Package ‘sigPathway’
April 26, 2017

Type Package
Title Pathway Analysis
Version 1.44.0
Date 2008-10-19
Author Weil Lai (optimized R and C code), Lu Tian and Peter Park
(algorithm development and initial R code)
Maintainer Weil Lai <wlai@alum.mit.edu>
Depends R (>= 2.10)
Suggests hgu133a.db (>= 1.10.0), XML (>= 1.6-3), AnnotationDbi (>= 1.3.12)
Description Conducts pathway analysis by calculating the NT_k and NE_k
statistics as described in Tian et al. (2005)
License GPL-2
URL http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102,
    http://www.chip.org/~ppark/Supplements/PNAS05.html
biocViews DifferentialExpression, MultipleComparison
NeedsCompilation yes

R topics documented:
calcTNullFast ........................................... 2
calcTStatFast .......................................... 3
calculate.GSEA ......................................... 4
calculate.NGSk ......................................... 5
calculatePathwayStatistics ............................ 7
estimateNumPerm ....................................... 9
getPathwayStatistics .................................. 10
getPathwayStatistics.NGSk ......................... 11
importGeneSets ....................................... 12
MuscleExample ......................................... 13
rankPathways ......................................... 14
rankPathways.NGSK .................................. 15
runSigPathway ......................................... 16
selectGeneSets ....................................... 18
writeSigPathway ..................................... 19

Index 21
**calcTNullFast**

Compute Null T Distribution for Each Gene

**Description**

Computes a null t distribution for each gene by permuting the phenotypes.

**Usage**

```r
calcTNullFast(tab, phenotype, nsim, ngroups = 2, allphenotypes = FALSE)
```

**Arguments**

- `tab`: a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively.
- `phenotype`: a numeric (or character if `ngroups >= 2`) vector indicating the phenotype.
- `nsim`: an integer indicating the number of permutations to use.
- `ngroups`: an integer indicating the number of groups in the expression matrix.
- `allphenotypes`: a boolean indicating whether the function should consider all possible permutations of the phenotype, including the original, non-permuted phenotype.

**Details**

Similar to `calcTStatFast` but calculates t-statistics over permuted phenotypes. If `allphenotypes == FALSE`, then any permutation that has a permuted phenotype equal to the original phenotype will be repermuted. For example, all the possible permutations for `phenotype == c(0,0,1,1)` are `c(0,0,1,1), c(0,1,0,1), c(1,0,1,0), c(1,0,0,1), c(0,1,1,0), and c(1,1,0,0)`. If `allphenotypes == FALSE`, then the results will not include values from the `c(0,0,1,1)` case.

The help file of `calcTStatFast` has more details on the different statistics one can calculate based on the value specified for `ngroups`.

**Value**

A matrix with `nsim` rows and `nrow(tab)` columns.

**Author(s)**

Weil Lai
**Description**

Computes t-statistics and corresponding p-values.

**Usage**

```
calcTStatFast(tab, phenotype, ngroups = 2)
```

**Arguments**

- `tab` a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
- `phenotype` a numeric (or character if `ngroups` >= 2) vector indicating the phenotype
- `ngroups` an integer indicating the number of groups in the expression matrix

**Details**

If there are two groups in the matrix, it is recommended to use 0 and 1 to denote which sample columns belong to which group. If the phenotype is a character vector, then the phenotype ranked first in the alphabet is considered as 0.

If `ngroups` = 2, the t-test done here is equivalent to a unpaired two-sample t-test, assuming unequal variances. Please note that as of version 1.1.6, the sign of the t-statistic is positive when the mean of group 1 is greater than the mean of group 0.

If there is only one group in the matrix (e.g., Alzheimer’s data set as reanalyzed in Tian et al. (2005)), then the phenotype vector should consist of continuous values. In this case, the association between phenotype and expression values is first calculated as Pearson correlation coefficients, transformed to Fisher’s z, and then rescaled so that its variance is 1:

```
z = 0.5*log((1+rho)/(1-rho))*sqrt(n-3),
```

where `n` is the number of phenotypes.

If `ngroups` > 2, the f-statistics (from 1-way ANOVA) are calculated. The user will need to check that the data have similar variances among the groups.

