Package ‘rTRM’

March 23, 2017

Type Package
Title Identification of transcriptional regulatory modules from PPI networks
Version 1.12.0
Date 2015-12-25
Author Diego Diez
Depends R (>= 2.10), igraph (>= 1.0)
Imports AnnotationDbi, DBI, RSQLite
Suggests RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt,
 knitr, Biostrings, BSgenome.Mmusculus.UCSC.mm8.masked,
 org.Hs.eg.db, org.Mm.eg.db, ggplot2
Maintainer Diego Diez <diego10ruiz@gmail.com>
Description rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks.
License GPL-3
LazyLoad yes
ByteCompile yes
VignetteBuilder knitr
biocViews Transcription, Network, GeneRegulation, GraphAndNetwork
URL https://github.com/ddiez/rTRM
BugReports https://github.com/ddiez/rTRM/issues
NeedsCompilation no

R topics documented:

 rTRM-package .. 2
 annotateFreq ... 3
 annotateModule .. 3
 annotateTRM ... 4
 biogrid_hs .. 4
 biogrid_mm .. 5
 findTRM ... 5
 getAnnotations ... 6
Identification transcription regulatory modules (TRMs)

This package identifies transcriptional regulatory modules (TRMs) from PPI networks.

Details

Package: rTRM
Type: Package
Version: 1.0
Date: 2013-02-01
License: GPL-3

Author(s)

Diego Diez

Maintainer: Diego Diez <diego10ruiz@gmail.com>
annotateFreq

Examples
getAnnotations()

annotateFreq Annotate a graph with frequency of nodes/edges in other graphs.

Description
Returns an annotated graph with node size and edge width proportional at the number of occurrences of nodes/edges in a supplied list of graphs.

Usage
annotateFreq(g, graph_list)

Arguments
 g target graph to annotate.
 graph_list list of graph to extract information from.

Details
Commonly graph_list refers to a list of predicted TRMs (with findTRM) and g is the combined TRM. This function annotates the nodes/edges in g to known their frequency in the original list of graphs.

Author(s)
Diego Diez

annotateModule Annotate a network module with information

Description
Uses information about expression, enrichment and parent PPI network to annotate a subgraph.

Usage
annotateModule(g, enrich, trm, targets, ppi, exprs, tfs)

Arguments
 g graph to annotate in igraph format.
 enrich list of enriched transcription factors (or motifs).
 trm TRM to compare with (to identify bridges).
 targets list of target transcription factors (typically those with ChIP-seq data).
 ppi parent PPI network (to check membership of nodes).
 exprs list of entrezgene ids representing expressed genes.
 tfs
Author(s)

Diego Diez

annotateTRM

Annotate a network object with information about clusters.

Description

This function takes a network object and includes cluster information as piecolor attribute, suitable to be plotted with plotTRM().

Usage

```
annotateTRM(g, target)
```

Arguments

- `g`: a network object.
- `target`: target node (from findTRM())

Author(s)

Diego Diez

biogrid_hs

Network dataset of class `igraph`

Description

Human protein-protein interaction (PPI) dataset from the BioGRID database release.

Usage

```
data(biogrid_hs)
```

Format

An igraph object.

Author(s)

Diego Diez
biogrid_mm

Network dataset of class ‘igraph’

Description

Mouse protein-protein interaction (PPI) dataset from the BioGRID database.

Usage

data(biogrid_mm)

Format

An igraph object.

Author(s)

Diego Diez

findTRM

Identifies a TRM associated with a target node and one or more query nodes.

Description

This the main function used to identify TRMs. It takes a graph object and use it to search in the neighborhood of a target node for query nodes that are separated a maximum distance (controlled by max.bridge parameter).

Usage

findTRM(g, target, query, method = "nsa", max.bridge = 1, extended = FALSE, strict = FALSE, type = "igraph")

Arguments

g the network used to identify TRMs (tipically a PPI network)
target character variable with the name of a target node.
query character vector with the list of query nodes.
method method to use.
max.bridge maximum number of nodes allowed between the target and query nodes.
extended whether to allow distance restrictions to include both target and query nodes.
strict whether to return a single component (using decompose.graph())
type type of graph object to return, either an "igraph" (the default) or a "graphNEL"

Details

Currently only "first" and "nsa" methods are available. First is used for tests and returns the first neighborhood of the target node. Method "nsa" implements the TRM finding algorithm.
Value

A network in igraph format or NULL.

