Package ‘savR’

December 22, 2016

Type Package
Title Parse and analyze Illumina SAV files
Version 1.12.0
Date 2015-07-28
Author R. Brent Calder
Maintainer R. Brent Calder <brent.calder@einstein.yu.edu>
Description Parse Illumina Sequence Analysis Viewer (SAV) files, access data, and generate QC plots.
License AGPL-3
URL https://github.com/bcalder/savR
BugReports https://github.com/bcalder/savR/issues
Depends ggplot2
Imports methods, reshape2, scales, gridExtra, XML
Suggests Cairo, testthat
biocViews Sequencing
NeedsCompilation no

R topics documented:

savR-package .. 2
buildReports ... 3
clusterQualityGtN .. 3
clusters .. 4
correctedIntensities 5
cycles .. 6
directions .. 6
errorMetrics .. 7
extractionMetrics ... 7
flowcellLayout .. 8
illuminaFlowCellLayout-class 9
illuminaRead-class 9
location .. 9
pfBoxplot ... 10
pfClusters ... 10
Description

Parse Illumina Sequence Analysis Viewer files

Details

- **Package**: savR
- **Type**: Package
- **Version**: 1.7.5
- **Date**: 2015-07-28
- **License**: AGPL-3
- **LazyLoad**: yes

Parse Illumina Sequence Analysis Viewer (SAV) files, access data, and generate QC plots.

Author(s)

R. Brent Calder <brent.calder@einstein.yu.edu>

References

For information about Illumina SAV, please refer to
sequencinganalysisviewer_userguide_15020619c.pdf
For other implementations (and inspiration) please see
http://search.cpan.org/dist/Bio-IlluminaSAV/Bio/IlluminaSAV.pm
https://bitbucket.org/invitae/illuminate
buildReports

Generate Illumina reports folder

Description

Generate a folder of images that approximates the format of the folder that was superceded by InterOp. Requires the Cairo package.

Usage

```r
buildReports(project, destination)
```

S4 method for signature 'savProject,character'

```r
buildReports(project,
  destination = "/savR-reports")
```

S4 method for signature 'savProject,missing'

```r
buildReports(project)
```

Arguments

- `project` SAV project
- `destination` path to save reports folder

Examples

```r
## Not run:
example(savR)
buildReports(fc, "reports")
## End(Not run)
```

clusterQualityGtN

Get the proportion of clusters over a specified quality threshold

Description

Return the ratio of clusters with a quality score less than or equal to a specified value (n) for the requested lanes and cycles.

Usage

```r
clusterQualityGtN(project, lane, cycle, n)
```

S4 method for signature 'savProject,integer,integer,integer'

```r
clusterQualityGtN(project, lane,
  cycle, n = 30L)
```
clusters

Arguments

- **project**: SAV project
- **lane**: lane(s) number
- **cycle**: cycle(s) number
- **n**: quality threshold

Examples

```r
## Not run:
example(savR)
clusterQualityGtN(fc, 1L, 25L, 30L)
## End(Not run)
```

clusters

Get number of clusters per lane

Description

Sum the total number of clusters for all tiles in the lane.

Usage

```r
clusters(project, lane)
```

S4 method for signature 'savProject,integer'

```r
clusters(project, lane = 1L)
```

Arguments

- **project**: SAV project
- **lane**: lane(s) number

Examples

```r
## Not run:
example(savR)
clusters(fc, 1L)
## End(Not run)
```
correctedIntensities

Get Corrected Intensity data

Description

Returns a data frame of corrected intensity data.

Usage

```r
correctedIntensities(project)
```

```r
## S4 method for signature 'savProject'
correctedIntensities(project)
```

Arguments

- `project` SAV project

Details

- **lane**: Lane number
- **tile**: Tile ID
- **cycle**: Cycle number
- **avg_intensity**: Average intensity
- **avg_cor_[ACGT]**: Average corrected intensity of channel A, C, G, or T
- **avg_cor_called_[ACGT]**: Average corrected intensity for called clusters in channel A, C, G, or T
- **num_{none|[ACGT]}**: Number of called bases for no-call, A, C, G, or T
- **sig_noise**: Signal to noise ratio

Value

sorted data.frame of CI data.

Examples

```r
example(savR)
colnames(correctedIntensities(fc))
```
cycles

Get the total number of cycles

Description

Accessor to obtain the total number of cycles sequenced in an Illumina sequencing run.

Usage

```r
cycles(project)
```

```r
## S4 method for signature 'savProject'
cycles(project)
```

Arguments

- `project` SAV project

Value

total number of cycles in run, including all sequencing and index reads.