**Value**

- `pval` A vector of unadjusted p-values
- `tstat` A vector of t-statistics (`ngroups` = 2) or rescaled Fisher’s z (`ngroups` = 1)
- `rho` (Also returned when `ngroups` = 1) A vector of Pearson correlation coefficients

**Author(s)**

Weil Lai
## Load inflammatory myopathy data set
data(MuscleExample)
statList <- calcTStatFast(tab, phenotype, ngroups = 2)

## Generate histogram of p-values
hist(statList$pval, xlab = "Unadjusted p-values", ylab = "Frequency")

---

**calculate.GSEA**  
*Calculate 2-sided statistics based on the GSEA algorithm*

### Description

Calculates the 2-sided statistics based on the GSEA algorithm.

### Usage

```r
calculate.GSEA(tab, phenotype, gsList, nsim = 1000, verbose = FALSE, alwaysUseRandomPerm = FALSE)
```

### Arguments

- `tab`: a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
- `phenotype`: a numeric or character vector indicating the phenotype
- `gsList`: a list containing three vectors from the output of the `selectGeneSets` function
- `nsim`: an integer indicating the number of permutations to use
- `verbose`: a boolean to indicate whether to print debugging messages to the R console
- `alwaysUseRandomPerm`: a boolean to indicate whether the algorithm can use complete permutations for cases where `nsim` is greater than the total number of unique permutations possible with the phenotype vector

### Details

This function assumes 2 distinct types of phenotypes in the data. It calculates a variant of the GSEA statistics (Mootha et al.) with the following modifications: (a) GSEA was changed from a 1-sided to a 2-sided approach. (b) The 2-group t-statistics is used as the difference metric.

The function also normalizes the GSEA statistic and calculates the corresponding q-values for each gene set as described in Tian et al. (2005) The function’s output can be used for further analysis in other functions such as `rankPathways.NGSk` or `getPathwayStatistics.NGSk`.

### Value

A list containing

- `ngs`: number of gene sets
- `nsim`: number of permutations performed
- `t.set`: a numeric vector of Tk statistics
calculate.NGSk

t.set.new  a numeric vector of NTk statistics
p.null     the proportion of nulls
p.value    a numeric vector of p-values
q.value    a numeric vector of q-values

Author(s)
Lu Tian, Peter Park, and Weil Lai

References


http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102

---

**calculate.NGSk**  
*Calculate NGSk (NTk-like) statistics with gene label permutation*

**Description**
Calculates the NGSk (NTk-like) statistics with gene label permutation and the corresponding p-values and q-values for each selected pathway.

**Usage**
calculate.NGSk(statV, gsList, nsim = 1000, verbose = FALSE, alwaysUseRandomPerm = FALSE)

**Arguments**
- **statV**  
a numeric vector of test statistic (not p-values) for each individual probe/gene
- **gsList**  
a list containing three vectors from the output of the `selectGeneSets` function
- **nsim**  
an integer indicating the number of permutations to use
- **verbose**  
a boolean to indicate whether to print debugging messages to the R console
- **alwaysUseRandomPerm**  
a boolean to indicate whether the algorithm can use complete permutations for cases where `nsim` is greater than the total number of unique permutations possible with the phenotype vector

**Details**
This function is a generalized version of NTk calculations; `calculate.NTk` calls this function internally. To use this function, the user must specify a vector of test statistics (e.g., t-statistic, Wilcoxon). Pathways from this function can be ranked with `rankPathways.NGSk` or with `rankPathways` when combined with results from another pathway analysis algorithm (e.g., `calculate.NEk`).
**Value**

A list containing
- `ngs` number of gene sets
- `nsim` number of permutations performed
- `t.set` a numeric vector of Tk/Ek statistics
- `t.set.new` a numeric vector of NTk/NEk statistics
- `p.null` the proportion of nulls
- `p.value` a numeric vector of p-values
- `q.value` a numeric vector of q-values

**Author(s)**

Lu Tian, Peter Park, and Weil Lai

**References**


**Examples**

```r
## Load in filtered, expression data
data(MuscleExample)

## Prepare the pathways to analyze
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodName <- "NGSk"
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"

statV <- calcTStatFast(tab, phenotype, ngroups)$tstat
res.NGSk <- calculate.NGSk(statV, gsList, nsim, verbose)

## Summarize top pathways from NGSk
res.pathways.NGSk <- rankPathways.NGSk(res.NGSk, G, gsList, methodName, npath)
print(res.pathways.NGSk)

## Get more information about the probe sets’ means and other statistics
## for the top pathway in res.pathways.NGSk
gpsList <-
  getPathwayStatistics.NGSk(statV, probeID, G, res.pathways.NGSk$IndexG,
  FALSE, annotpkg)
```
calculatePathwayStatistics