Author(s)

Diego Diez

Examples

load example network.
load(system.file(package = "rTRM", "extra/example.rda"))

define target and query nodes.
target = "N6"
query = c("N7", "N12", "N28")

find TRM:
s = findTRM(g, target = target, query = query, method = "nsa", max.bridge = 1)

getAnnotations

Obtain the 'pwm' table fromt the database, containing PWM's annotations.

Description

Obtain the 'pwm' table fromt the database, containing PWM's annotations.

Usage

getAnnotations(filter, dbname = NULL)

Arguments

filter one or more PWM ids.
dbname the location of the database (to load custom databases).

Author(s)

Diego Diez

Examples

ann = getAnnotations()
getBiogridData
Downloads network data from BioGRID in TAB2 format.

Description
This function is used to generate igraph network objects from BioGRID data. It downloads the database into a data.frame object that can be used later with processBiogrid().

Usage
getBiogridData(release)

Arguments
- `release` release of BioGRID to download.

Details
The release to download must be specified as currently there is no way to download automatically the latest release.

Value
An data.frame object.

Author(s)
Diego Diez

getConcentricList
Returns a list with nodes membership to be used in a graph with a concentric layout

Description
Specify target and enriched motifs and returns a list with circle membership. This information is used by layout.concentric to position the nodes in plots.

Usage
getConcentricList(g, t, e, max.size = 60, order.by = "label")

Arguments
- `g` graph to layout (extract the nodes).
- `t` list of target nodes (will go in the center).
- `e` list of enriched nodes (will go in the periphery).
- `max.size` maximum number of nodes per layer.
- `order.by` ordering attribute for list before split.
getLargestComp Gets the largest connected component

Description

Returns the largest connected component from a graph.

Usage

getLargestComp(g)

Arguments

g an igraph object.

Author(s)

Diego Diez

getMaps Obtain the mapping between PWM and Entrez Gene identifiers.

Description

Obtain the mapping between PWM and Entrez Gene identifiers.

Usage

getMaps(filter, dbname = NULL)

Arguments

filter vector of PWMs to filter results.
dbname

Author(s)

Diego Diez

Examples

getMaps()
getMatrices

Obtain a list of PWMs.

Description

Returns a list of PWMs, by default all the PWMs in the database. Alternatively, filtered by the ids provided by filter.

Usage

```r
getMatrices(filter, dbname = NULL)
```

Arguments

- `filter`: list of PWMs to filter results.
- `dbname`:

Author(s)

Diego Diez

Examples

```r
pwms = getMatrices()
```

getMotifsFromEntrezgene

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Description

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Usage

```r
getMotifsFromEntrezgene(e, organism)
```

Arguments

- `e`: vector of entrezgene identifiers to retrieve exiting PWMs.
- `organism`: target organism.

Author(s)

Diego Diez
getMotifsFromSymbol
Retrieve PWMs associated with genes provided as symbol.

Description
Retrieve PWMs associated with genes provided as symbol.

Usage
getMotifsFromSymbol(s, organism)

Arguments
s vector of gene symbols.
organism target organism.

Author(s)
Diego Diez

getOrthologFromMatrix
Obtain gene identifiers for a target organism associated with a list of PWMs.

Description
Obtain gene identifiers for a target organism associated with a list of PWMs.

Usage
getOrthologFromMatrix(filter, organism = "human", dbname = NULL)

Arguments
filter vector of matrices to filter results.
organism target organism.
dbname database- usually not need to specify.

Author(s)
Diego Diez
getOrthologs

Obtain the mapping to Entrez Gene identifiers in the given organism.

Description

Obtain the mapping to Entrez Gene identifiers in the given organism.

Usage

```r
getOrthologs(filter, organism, dbname = NULL)
```

Arguments

- **filter**: entrezgene identifiers for the original mapping (PWM to gene). These belong to diverse species and correspond to the "entrezgene" column obtained with `getMaps()` function.
- **organism**: target organisms, currently supported "human" and "mouse"
- **dbname**

Details

If organism is not specified the entire table of orthologs (with all supported species) is returned.

Value

A `data.frame` object with ortholog information.