Examples

```r
example(savR)
cycles(fc)
```

directions

Get the number of sequence reads

Description

Returns the number of sequencing reads (excluding index reads).

Usage

```r
directions(project)
```

```r
## S4 method for signature 'savProject'
directions(project)
```

Arguments

- `project` SAV project

Value

number of reads

Examples

```r
example(savR)
directions(fc)
```
errorMetrics

Get Error Metrics

Description

Error metrics for lane, tile, and cycle.

Usage

errorMetrics(project)

S4 method for signature 'savProject'
errorMetrics(project)

Arguments

project SAV project

Details

lane: Lane number
tile: Tile ID
cycle: Cycle number
erorrate: Error rate
nPerfect: number of perfect reads
n[1-4]Error: Number of reads with 1, 2, 3 and 4 errors

Value

sorted data.frame of Error metrics

Examples

example(savR)
colnames(extractionMetrics(fc))

extractionMetrics

Get Extraction Metrics

Description

Extraction (intensity and FWHM) metrics for lane, tile, and cycle.

Usage

extractionMetrics(project)

S4 method for signature 'savProject'
extractionMetrics(project)
flowcellLayout

Arguments

project: SAV project

Details

lane: Lane number
tile: Tile ID
cycle: Cycle number
FWHM_[ACGT]: Full width at half maximum for A, C, G, or T
int_[ACGT]: Intensity of channel A, C, G, or T
datestamp: Time/date stamp

Value

sorted data.frame of Extraction metrics

Examples

e.example(savR)
colnames(extractionMetrics(fc))

flowcellLayout Get flowcell layout

Description

Accessor to obtain information about the characteristics of the flowcell from an Illumina sequencing run.

Usage

flowcellLayout(project)

S4 method for signature 'savProject'
flowcellLayout(project)

Arguments

project: SAV project

Value

illuminaFlowCellLayout-class object

Examples

e.example(savR)
flowcellLayout(fc)
illuminFlowCellLayout-class

Layout of an Illumina flowcell

Description

Class representation of the features of an Illumina flow cell.

Slots

- `lanecount`: Number of lanes on the flowcell
- `surfacecount`: Number of surfaces
- `swathcount`: Number of imaging swaths
- `tilecount`: Number of tiles per swath
- `sectionperlane`: Number of sections per lane (NextSeq)
- `lanepersection`: Number of lanes per section (NextSeq)
- `tilenamingconvention`: Description of deviation from original formatting layout

illuminRead-class

Illumina read

Description

Class representation of the features of an Illumina sequencing read.

Slots

- `number`: the index of this read in sequencing
- `cycles`: number of cycles in this read
- `index`: logical representing whether or not this read is an index read

location

Get Flowcell folder location

Description

Accessor to obtain the path to data for a particular SAV project.

Usage

```r
location(project)
```

```r
## S4 method for signature 'savProject'
location(project)
```
pfClusters

Arguments

project SAV project

Value

normalized path to Illumina run data.

Examples

eexample(savR)
location(fc)

pfBoxplot

PF Boxplot

Description

Generate a boxplot of the numbers of clusters and the number of Illumina pass-filter clusters per tile and lane.

Usage

pfBoxplot(project)

S4 method for signature 'savProject'

pfBoxplot(project)

Arguments

project SAV project

pfClusters

Get number of PF clusters per lane

Description

Sum the total pass filter number of clusters for all tiles in the lane.

Usage

pfClusters(project, lane)

S4 method for signature 'savProject,integer'

pfClusters(project, lane = 1L)

Arguments

project SAV project
lane lane(s) number
plotFWHM

Examples

```r
## Not run:
example(savR)
pfClusters(fc, 1L)

## End(Not run)
```

plotFWHM: Generate FWHM plots

Description

Plots the average full width of clusters at half maximum (FWHM) of each tile for a given cycle and base.

