntologies(job, category = "Pathway Data")

getEnrichmentTables-GreatJob-method

Get enrichment tables from GREAT web server

Description

Get enrichment tables from GREAT web server

Usage

S4 method for signature 'GreatJob'
getEnrichmentTables(job, ontology = NULL, category = "GO",
request_interval = 30, max_tries = 100)

Arguments

job a GreatJob-class instance
ontology ontology names. Valid values are in availableOntologies. ontology is prior to category argument.
category Pre-defined ontology categories. One category can contain more than one ontologies. Valid values are in availableCategories
request_interval time interval for two requests. Default is 300 seconds.
max_tries maximum tries
GreatJob-class

Details

The table contains statistics for the each term in each ontology catalogue.

Please note there is no FDR column in original tables. Users should calculate by themselves by functions such as \texttt{p.adjust}

Value

The returned value is a list of data frames in which each one corresponds to result for a single ontology. The structure of the data frames are same as the tables available on GREAT website.

See

\texttt{availableOntologies, availableCategories}

Author(s)

Zuguang gu <z.gu@dkfz.de>

See Also

\texttt{availableOntologies, availableCategories}

Examples

\begin{verbatim}
job = readRDS(system.file("extdata", "job.rds", package = "rGREAT"))
tb = getEnrichmentTables(job)
names(tb)
head(tb[[1]])
job

tb = getEnrichmentTables(job, ontology = "GO Molecular Function")

job

tb = getEnrichmentTables(job, category = "GO")
\end{verbatim}
Workflow

After submitting request to GREAT server, users can perform following steps:

- call `getEnrichmentTables` to get enrichment tables for selected ontologies catalogues.
- call `plotRegionGeneAssociationGraphs` to get associations between regions and genes as well as making plots.

Author(s)

Zuguang gu <z.gu@dkfz.de>

Examples

```r
# please refer to page of `submitGreatJob`
NULL
```

Description

Plot region-gene association figures

Usage

```r
## S4 method for signature 'GreatJob'
plotRegionGeneAssociationGraphs(job, type = 1:3, ontology = NULL,
termID = NULL, request_interval = 30, max_tries = 100)
```

Arguments

- `job` a `GreatJob-class` instance
- `type` type of plots, should be in 1, 2, 3. See details section for explanation
- `ontology` ontology name
- `termID` term id which corresponds to the selected ontology
- `request_interval` time interval for two requests. Default is 300 seconds.
- `max_tries` maximum tries

Details

Generated figures are:

- association between regions and genes
- distribution of distance to TSS
- distribution of absolute distance to TSS

If ontology and termID are set, only regions and genes corresponding to selected ontology term will be used. Valid value for ontology is in `availableOntologies` and valid value for termID is from 'id' column in the table which is returned by `getEnrichmentTables`.
Value

a GRanges object. Columns in metadata are:

- **gene** genes that are associated with corresponding regions
- **distTSS** distance from the regions to TSS of the associated gene

The returned values corresponds to whole input regions or only regions in specified ontology term, depending on user’s setting.
If there is no gene associated with the region, corresponding gene and distTSS columns will be NA.

Author(s)

Zuguang gu <z.gu@dkfz.de>

Examples

```r
job = readRDS(system.file("extdata", "job.rds", package = "rGREAT"))

op = par("mfrow")
par(mfrow = c(1, 3))
res = plotRegionGeneAssociationGraphs(job)
res
par(mfrow = c(1, 1))
plotRegionGeneAssociationGraphs(job, type = 1)
par(mfrow = c(1, 3))
res = plotRegionGeneAssociationGraphs(job, ontology = "GO Molecular Function",
                              termID = "GO:0004984")
res
par(mfrow = op)
```

submitGreatJob

Send requests to GREAT web server

Description

Send requests to GREAT web server

Usage

```r
submitGreatJob(gr, bg = NULL,
    species = "hg19",
    includeCuratedRegDoms = TRUE,
    bgChoice = ifelse(is.null(bg), "wholeGenome", "data"),
    rule = c("basalPlusExt", "twoClosest", "oneClosest"),
    adv_upstream = 5.0,
    adv_downstream = 1.0,
    adv_span = 1000.0,
    adv_twoDistance = 1000.0,
```
Arguments

gr A GRanges object or a data frame which contains at least three columns (chr, start and end). Regions for test.

bg A GRanges object or a data frame. Background regions if needed.

species Species. "hg19", "mm10", "mm9", "danRer7" are supported in GREAT version 3.x.x and "hg19", "hg18", "mm9", "danRer7" are supported in GREAT version 2.x.x.