Author(s)

Diego Diez

Examples

```r
getOrthologs(organism = "human")
```

getOrthologsFromBiomart

Returns ortholog genes for a target organism

Description

Returns ortholog genes for a target organism

Usage

```r
getOrthologsFromBiomart(eg, target_org, mart)
```
getSimilarityMatrix

Arguments

eg
 list of entrezgene ids to obtain orthologs.

target_org
 target organism.

mart
 mart object.

Author(s)

Diego Diez

getSequencesFromGenome

Retrieves a set of sequences from a BSgenome object and optionally appends a label to each sequence id.

Description

This is just a wrapper to getSeq() in package Biostrings that facilitates adding a label to each sequence.

Usage

getSequencesFromGenome(BED, genome, append.id)

Arguments

BED
 file with peak locations in BED format.

genome
 a BSgenome object (e.g. Mmusculus)

append.id
 optional label to append to each sequence id.

Author(s)

Diego Diez

getSimilarityMatrix

Compute similarity matrix of list of graphs.

Description

This function computes pair-wise similarity based on common nodes (default) or edges between the graphs passed as a list.

Usage

getSimilarityMatrix(g_list, type = "edges")

Arguments

g_list
 list of graph objects.

type
 type of similarity, either node or edge (default).
getTFclass

Author(s)
Diego Diez

getTFclass

Description
Return the ontology in the TFclass database associated with an entrezgene identifier.

Usage
getTFclass(dbname = NULL)

Arguments
dbname
SQLite file to use as database.

Author(s)
Diego Diez

getTFclassFromEntrezgene

Description
Applies getTFclass sequentially to a vector of entrezgene identifiers.

Usage
getTFclassFromEntrezgene(x, subset = "Class", tfclass, dbname = NULL)

Arguments
x
vector of entrezgene identifiers.
subsetlevel in the ontology (subset in TFclass terminology. By default "Class")
tfclassdata.frame with tfclass data to pass to the recursive function.
dbnameSQLite file to use as database.

Author(s)
Diego Diez
getTFterms

Get terms associated with a specified TFclass subset.

Description

Returns a vector of names (not ids) with the members of a particular subset in the TFclass database. By default it returns the Class subset.

Usage

```r
getTFterms(subset = "Class", dbname = NULL)
```

Arguments

- `subset`: a subset in TFclass (default Class).
- `dbname`: SQLite file to use as database.

Author(s)

Diego Diez

initBiomart

Initializes mart objects to identify ortholog genes

Description

Initializes mart objects to identify ortholog genes.

Usage

```r
initBiomart(filter, biomart = "ensembl", host)
```

Arguments

- `filter`: list of supported organisms
- `biomart`: host

Author(s)

Diego Diez
layout.arc Layouts a graph using arcs.

Description
Generates a layout for graphs that places in the center the target transcription factors, in the sides the enriched transcription factors and in between of them the bridge proteins.

Usage
layout.arc(g, target, query)

Arguments
- **g**: the graph object to layout.
- **target**: list of target nodes (typically target transcription factors.)
- **query**: list of query nodes (typically enriched transcription factors.)

Value
A matrix with the x and y locations of each node in the target graph.

Author(s)
Diego Diez

layout.concentric Generates a concentric layout for graphs

Description
Generates a matrix with x,y coordinates for each node in a target graph, which layouts the nodes using concentric circles.

Usage
layout.concentric(g, concentric = NULL, radius = NULL, order.by)

Arguments
- **g**: graph (igraph) to layout.
- **concentric**: list with the components of each layer.
- **radius**: radious of each layer.
- **order.by**: graph attributes to order nodes by.

Author(s)
Diego Diez
plotDegree

Description

Plots the degree distribution and fits a power law, returning in the legend the values of the fitted parameters.

Usage

plotDegree(g)

Arguments

g igraph object

Author(s)

Diego Diez

plotGraph

Description

This function plots graphs of the class igraph.

Usage

plotGraph(g, layout = layout.fruchterman.reingold, mar = .5, vertex.pch = 21, vertex.cex, vertex.col, vertex.bg, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.col, label.cex, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

g a network object.
layout graph layout, either a function or the output of a layout function.
mar plot margin.
vertex.pch node size.
vertex.cex node size.
vertex.col node line color.
vertex.bg node background color.
vertex.lwd node line width.
edge.col edge color.
edge.lwd edge line width.
edge.lty edge line type.
label logical; whether to plot labels.
label.col label color.
plotTRM

label.cex label expansion.
label.pos label position.
label.offset label offset.
adjust.label.col
whether to automatically adjust label color depending on the luminance of the node’s color/s.
normalize.layout
whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.