Usage

```r
plotFWHM(project, cycle, base)
```

S4 method for signature 'savProject, integer, character'
```r
plotFWHM(project, cycle = 1L,
          base = c("A", "C", "G", "T"))
```

S4 method for signature 'savProject, missing, missing'
```r
plotFWHM(project)
```

S4 method for signature 'savProject, integer, missing'
```r
plotFWHM(project, cycle)
```

S4 method for signature 'savProject, missing, character'
```r
plotFWHM(project, base)
```

Arguments

- `project`: SAV project
- `cycle`: sequence cycle
- `base`: nucleotide base (ACGT)

plotIntensity: Plot flowcell intensity by base and cycle

Description

Draws a representation of a flowcell, showing the average corrected called intensity values.
Usage

plotIntensity(project, cycle, base)

S4 method for signature 'savProject,integer,character'
plotIntensity(project, cycle = 1L,
 base = c("A", "C", "G", "T"))

S4 method for signature 'savProject,missing,missing'
plotIntensity(project)

S4 method for signature 'savProject,integer,missing'
plotIntensity(project, cycle)

S4 method for signature 'savProject,missing,character'
plotIntensity(project, base)

Arguments

- project: A savProject-class object
- cycle: integer cycle number
- base: character for nucleotide

Description

Generate a plot for a given cycle of the percentage of clusters in each tile that are >= Q30.

Usage

plotQGT30(project, cycle)

S4 method for signature 'savProject,integer'
plotQGT30(project, cycle = 1L)

S4 method for signature 'savProject,missing'
plotQGT30(project)

Arguments

- project: SAV project
- cycle: sequence cycle
qualityHeatmap

Generate a heatmap of qualities

Description

Plots a heatmap of quality vs cycle for a given lane for 1 or more sequence reads. Read qualities include sequence + index.

Usage

```r
qualityHeatmap(project, lane, read, collapse)
```

```r
## S4 method for signature 'savProject,integer,integer,logical'
qualityHeatmap(project, lane, read, collapse = T)
```

```r
## S4 method for signature 'savProject,numeric,numeric,missing'
qualityHeatmap(project, lane, read)
```

Arguments

- `project`
 SAV project

- `lane`
 integer lane specification

- `read`
 integer vector of sequence reads to include (not including index reads)

- `collapse`
 whether or not to collapse index reads into the preceding read (# reads = directions), default TRUE

qualityMetrics

Get Quality Metrics data

Description

Quality metric by lane, tile and cycle.

Usage

```r
qualityMetrics(project)
```

```r
## S4 method for signature 'savProject'
qualityMetrics(project)
```

Arguments

- `project`
 SAV project
Details

- **lane**: Lane number
- **tile**: Tile ID
- **cycle**: Cycle number
- **Q1–Q50**: Number of clusters with quality of indicated column

Value

sorted data.frame of quality data

Examples

```r
example(savR)
colnames(qualityMetrics(fc))
```
run
Get the Run ID

Description
Accessor to obtain the string identifier of an Illumina sequencing run.

Usage
```r
run(project)
```

```r
## S4 method for signature 'savProject'
run(project)
```

Arguments
- `project` SAV project

Value
parsed Illumina run id

Examples
```r
example(savR)
run(fc)
```

savCorrectedIntensityFormat-class
Corrected Intensity formatter

Description
Lane, tile, cycle, average intensity, corrected intensities (ACGT), average corrected called intensities (ACGT), number of no-calls, number of (ACGT) calls, and signal to noise ratio.

Slots
- `name`: vector of column names
- `type`: vector of data types of elements
- `lengths`: vector of byte lengths for each element
- `order`: vector of column names for sorting
- `version`: integer version number
savData-class

Structure for holding parsed InterOp headers and data

Description

Structure for holding parsed InterOp headers and data

Slots

- **header**: list of parsed header values
- **data**: data.frame of parsed values

savErrorFormat-class

Error Metrics formatter

Description

Lane, tile, cycle, errorrate, nPerfect, n1Error, n2Error, n3Error, n4Error.

Slots

- **name**: vector of column names
- **type**: vector of data types of elements
- **lengths**: vector of byte lengths for each element
- **order**: vector of column names for sorting
- **version**: integer version number

savExtractionFormat-class

Extraction Metrics formatter

Description

Lane, tile, cycle, FWHM (ACGT), intensity (ACGT), datestamp, timestamp. Datestamp and timestamp are munged at the moment because R does not have native support for 32-bit unsigned integers and I have not implemented a solution.

Slots

- **name**: vector of column names
- **type**: vector of data types of elements
- **lengths**: vector of byte lengths for each element
- **order**: vector of column names for sorting
- **version**: integer version number
savFormat-class

Base class for formatters

Description

Defines the necessary slots to create parse different binary files using the same generic parser.

