Package ‘rTRM’

April 26, 2017

Type Package

Title Identification of transcriptional regulatory modules from PPI networks

Version 1.14.0

Date 2015-12-25

Author Diego Diez

Depends R (>= 2.10), igraph (>= 1.0)

Imports AnnotationDbi, DBI, RSQLite

Suggests RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt, knitr, Biostrings, BSgenome.Mmusculus.UCSC.mm8.masked, org.Hs.eg.db, org.Mm.eg.db, ggplot2

Maintainer Diego Diez <diego10ruiz@gmail.com>

Description rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks.

License GPL-3

LazyLoad yes

ByteCompile yes

VignetteBuilder knitr

biocViews Transcription, Network, GeneRegulation, GraphAndNetwork

URL https://github.com/ddiez/rTRM

BugReports https://github.com/ddiez/rTRM/issues

NeedsCompilation no

R topics documented:

rTRM-package .. 2
annotateFreq ... 3
annotateModule ... 3
annotateTRM .. 4
biogrid_hs .. 4
biogrid_mm ... 5
findTRM .. 5
getAnnotations ... 6
rTRM-package

Identification transcription regulatory modules (TRMs)

Description

This package identifies transcriptional regulatory modules (TRMs) from PPI networks.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>rTRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2013-02-01</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Author(s)

Diego Diez

Maintainer: Diego Diez <diego10ruiz@gmail.com>
annotateFreq

Examples
getAnnotations()

annotateFreq Annotate a graph with frequency of nodes/edges in other graphs.

Description
Returns an annotated graph with node size and edge width proportional at the number of occurrences of nodes/edges in a supplied list of graphs.

Usage
annotateFreq(g, graph_list)

Arguments
 g target graph to annotate.
 graph_list list of graph to extract information from.

Details
Commonly graph_list refers to a list of predicted TRMs (with findTRM) and g is the combined TRM. This function annotates the nodes/edges in g to known their frequency in the original list of graphs.

Author(s)
 Diego Diez

annotateModule Annotate a network module with information

Description
Uses information about expression, enrichment and parent PPI network to annotate a subgraph.

Usage
annotateModule(g, enrich, trm, targets, ppi, exprs, tfs)

Arguments
 g graph to annotate in igraph format.
 enrich list of enriched transcription factors (or motifs).
 trm TRM to compare with (to identify bridges).
 targets list of target transcription factors (typically those with ChIP-seq data).
 ppi parent PPI network (to check membership of nodes).
 exprs list of entrezgene ids representing expressed genes.
 tfs
annotateTRM

Annotate a network object with information about clusters.

Description

This function takes a network object and includes cluster information as piecolor attribute, suitable to be plotted with plotTRM()

Usage

annotateTRM(g, target)

Arguments

- `g`: a network object.
- `target`: target node (from findTRM())

Author(s)

Diego Diez

biogrid_hs

Network dataset of class 'igraph'

Description

Human protein-protein interaction (PPI) dataset from the BioGRID database release.

Usage

data(biogrid_hs)

Format

An igraph object.

Author(s)

Diego Diez
Description

Mouse protein-protein interaction (PPI) dataset from the BioGRID database.

Usage

```r
data(biogrid_mm)
```

Format

An igraph object.

Author(s)

Diego Diez

findTRM

Indicates a TRM associated with a target node and one or more query nodes.

Description

This is the main function used to identify TRMs. It takes a graph object and use it to search in the neighborhood of a target node for query nodes that are separated a maximum distance (controlled by max.bridge parameter).

Usage

```r
findTRM(g, target, query, method = "nsa", max.bridge = 1, extended = FALSE, strict = FALSE, type = "igraph")
```

Arguments

- `g`: the network used to identify TRMs (tipically a PPI network).
- `target`: character variable with the name of a target node.
- `query`: character vector with the list of query nodes.
- `method`: method to use.
- `max.bridge`: maximum number of nodes allowed between the target and query nodes.
- `extended`: whether to allow distance restrictions to include both target and query nodes.
- `strict`: whether to return a single component (using decompose.graph()).
- `type`: type of graph object to return, either an "igraph" (the default) or a "graphNEL".

Details

Currently only "first" and "nsa" methods are available. First is used for tests and returns the first neighborhood of the target node. Method "nsa" implements the TRM finding algorithm.
getAnnotations

Value
A network in igraph format or NULL.

