Package ‘rTRM’

November 21, 2016

Type Package

Title Identification of transcriptional regulatory modules from PPI networks

Version 1.12.0

Date 2015-12-25

Author Diego Diez

Depends R (>= 2.10), igraph (>= 1.0)

Imports AnnotationDbi, DBI, RSQLite

Suggests RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt, knitr, Biostrings, BSgenome.Mmusculus.UCSC.mm8.masked, org.Hs.eg.db, org.Mm.eg.db, ggplot2

Maintainer Diego Diez <diego10ruiz@gmail.com>

Description rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks.

License GPL-3

LazyLoad yes

ByteCompile yes

VignetteBuilder knitr

biocViews Transcription, Network, GeneRegulation, GraphAndNetwork

URL https://github.com/ddiez/rTRM

BugReports https://github.com/ddiez/rTRM/issues

NeedsCompilation no

R topics documented:

rTRM-package ... 2
annotateFreq .. 3
annotateModule .. 3
annotateTRM ... 4
biogrid_hs ... 4
biogrid_mm .. 5
findTRM .. 5
getAnnotations .. 6
rTRM-package

Identification transcription regulatory modules (TRMs)

Description

This package identifies transcriptional regulatory modules (TRMs) from PPI networks.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>rTRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-02-01</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Author(s)

Diego Diez

Maintainer: Diego Diez <diego10ruiz@gmail.com>
annotateFreq

Examples

`getAnnotations()`

annotateFreq

Annotate a graph with frequency of nodes/edges in other graphs.

Usage

`annotateFreq(g, graph_list)`

Arguments

- `g`: target graph to annotate.
- `graph_list`: list of graph to extract information from.

Details

Commonly `graph_list` refers to a list of predicted TRMs (with `findTRM`) and `g` is the combined TRM. This function annotates the nodes/edges in `g` to known their frequency in the original list of graphs.

Author(s)

Diego Diez

annotateModule

Annotate a network module with information

Description

Uses information about expression, enrichment and parent PPI network to annotate a subgraph.

Usage

`annotateModule(g, enrich, trm, targets, ppi, exprs, tfs)`

Arguments

- `g`: graph to annotate in igraph format.
- `enrich`: list of enriched transcription factors (or motifs).
- `trm`: TRM to compare with (to identify bridges).
- `targets`: list of target transcription factors (typically those with ChIP-seq data).
- `ppi`: parent PPI network (to check membership of nodes).
- `exprs`: list of entrezgene ids representing expressed genes.
- `tfs`: list of transcription factors (motifs) to use for enrichment.
Author(s)

Diego Diez

annotateTRM

Annotate a network object with information about clusters.

Description

This function takes a network object and includes cluster information as piecolor attribute, suitable to be plotted with plotTRM()

Usage

`annotateTRM(g, target)`

Arguments

- `g`: a network object.
- `target`: target node (from findTRM())

Author(s)

Diego Diez

biogrid_hs

Network dataset of class 'igraph'

Description

Human protein-protein interaction (PPI) dataset from the BioGRID database release.

Usage

`data(biogrid_hs)`

Format

An igraph object.

Author(s)

Diego Diez
biogrid_mm

Network dataset of class 'igraph'

Description

Mouse protein-protein interaction (PPI) dataset from the BioGRID database.

Usage

data(biogrid_mm)

Format

An igraph object.

Author(s)

Diego Diez

findTRM

Indenitifies a TRM associated with a target node and one or more query nodes.

Description

This the main function used to identify TRMs. It takes a graph object and use it to search in the neighborhood of a target node for query nodes that are separated a maximum distance (controlled by max.bridge parameter).

Usage

findTRM(g, target, query, method = "nsa", max.bridge = 1, extended = FALSE, strict = FALSE, type = "igraph")

Arguments

g
character variable with the name of a target node.
target
character vector with the list of query nodes.
query
method
maximum number of nodes allowed between the target and query nodes.
max.bridge
whether to allow distance restrictions to include both target and query nodes.
extended
method to use.
strict
type
whether to return a single component (using decompose.graph())

Details

Currently only "first" and "nsa" methods are available. First is used for tests and returns the first neighborhood of the target node. Method "nsa" implements the TRM finding algorithm.
Description

Obtain the `pwm` table from the database, containing PWM's annotations.