includeCuratedRegDoms Whether to include curated regulatory domains.

bgChoice How to define background. If it is set as data, bg should be set as well.

rule How to associate genomic regions to genes. See 'details' section.

adv_upstream Unit: kb, only used when rule is basalPlusExt

adv_downstream Unit: kb, only used when rule is basalPlusExt

adv_span Unit: kb, only used when rule is basalPlusExt

adv_twoDistance Unit: kb, only used when rule is twoClosest

adv_oneDistance Unit: kb, only used when rule is oneClosest

request_interval Time interval for two requests. Default is 300 seconds.

max_tries Maximum times trying to connect to GREAT web server.

version version of GREAT. The value should be "3.0.0", "2.0.2". Shorten version numbers can also be used, such as using "3" or "3.0" is same as "3.0.0".

Details

Note it is not the standard GREAT API. This function directly send data to GREAT web server by HTTP POST.

Following text is copied from GREAT web site (http://bejerano-test.stanford.edu/great/public/html/index.php)

Explanation of rule and settings with names started with 'adv_' (advanced settings):

basalPlusExt Mode 'Basal plus extension'. Gene regulatory domain definition: Each gene is assigned a basal regulatory domain of a minimum distance upstream and downstream of the TSS (regardless of other nearby genes, controlled by adv_upstream and adv_downstream argument). The gene regulatory domain is extended in both directions to the nearest gene’s basal domain but no more than the maximum extension in one direction (controlled by adv_span).

twoClosest Mode 'Two nearest genes'. Gene regulatory domain definition: Each gene is assigned a regulatory domain that extends in both directions to the nearest gene’s TSS (controlled by adv_twoDistance) but no more than the maximum extension in one direction.

oneClosest Mode 'Single nearest gene'. Gene regulatory domain definition: Each gene is assigned a regulatory domain that extends in both directions to the midpoint between the gene’s TSS and the nearest gene’s TSS (controlled by adv_oneDistance) but no more than the maximum extension in one direction.
Value

A `GreatJob-class` class object which can be used to get results from GREAT server.

When `bg` is set, some pre-processing is applied before submitting to GREAT server for the reason that GREAT needs `gr` should be exactly subsets of `bg`, which means for any region in `gr`, there must be a region in `bg` which is exactly the same. Taking following example:

for `gr`:

```
chr1 200 300
chr1 250 400
```

for `bg`:

```
chr1 100 250
chr1 300 500
chr1 400 600
```

They will be transformed as: for `gr`:

```
chr1 200 250
chr1 300 400
```

for `bg`:

```
chr1 100 199
chr1 200 250
chr1 300 400
chr1 401 600
```

Author(s)

Zuguang gu <z.gu@dkfz.de>

See Also

`GreatJob-class`

Examples

```
set.seed(123)
bcd = circlize::generateRandomBed(nr = 1000, nc = 0)
job = submitGreatJob(bed)

# more parameters can be set for the job
## Not run:
job = submitGreatJob(bed, species = "mm9")
job = submitGreatJob(bed, bg, species = "mm9", bgChoise = "data")
job = submitGreatJob(bed, adv_upstream = 10, adv_downstream = 2, adv_span = 2000)
job = submitGreatJob(bed, rule = "twoClosest", adv_twoDistance = 2000)
job = submitGreatJob(bed, rule = "oneClosest", adv_oneDistance = 2000)

## End(Not run)
```
Index

availableCategories, 3, 4
availableCategories
 (availableCategories-GreatJob-method), 2
availableCategories,GreatJob-method
 (availableCategories-GreatJob-method), 2
availableCategories-GreatJob-method, 2
availableOntologies, 3–5
availableOntologies
 (availableOntologies-GreatJob-method), 2
availableOntologies,GreatJob-method
 (availableOntologies-GreatJob-method), 2
availableOntologies-GreatJob-method, 2
getEnrichmentTables, 5
getEnrichmentTables
 (getEnrichmentTables-GreatJob-method), 3
getEnrichmentTables,GreatJob-method
 (getEnrichmentTables-GreatJob-method), 3
getEnrichmentTables-GreatJob-method, 3
GRanges, 6, 7
GreatJob-class, 4
p.adjust, 4
plotRegionGeneAssociationGraphs, 5
plotRegionGeneAssociationGraphs
 (plotRegionGeneAssociationGraphs-GreatJob-method), 5
plotRegionGeneAssociationGraphs,GreatJob-method
 (plotRegionGeneAssociationGraphs-GreatJob-method), 5
plotRegionGeneAssociationGraphs-GreatJob-method, 5
submitGreatJob, 4, 6