Author(s)
Diego Diez

Examples

```r
# load example network.
load(system.file(package = "rTRM", "extra/example.rda"))

# define target and query nodes.
target = "N6"
query = c("N7", "N12", "N28")

# find TRM:
s = findTRM(g, target = target, query = query, method = "nsa", max.bridge = 1)
```

getAnnotations

Obtain the 'pwm' table fromt the database, containing PWM's annotations.

Description
Obtain the 'pwm' table fromt the database, containing PWM's annotations.

Usage

```r
getAnnotations(filter, dbname = NULL)
```

Arguments

- **filter**: one or more PWM ids.
- **dbname**: the location of the database (to load custom databases).

Author(s)
Diego Diez

Examples

```r
ann = getAnnotations()
```
getBiogridData

Downloads network data from BioGRID in TAB2 format.

Description
This function is used to generate igraph network objects from BioGRID data. It downloads the
database into a data.frame object that can be used later with processBiogrid().

Usage
getBiogridData(release)

Arguments
release release of BioGRID to download.

Details
The release to download must be specified as currently there is no way to download automatically
the latests release.

Value
An data.frame object.

Author(s)
Diego Diez

getConcentricList
Returns a list with nodes membership to be used in a graph with a
concentric layout

Description
Specify target and enriched motifs and returns a list with circle membership. This information is
used by layout.concentric to position the nodes in plots.

Usage
getConcentricList(g, t, e, max.size = 60, order.by = "label")

Arguments
g graph to layout (extract the nodes).
t list of target nodes (will go in the center).
e list of enriched nodes (will go in the periphery).
max.size maximum number of nodes per layer.
order.by ordering attribute for list before split.
Author(s)

Diego Diez

getLargestComp

Gets the largest connected component

Description

Returns the largest connected component from a graph.

Usage

getLargestComp(g)

Arguments

- **g**: an igraph object.

Author(s)

Diego Diez

getMaps

Obtain the mapping between PWM and Entrez Gene identifiers.

Description

Obtain the mapping between PWM and Entrez Gene identifiers.

Usage

getMaps(filter, dbname = NULL)

Arguments

- **filter**: vector of PWMs to filter results.
- **dbname**

Author(s)

Diego Diez

Examples

getMaps()
getMatrices

Obtain a list of PWMs.

Description

Returns a list of PWMs, by default all the PWMs in the database. Alternatively, filtered by the ids provided by filter.

Usage

```r
getMatrices(filter, dbname = NULL)
```

Arguments

- `filter`: list of PWMs to filter results.
- `dbname`:

Author(s)

Diego Diez

Examples

```r
pwms = getMatrices()
```

getMotifsFromEntrezgene

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Description

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Usage

```r
getMotifsFromEntrezgene(e, organism)
```

Arguments

- `e`: vector of entrezgene identifiers to retrieve exiting PWMs.
- `organism`: target organism.

Author(s)

Diego Diez
getMotifsFromSymbol Retrieve PWMs associated with genes provided as symbol.

Description
Retrieve PWMs associated with genes provided as symbol.

Usage
getMotifsFromSymbol(s, organism)

Arguments
s vector of gene symbols.
organism target organism.

Author(s)
Diego Diez

gOrthologFromMatrix Obtain gene identifiers for a target organism associated with a list of PWMs.

Description
Obtain gene identifiers for a target organism associated with a list of PWMs.

Usage
gOrthologFromMatrix(filter, organism = "human", dbname = NULL)

Arguments
filter vector of matrices to filter results.
organism target organism.
dbname database- usually not need to specify.

Author(s)
Diego Diez
getOrthologs

Obtain the mapping to Entrez Gene identifiers in the given organism.

Description

Obtain the mapping to Entrez Gene identifiers in the given organism.

Usage

```r
getOrthologs(filter, organism, dbname = NULL)
```

Arguments

- `filter`: entrezgene identifiers for the original mapping (PWM to gene). These can belong to diverse species and correspond to the "entrezgene" column obtained with `getMaps()` function.
- `organism`: target organisms, currently supported "human" and "mouse"
- `dbname`:

Details

If organism is not specified the entire table of orthologs (with all supported species) is returned.

Value

A data.frame object with ortholog information.