## Write table of top-ranked pathways and their associated probe sets to ## HTML files
parameterList <-
  list(nprobes = nrow(tab), nsamples = ncol(tab),
   phenotype = phenotype, ngroups = ngroups,
   minNPS = 20, maxNPS = 500, ngs = res.NGsk$ngs,
   nsim.NGsk = res.NGsk$nsim,
   annotpkg = annotpkg, npath = npath, allpathways = allpathways)
writeSP(res.pathways.NGsk, gpsList, parameterList, tempdir(),
  "sigPathway_cNGSk", "TopPathwaysTable.html")

---

calculatePathwayStatistics

*Calculate the NTk and NEk statistics*

**Description**

Calculates the NTk and NEk statistics and the corresponding p-values and q-values for each selected pathway.

**Usage**

```r
calculate.NTk(tab, phenotype, gsList, nsim = 1000,
   ngroups = 2, verbose = FALSE, alwaysUseRandomPerm = FALSE)
calculate.NEk(tab, phenotype, gsList, nsim = 1000,
   weightType = c("constant", "variable"),
   ngroups = 2, verbose = FALSE, alwaysUseRandomPerm = FALSE)
```

**Arguments**

- `tab`: a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
- `phenotype`: a numeric (or character if `ngroups` >= 2) vector indicating the phenotype
- `gsList`: a list containing three vectors from the output of the `selectGeneSets` function
- `nsim`: an integer indicating the number of permutations to use
- `weightType`: a character string specifying the type of weight to use when calculating NEk statistics
- `ngroups`: an integer indicating the number of groups in the matrix
- `verbose`: a boolean to indicate whether to print debugging messages to the R console
- `alwaysUseRandomPerm`: a boolean to indicate whether the algorithm can use complete permutations for cases where `nsim` is greater than the total number of unique permutations possible with the phenotype vector
Details

These functions calculate the NTk and NEk statistics and the corresponding p-values and q-values for each selected pathway. The output of both functions should be together to rank top pathways with the rankPathways function.

Value

A list containing

- **ngs** number of gene sets
- **nsim** number of permutations performed
- **t.set** a numeric vector of Tk/Ek statistics
- **t.set.new** a numeric vector of NTk/NEk statistics
- **p.null** the proportion of nulls
- **p.value** a numeric vector of p-values
- **q.value** a numeric vector of q-values

Author(s)

Lu Tian, Peter Park, and Weil Lai

References


http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102

Examples

```r
## Load in filtered, expression data
data(MuscleExample)

## Prepare the pathways to analyze
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)

## Calculate NTk and weighted NEk for each gene set
## * Use a higher nsim (e.g., 2500) value for more reproducible results
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodNames <- c("NTk", "NEk")
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"

res.NTk <- calculate.NTk(tab, phenotype, gsList, nsim, ngroups, verbose)
res.NEk <- calculate.NEk(tab, phenotype, gsList, nsim, npath, weightType, ngroups, verbose)

## Summarize results
```
res.pathways <- rankPathways(res.NTk, res.NEk, G, tab, phenotype, 
                           gsList, ngroups, methodNames, npath, allpathways)
print(res.pathways)

## Get more information about the probe sets’ means and other statistics
## for the top pathway in res.pathways
statList <- calcTStatFast(tab, phenotype, ngroups)

## Get more information about the probe sets’ means and other statistics
## for the top pathway in res.pathways
gpsList <-
  getPathwayStatistics(tab, phenotype, G, res.pathways$IndexG, 
                       ngroups, statList, FALSE, annotpkg)
print(gpsList[[1]])

## Write table of top-ranked pathways and their associated probe sets to
## HTML files
parameterList <-
  list(nprobes = nrow(tab), nsamples = ncol(tab),
       phenotype = phenotype, ngroups = ngroups,
       minNPS = 20, maxNPS = 500, ngs = res.NTk$ngs, 
       nsim.NTk = res.NTk$nsim, nsim.NEk = res.NEk$nsim,
       weightType = weightType, 
       annotpkg = annotpkg, npath = npath, allpathways = allpathways)
writeSP(res.pathways, gpsList, parameterList, tempdir(), "sigPathway_cPS", 
        "TopPathwaysTable.html")

---

**estimateNumPerm**

*Compute the Number of Unique Permutations for a Phenotype Vector*

**Description**

Computes the number of unique permutations based on a vector of phenotypes and the number of groups.