Author(s)
Diego Diez

plotTRM

Plot an annotated TRM.

Description
This function plots the output findTRM() after it has been annotated with cluster information with annotateTRM() function. Cluster membership is plotted using a pie plot.

Usage
plotTRM(g, layout = layout.fruchterman.reingold, mar = .5, vertex.col, vertex.cex, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.cex, label.col, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments
g a network object with cluster information (attribute piecolor).
layout graph layout, either a function or the output of a layout function.
mar plot margin.
vertex.col node color.
vertex.cex node size.
vertex.lwd node border line width.
edge.col edge color.
edge.lwd edge line width.
edge.lty edge line type.
label logical; whether to plot labels.
label.cex label expansion.
label.col label color.
label.pos label position.
label.offset label offset.
adjust.label.col
whether to automatically adjust label color depending on the luminance of the node’s color.
normalize.layout
whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.
Author(s)

Diego Diez

plotTRMlegend
Plot the legend of a TRM with information about the cluster families.

Description

This function just plots a legend with the cluster membership of the provided list of genes. The legend includes the most prominent families of each cluster and there is some name polishing as well.

Usage

```r
plotTRMlegend(x, title = NULL, cex = 1)
```

Arguments

- `x`
 list of family names or igraph object.
- `title`
 title for the legend.
- `cex`
 numeric value controlling the size of the legend's text.

Author(s)

Diego Diez

processBiogrid
Process a data.frame with BioGRID data into a network for a target organism

Description

Process a data.frame with BioGRID data into a network for a target organism.

Usage

```r
processBiogrid(dblist, org = "human", simplify = TRUE, type = "physical", mimic.old = FALSE)
```

Arguments

- `dblist`
 data.frame containing the BioGRID data.
- `org`
 target organism (default: "human")
- `simplify`
 whether to eliminate redundant edges (default TRUE)
- `type`
 type of interaction (physical or genetic) to include (default: "physical")
- `mimic.old`
 mimic old behavior of processBiogrid() when interactions for multiple species could be retrieved. Used only for testing.
removeVertices

Value
An igraph object.

Author(s)
Diego Diez

removeVertices
Remove nodes from a graph and returns the largest component

Description
Remove nodes from a graph and returns the largest component.

Usage
```r
removeVertices(g, filter, keep.hanging = FALSE)
```

Arguments
- `g`: graph to remove nodes.
- `filter`:
- `keep.hanging`: (logical) whether to return the largest component or not.

Author(s)
Diego Diez

writeTRMreport
Export a table with TRM nodes and associated information.

Description
This function generates a data.frame with the nodes in the provided graph and associated annotations.

Usage
```r
writeTRMreport(graph, file, organism, target, query, sort.by = "symbol")
```

Arguments
- `graph`: a graph object.
- `file`: file name.
- `organism`: organisms for the annotations.
- `target`: target transcription factor.
- `query`: query transcription factors.
- `sort.by`: order the columns of the data.frame by (default: "symbol").
Author(s)

Diego Diez.
Index

*Topic datasets
 biogrid_hs, 4
 biogrid_mm, 5
*Topic package
 rTRM-package, 2
annotateFreq, 3
annotateModule, 3
annotateTRM, 4
biogrid_hs, 4
biogrid_mm, 5
findTRM, 5
getAnnotations, 6
getiBiogridData, 7
getConcentricList, 7
getLargestComp, 8
getMaps, 8
getMatrices, 9
getMotifsFromEntrezgene, 9
getMotifsFromSymbol, 10
getOrthologFromMatrix, 10
getOrthologs, 11
getOrthologsFromBiomart, 11
getSequencesFromGenome, 12
getSimilarityMatrix, 12
getTFclass, 13
getTFclassFromEntrezgene, 13
getTFterms, 14
initBiomart, 14
layout.arc, 15
layout.concentric, 15
plotDegree, 16
plotGraph, 16
plotTRM, 17
plotTRMlegend, 18
processBiogrid, 18
removeVertices, 19
rTRM (rTRM-package), 2
writeTRMreport, 19