Author(s)

Diego Diez

Examples

```r
getOrthologs(organism = "human")
```

getOrthologsFromBiomart

Returns ortholog genes for a target organism

Description

Returns ortholog genes for a target organism

Usage

```r
getOrthologsFromBiomart(eg, target_org, mart)
```
getSimilarityMatrix

Description

This function computes pair-wise similarity based on common nodes (default) or edges between the graphs passed as a list.

Usage

```r
getSimilarityMatrix(g_list, type = "edges")
```

Arguments

- `g_list` : list of graph objects.
- `type` : type of similarity, either node or edge (default).

getSequencesFromGenome

Description

Retrieves a set of sequences from a BSgenome object and optionally appends a label to each sequence id.

Usage

```r
getSequencesFromGenome(BED, genome, append.id)
```

Arguments

- `BED` : file with peak locations in BED format.
- `genome` : a BSgenome object (e.g. Mmusculus).
- `append.id` : optional label to append to each sequence id.

Author(s)

Diego Diez
getTFclass

Author(s)
Diego Diez

getTFclass

Return the ontology in the TFclass database associated with an entrezgene identifier

Description
Return the ontology in the TFclass database associated with an entrezgene identifier.

Usage
getTFclass(dbname = NULL)

Arguments
dbname SQLite file to use as database.

Author(s)
Diego Diez

gtfclassFromEntrezgene

Applies getTFclass sequentially to a vector of entrezgene identifiers.

Description
Applies getTFclass sequentially to a vector of entrezgene identifiers.

Usage
gtfclassFromEntrezgene(x, subset = "Class", tfclass, dbname = NULL)

Arguments
x vector of entrezgene identifiers.
subset level in the ontology (subset in TFclass terminology. By default "Class")
tfclass data.frame with tfclass data to pass to the recursive function.
dbname SQLite file to use as database.

Author(s)
Diego Diez
getTFterms

Get terms associated with a specified TFclass subset.

Description
Returns a vector of names (not ids) with the members of a particular subset in the TFclass database. By default it returns the Class subset.

Usage
getTFterms(subset = "Class", dbname = NULL)

Arguments
- subset: a subset in TFclass (default Class).
- dbname: SQLite file to use as database.

Author(s)
Diego Diez

initBiomart

Initializes mart objects to identify ortholog genes

Description
Initializes mart objects to identify ortholog genes

Usage
initBiomart(filter, biomart = "ensembl", host)

Arguments
- filter: list of supported organisms
- biomart
- host

Author(s)
Diego Diez
layout.arc

Layouts a graph using arcs.

Description

Generates a layout for graphs that places in the center the target transcription factors, in the sides the enriched transcription factors and in between of them the bridge proteins.

Usage

```r
collaborations.layout.arc(g, target, query)
```

Arguments

- `g`: the graph object to layout.
- `target`: list of target nodes (typically target transcription factors.)
- `query`: list of query nodes (typically enriched transcription factors.)

Value

A matrix with the x and y locations of each node in the target graph.

Author(s)

Diego Diez

layout.concentric

Generates a concentric layout for graphs

Description

Generates a matrix with x,y coordinates for each node in a target graph, which layouts the nodes using concentric circles.

Usage

```r
collaborations.layout.concentric(g, concentric = NULL, radius = NULL, order.by)
```

Arguments

- `g`: graph (igraph) to layout.
- `concentric`: list with the components of each layer.
- `radius`: radious of each layer.
- `order.by`: graph attributes to order nodes by.

Author(s)

Diego Diez
plotDegree
Plot degree distribution for network nodes

Description

Plots the degree distribution and fits a power law, returning in the legend the values of the fitted parameters.

Usage

```r
plotDegree(g)
```

Arguments

- `g`: igraph object

Author(s)

Diego Diez

plotGraph
Plot an graph in igraph format.

Description

This function plots graphs of the class igraph.

Usage

```r
plotGraph(g, layout = layout.fruchterman.reingold, mar = .5, vertex.pch = 21, vertex.cex, vertex.col, vertex.bg, ... = TRUE, label.col, label.cex, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)
```

Arguments

- `g`: a network object.
- `layout`: graph layout, either a function or the output of a layout function.
- `mar`: plot margin.
- `vertex.pch`: node size.
- `vertex.cex`: node size.
- `vertex.col`: node line color.
- `vertex.bg`: node background color.
- `vertex.lwd`: node line width.
- `edge.col`: edge color.
- `edge.lwd`: edge line width.
- `edge.lty`: edge line type.
- `label`: logical; whether to plot labels.
- `label.col`: label color.
plotTRM

label.cex
label expansion.

label.pos
label position.

label.offset
label offset.

adjust.label.col
whether to automatically adjust label color depending on the luminance of the node’s color/s.

normalize.layout
whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.