Slots

- **name**: vector of column names
- **type**: vector of data types of elements
- **lengths**: vector of byte lengths for each element
- **order**: vector of column names for sorting
- **version**: integer version number
- **default**: logical default format ()

savProject-class

SAV project class

Description

Represents a flowcell, metadata and parsed SAV information

Slots

- **location**: Full path to flowcell directory
- **reads**: List of illuminaRead-class
- **layout**: illuminaFlowCellLayout-class
- **runid**: Run ID
- **number**: Run number
- **flowcell**: Flowcell ID
- **instrument**: Instrument ID
- **date**: Run date
- **cycles**: Total number of cycles
- **directions**: Total number of sequence runs (ends)
- **parsedData**: SAV data
savQualityFormat-class

Quality Metrics formatter

Description

Lane, tile, cycle, Q1-Q50 counts

Slots

- name: vector of column names
- type: vector of data types of elements
- lengths: vector of byte lengths for each element
- order: vector of column names for sorting
- version: integer version number

savQualityFormatV5-class

Quality Metrics formatter version 5

Description

Lane, tile, cycle, Q1-Q50 counts

Slots

- name: vector of column names
- type: vector of data types of elements
- lengths: vector of byte lengths for each element
- order: vector of column names for sorting
- version: integer version number

savR

Build a SAV project

Description

Constructor to build a `savProject-class` object and populate it. A SAV project consists of binary files generated by an Illumina sequencing run and placed in a folder named "InterOp". This folder contains a number of ".bin" files that contain statistics about the run. Creating this object parses all of the files and makes the data available for analysis.
Usage

```
savR(object)
```

S4 method for signature 'character'

```
savR(object)
```

S4 method for signature 'missing'

```
savR()
```

Arguments

- **object**: String Path to Flowcell data

Examples

```
fc <- savR(system.file("extdata", "MiSeq", package="savR"))
fcc
```

savTileFormat-class Tile Metrics formatter

Description

Lane, tile, code, value. Codes are:

Details

- 100 Cluster Density
- 101 PF Cluster Density
- 102 Number of clusters
- 103 Number of PF clusters
- 400 Control lane

Slots

- **name**: vector of column names
- **type**: vector of data types of elements
- **lengths**: vector of byte lengths for each element
- **order**: vector of column names for sorting
- **version**: integer version number (header consists of version (1b), length (1b))
tileMetrics

Get Tile Metrics

Description

Returns the Tile Metrics SAV data.

Usage

```r
tileMetrics(project)
```

Arguments

- `project` SAV project

Details

Metrics for each tile are encoded in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster density:</td>
<td>100</td>
</tr>
<tr>
<td>PF cluster density:</td>
<td>101</td>
</tr>
<tr>
<td>number of clusters:</td>
<td>102</td>
</tr>
<tr>
<td>number of PF clusters:</td>
<td>103</td>
</tr>
<tr>
<td>phasing for read N:</td>
<td>(200 + (N - 1) * 2)</td>
</tr>
<tr>
<td>prephasing for read N:</td>
<td>(201 + (N - 1) * 2)</td>
</tr>
<tr>
<td>percent aligned for read N:</td>
<td>(300 + N - 1)</td>
</tr>
<tr>
<td>control lane:</td>
<td>400</td>
</tr>
</tbody>
</table>

- lane: Lane number
- tile: Tile ID
- code: Code described above
- value: Value for code key

Value

sorted data.frame of tile metrics

References

Codes for Tile Metrics were obtained from the Python Illuminate package:

https://bitbucket.org/invitae/illuminate

Examples

```r
example(savR)
colnames(tileMetrics(fc))
```
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Package</th>
<th>Function</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>package</td>
<td>savR-package</td>
<td>buildReports</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>buildReports, savProject, character-method</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>buildReports, savProject, missing-method</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clusterQualityGtN</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clusterQualityGtN, savProject, integer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clusters</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correctionsIntensities</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cycles</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>directions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>errorMetrics</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extractionMetrics</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>flowcellLayout</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>illuminaFlowcellLayout-class</td>
<td>8, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>illuminaRead-class</td>
<td>9, 14, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>location</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pfBoxplot</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pfClusters</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plotFWHM</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plotQGT30</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qualityHeatmap</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reads</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>run</td>
<td>15</td>
</tr>
</tbody>
</table>

21
savCorrectedIntensityFormat-class. 15
savData-class. 16
savErrorFormat-class. 16
savExtractionFormat-class. 16
savFormat-class. 17
savProject-class. 12, 17, 18
savQualityFormat-class. 18
savQualityFormatV5-class. 18
savR. 18
savR, character-method (savR). 18
savR, missing-method (savR). 18
savR-package. 2
savTileFormat-class. 19

tileMetrics. 20
tileMetrics, savProject-method (tileMetrics). 20