Usage

```r
getAnnotations(filter, dbname = NULL)
```

Arguments

- `filter`: one or more PWM ids.
- `dbname`: the location of the database (to load custom databases).

Author(s)

Diego Diez

Examples

```r
ann = getAnnotations()
```
getBiogridData

Downloads network data from BioGRID in TAB2 format.

Description

This function is used to generate igraph network objects from BioGRID data. It downloads the database into a data.frame object that can be used later with processBiogrid().

Usage

getBiogridData(release)

Arguments

release release of BioGRID to download.

Details

The release to download must be specified as currently there is no way to download automatically the latests release.

Value

An data.frame object.

Author(s)

Diego Diez

gConcentricList

Returns a list with nodes membership to be used in a graph with a concentric layout

Description

Specify target and enriched motifs and returns a list with circle membership. This information is used by layout.concentric to position the nodes in plots.

Usage

gConcentricList(g, t, e, max.size = 60, order.by = "label")

Arguments

g graph to layout (extract the nodes).
t list of target nodes (will go in the center).
e list of enriched nodes (will go in the periphery).
max.size maximum number of nodes per layer.
order.by ordering attribute for list before split.
getLargestComp

Usage

getLargestComp(g)

Arguments

g an igraph object.

Author(s)

Diego Diez

__getMaps__

Obtain the mapping between PWM and Entrez Gene identifiers.

Description

Obtain the mapping between PWM and Entrez Gene identifiers.

Usage

getMaps(filter, dbname = NULL)

Arguments

filter vector of PWMs to filter results.

dbname

Author(s)

Diego Diez

Examples

getMaps()
getMatrices

Obtain a list of PWMs.

Description

Returns a list of PWMs, by default all the PWMs in the database. Alternativelly, filtered by the ids provided by filter.

Usage

```r
getMatrices(filter, dbname = NULL)
```

Arguments

- `filter` list of PWMs to filter results.
- `dbname`

Author(s)

Diego Diez

Examples

```r
pwms = getMatrices()
```

ggetMotifsFromEntrezgene

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Description

Retrieve PWMs associated with genes provided as entrezgene identifiers.

Usage

```r
ggetMotifsFromEntrezgene(e, organism)
```

Arguments

- `e` vector of entrezgene identifiers to retrieve exiting PWMs.
- `organism` target organism.

Author(s)

Diego Diez
getMotifsFromSymbol

Retrieve PWMs associated with genes provided as symbol.

Usage

getMotifsFromSymbol(s, organism)

Arguments

s vector of gene symbols.
organism target organism.

Author(s)

Diego Diez

ggetOrthologFromMatrix

Obtain gene identifiers for a target organism associated with a list of PWMs.

Usage

ggetOrthologFromMatrix(filter, organism = "human", dbname = NULL)

Arguments

filter vector of matrices to filter results.
organism target organism.
dbname database- usually not need to specify.

Author(s)

Diego Diez
getOrthologs

Obtain the mapping to Entrez Gene identifiers in the given organism.

Usage

```r
getOrthologs(filter, organism, dbname = NULL)
```

Arguments

- `filter`: entrezgene identifiers for the original mapping (PWM to gene). These can belong to diverse species and correspond to the "entrezgene" column obtained with `getMaps()` function.
- `organism`: target organisms, currently supported "human" and "mouse"
- `dbname`

Details

If organism is not specified the entire table of orthologs (with all supported species) is returned.

Value

A data.frame object with ortholog information.

Author(s)

Diego Diez

Examples

```r
getOrthologs(organism = "human")
```

getOrthologsFromBiomart

Returns ortholog genes for a target organism

Description

Returns ortholog genes for a target organism

Usage

```r
getOrthologsFromBiomart(eg, target_org, mart)
```
getSimilarityMatrix

Arguments

getSimilarityMatrix(g_list, type = "edges")

Arguments

- **g_list**
 - list of graph objects.
- **type**
 - type of similarity, either node or edge (default).

Description

This function computes pair-wise similarity based on common nodes (default) or edges between the graphs passed as a list.