Author(s)

Diego Diez

plotTRM
Plot an annotated TRM.

Description

This function plots the output findTRM() after it has been annotated with cluster information with annotateTRM() function. Cluster membership is plotted using a pie plot.

Usage

plotTRM(g, layout = layout.fruchterman.reingold, mar = .5, vertex.col, vertex.cex, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.cex, label.col, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

- **g**
a network object with cluster information (attribute piecolor).
- **layout**
graph layout, either a function or the output of a layout function.
- **mar**
plot margin.
- **vertex.col**
node color.
- **vertex.cex**
node size.
- **vertex.lwd**
node border line width.
- **edge.col**
edge color.
- **edge.lwd**
edge line width.
- **edge.lty**
edge line type.
- **label**
logical; whether to plot labels.
- **label.cex**
label expansion.
- **label.col**
label color.
- **label.pos**
label position.
- **label.offset**
label offset.
- **adjust.label.col**
whether to automatically adjust label color depending on the luminance of the node’s color.
- **normalize.layout**
whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.
processBiogrid

Author(s)

Diego Diez

plotTRMlegend

Plot the legend of a TRM with information about the cluster families.

Description

This function just plots a legend with the cluster membership of the provided list of genes. The legend includes the most prominent families of each cluster and there is some name polishing as well.

Usage

plotTRMlegend(x, title = NULL, cex = 1)

Arguments

x list of family names or igraph object.
title title for the legend.
cex numeric value controlling the size of the legend's text.

Author(s)

Diego Diez

processBiogrid

Process a data.frame with BioGRID data into a network for a target organism.

Description

Process a data.frame with BioGRID data into a network for a target organism.

Usage

processBiogrid(dblist, org = "human", simplify = TRUE, type = "physical", mimic.old = FALSE)

Arguments

dblist data.frame containing the BioGRID data.
org target organism (default: "human")
simplify whether to eliminate redundant edges (default TRUE)
type type of interaction (physical or genetic) to include (default: "physical")
mimic.old mimic old behavior of processBiogrid() when interactions for multiple species could be retrieved. Used only for testing.
removeVertices

Value

An igraph object.

Author(s)

Diego Diez

Description

Remove nodes from a graph and returns the largest component.

Usage

removeVertices(g, filter, keep.hanging = FALSE)

Arguments

g graph to remove nodes.
filter
keep.hanging (logical) whether to return the largest component or not.

Author(s)

Diego Diez

writeTRMreport

Export a table with TRM nodes and associated information.

Description

This function generates a data.frame with the nodes in the provided graph and associated annotations.

Usage

writeTRMreport(graph, file, organism, target, query, sort.by = "symbol")

Arguments

graph a graph object.
file file name.
organism organisms for the annotations.
target target transcription factor.
query query transcription factors.
sort.by order the columns of the data.frame by (default: "symbol").
Author(s)

Diego Diez.
Index

*Topic datasets
 biogrid_hs, 4
 biogrid_mm, 5
*Topic package
 rTRM-package, 2

annotateFreq, 3
annotateModule, 3
annotateTRM, 4
biogrid_hs, 4
biogrid_mm, 5
findTRM, 5
getAnnotions, 6
getBiogridData, 7
getConcentricList, 7
getLargestComp, 8
getMaps, 8
getMatrices, 9
getMotifsFromEntrezgene, 9
getMotifsFromSymbol, 10
getOrthologFromMatrix, 10
getOrthologs, 11
getOrthologsFromBiomart, 11
getSequencesFromGenome, 12
getSimilarityMatrix, 12
getTFclass, 13
getTFclassFromEntrezgene, 13
getTFterms, 14
initBiomart, 14
layout.arc, 15
layout.concentric, 15
plotDegree, 16
plotGraph, 16
plotTRM, 17
plotTRMlegend, 18
processBiogrid, 18
removeVertices, 19
rTRM (rTRM-package), 2
writeTRMreport, 19