Usage

getSimilarityMatrix(g_list, type = "edges")

getSequencesFromGenome

Retrieves a set of sequences from a BSgenome object and optionally appends a label to each sequence id.

Description

This is just a wrapper to getSeq() in package Biostrings that facilitates adding a label to each sequence.

Usage

getSequencesFromGenome(BED, genome, append.id)

Arguments

- **BED**
 - file with peak locations in BED format.
- **genome**
 - a BSgenome object (e.g. Mmusculus)
- **append.id**
 - optional label to append to each sequence id.

Author(s)

Diego Diez
getTFclass

Author(s)
Diego Diez

Return the ontology in the TFclass database associated with an entrezgene identifier.

Usage
getTFclass(dbname = NULL)

Arguments
dbname SQLite file to use as database.

Author(s)
Diego Diez

getTFclassFromEntrezgene

Applies getTFclass sequentially to a vector of entrezgene identifiers.

Usage
getTFclassFromEntrezgene(x, subset = "Class", tfclass, dbname = NULL)

Arguments
x vector of entrezgene identifiers.
subset level in the ontology (subset in TFclass terminology. By default "Class")
tfclass data.frame with tfclass data to pass to the recursive function.
dbname SQLite file to use as database.

Author(s)
Diego Diez
getTFterms

Get terms associated with a specified TFclass subset.

Description

Returns a vector of names (not ids) with the members of a particular subset in the TFclass database. By default it returns the Class subset.

Usage

```r
getTFterms(subset = "Class", dbname = NULL)
```

Arguments

- `subset`: a subset in TFclass (default Class).
- `dbname`: SQLite file to use as database.

Author(s)

Diego Diez

initBiomart

Initializes mart objects to identify ortholog genes

Description

Initializes mart objects to identify ortholog genes

Usage

```r
initBiomart(filter, biomart = "ensembl", host)
```

Arguments

- `filter`: list of supported organisms
- `biomart`:
- `host`:

Author(s)

Diego Diez
layout.arc

Layouts a graph using arcs.

Description

Generates a layout for graphs that places in the center the target transcription factors, in the sides
the enriched transcription factors and in between of them the bridge proteins.

Usage

```
layout.arc(g, target, query)
```

Arguments

- `g` the graph object to layout.
- `target` list of target nodes (typically target transcription factors.)
- `query` list of query nodes (typically enriched transcription factors.)

Value

A matrix with the x and y locations of each node in the target graph.

Author(s)

Diego Diez

layout.concentric

Generates a concentric layout for graphs

Description

Generates a matrix with x,y coordinates for each node in a target graph, which layouts the nodes
using concentric circles.

Usage

```
layout.concentric(g, concentric = NULL, radius = NULL, order.by)
```

Arguments

- `g` graph (igraph) to layout.
- `concentric` list with the components of each layer.
- `radius` radius of each layer.
- `order.by` graph attributes to order nodes by.

Author(s)

Diego Diez
plotDegree

Plot degree distribution for network nodes

Description

Plots the degree distribution and fits a power law, returning in the legend the values of the fitted parameters.

Usage

plotDegree(g)

Arguments

- **g**: igraph object

Author(s)

Diego Diez

plotGraph

Plot an graph in igraph format.

Description

This function plots graphs of the class igraph.

Usage

plotGraph(g, layout = layout.fruchterman.reingold, mar = .5, vertex.pch = 21, vertex.cex, vertex.col, vertex.bg, ... = TRUE, label.col, label.cex, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

- **g**: a network object.
- **layout**: graph layout, either a function or the output of a layout function.
- **mar**: plot margin.
- **vertex.pch**: node size.
- **vertex.cex**: node size.
- **vertex.col**: node line color.
- **vertex.bg**: node background color.
- **vertex.lwd**: node line width.
- **edge.col**: edge color.
- **edge.lwd**: edge line width.
- **edge.lty**: edge line type.
- **label**: logical; whether to plot labels.
- **label.col**: label color.
plotTRM

Plot an annotated TRM.

Description

This function plots the output findTRM() after it has been annotated with cluster information with annotateTRM() function. Cluster membership is plotted using a pie plot.

Usage

`plotTRM(g, layout = layout.fruchterman.reingold, mar = .5, vertex.col, vertex.cex, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.cex, label.col, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)`

Arguments

- `g`: a network object with cluster information (attribute piecolor).
- `layout`: graph layout, either a function or the output of a layout function.
- `mar`: plot margin.
- `vertex.col`: node color.
- `vertex.cex`: node size.
- `vertex.lwd`: node border line width.
- `edge.col`: edge color.
- `edge.lwd`: edge line width.
- `edge.lty`: edge line type.
- `label`: logical; whether to plot labels.
- `label.cex`: label expansion.
- `label.col`: label color.
- `label.pos`: label position.
- `label.offset`: label offset.
- `adjust.label.col`: whether to automatically adjust label color depending on the luminance of the node’s color/s.
- `normalize.layout`: whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.
Author(s)

Diego Diez

\section*{plotTRMlegend}

\textit{Plot the legend of a TRM with information about the cluster families.}

Description

This function just plots a legend with the cluster membership of the provided list of genes. The legend includes the most prominent families of each cluster and there is some name polishing as well.

Usage

\begin{verbatim}
plotTRMlegend(x, title = NULL, cex = 1)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} list of family names or igraph object.
 \item \texttt{title} title for the legend.
 \item \texttt{cex} numeric value controlling the size of the legend's text.
\end{itemize}

Author(s)

Diego Diez

\section*{processBiogrid}

\textit{Process a data.frame with BioGRID data into a network for a target organism}

Description

Process a data.frame with BioGRID data into a network for a target organism.

Usage

\begin{verbatim}
processBiogrid(dblist, org = "human", simplify = TRUE, type = "physical", mimic.old = FALSE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{dblist} data.frame containing the BioGRID data.
 \item \texttt{org} target organism (default: "human")
 \item \texttt{simplify} whether to eliminate redundant edges (default TRUE)
 \item \texttt{type} type of interaction (physical or genetic) to include (default: "physical")
 \item \texttt{mimic.old} mimic old behavior of processBiogrid() when interactions for multiple species could be retrieved. Used only for testing.
\end{itemize}
removeVertices

Value
An igraph object.

Author(s)
Diego Diez

removeVertices

Remove nodes from a graph and returns the largest component

Usage

`removeVertices(g, filter, keep.hanging = FALSE)`

Arguments

- `g`: graph to remove nodes.
- `filter`: (logical) whether to return the largest component or not.
- `keep.hanging`: (logical) whether to return the largest component or not.

Author(s)
Diego Diez

writeTRMreport

Export a table with TRM nodes and associated information.

Description

This function generates a data.frame with the nodes in the provided graph and associated annotations.

Usage

`writeTRMreport(graph, file, organism, target, query, sort.by = "symbol")`

Arguments

- `graph`: a graph object.
- `file`: file name.
- `organism`: organisms for the annotations.
- `target`: target transcription factor.
- `query`: query transcription factors.
- `sort.by`: order the columns of the data.frame by (default: "symbol").
Author(s)

Diego Diez.
Index

∗Topic **datasets**
 biogrid_hs, 4
 biogrid_mm, 5

∗Topic **package**
 rTRM-package, 2

annotateFreq, 3
annotateModule, 3
annotateTRM, 4

biogrid hs, 4
biogrid_mm, 5

findTRM, 5

getAnnotations, 6
getBiogridData, 7
getConcentricList, 7
getLargestComp, 8
getMaps, 8
getMatrices, 9
getMotifsFromEntrezgene, 9
getMotifsFromSymbol, 10
getOrthologsFromMatrix, 10
getOrthologs, 11
getOrthologsFromBiomart, 11
getSequencesFromGenome, 12
getSimilarityMatrix, 12
getTFclass, 13
getTFclassFromEntrezgene, 13
getTFterms, 14

initBiomart, 14

layout.arc, 15
layout.concentric, 15

plotDegree, 16
plotGraph, 16
plotTRM, 17
plotTRMlegend, 18
processBiogrid, 18

removeVertices, 19
rTRM (rTRM-package), 2

writeTRMreport, 19