**Usage**

`estimateNumPerm(phenotype, ngroups)`

**Arguments**

- **phenotype**  
  A numeric (or character if `ngroups` >= 2) vector indicating the phenotype
- **ngroups**  
  An integer indicating the number of groups in the phenotype

**Details**

This function calculates the number of unique permutations based on the given phenotype and the number of groups present in the phenotype. This function is used internally in `sigPathway` and attempts to avoid numeric overflow associated with multiplying out large factorials.

**Value**

A numeric with length 1.
getPathwayStatistics

Give the statistics for the probe sets in a pathway

Description

Gives the statistics for the probe sets associated with a pathway.

Usage

getPathwayStatistics(tab, phenotype, G, index, ngroups = 2,
                      statList = NULL, keepUnknownProbes = FALSE,
                      annotpkg = NULL)

Arguments

tab a numeric matrix of expression values, with the rows and columns representing
     probe sets and sample arrays, respectively
phenotype a numeric (or character if ngroups >= 2) vector indicating the phenotype
G a list containing the source, title, and probe sets associated with each curated
    pathway
index an integer vector specifying the pathway(s) to summarize in G
ngroups an integer indicating the number of groups in the expression matrix
statList a list containing results from calcTStatFast
keepUnknownProbes a boolean indicating whether to keep the names of probe sets not represented in
                      tab in the summary data frame
annotpkg a character vector specifying the name of the BioConductor annotation pack-
           age to use to fetch accession numbers, Entrez Gene IDs, gene name, and gene
           symbols

Examples

## One group: continuous observations
ptype1 <- c(24,25,17,26,14,17,12,15,19,20)
print(estimateNumPerm(ptype1, 1))

## Two groups
ptype2 <- c(0,1,0,1,0,1)
print(estimateNumPerm(ptype2, 2))

## Three groups
ptype3a <- c(2,0,1,2,0,1,2,0,1,1,2)
print(estimateNumPerm(ptype3a, 3))

ptype3b <- c("Banana","Apple","Lemon","Lemon","Lemon",
            "Apple","Lemon","Banana","Banana")
print(estimateNumPerm(ptype3b, 3))
getPathwayStatistics.NGSk

Details
This function gives the mean, standard deviation, and test statistic for each probe in the pathway as indicated in G[[index]].

Value
A list containing data frames (1 per pathway) with the probes’ name, mean, standard deviation, the test statistic (e.g., t-test), and the corresponding unadjusted p-value.
If ngroups = 1, the Pearson correlation coefficient is also returned.
If a valid annotpkg is specified, the probes’ accession numbers, Entrez Gene IDs, gene name, and gene symbols are also returned. This option only works if the probes in the gene set list G are manufacturer IDs corresponding to those used in making the BioConductor annotation package.

Note
See the help page of calculate.NTk or calculate.NEk for example code that uses getPathwayStatistics

Author(s)
Weil Lai

gPathwayStatistics.NGSk

Give the statistics for the probe sets in a pathway

Description
Gives the statistics for the probe sets associated with a pathway.

Usage
gPathwayStatistics.NGSk(statV, probeID, G, index,
keepUnknownProbes = FALSE, annotpkg = NULL)

Arguments
statV a numeric vector of test statistic (not p-values) for each individual probe/gene
probeID a character vector containing the names of probe sets associated with a matrix of expression values
G a list containing the source, title, and probe sets associated with each curated pathway
index an integer vector specifying the pathway(s) to summarize in G
keepUnknownProbes a boolean indicating whether to keep the names of probe sets not represented in tab in the summary data frame
annotpkg a character vector specifying the name of the BioConductor annotation package to use to fetch accession numbers, Entrez Gene IDs, gene name, and gene symbols
importGeneSets

Details
This function gives the test statistic for each probe in the pathway as indicated in \$G[[\text{index}]]\$.

Value
A list containing data frames (1 per pathway) with the probes’ name and the corresponding test statistic.
If a valid annotpkg is specified, the probes’ accession numbers, Entrez Gene IDs, gene name, and gene symbols are also returned. This option only works if the probes in the gene set list G are manufacturer IDs corresponding to those used in making the BioConductor annotation package.

Note
See the help page for calculate.NGSk for example code that uses getPathwayStatistics.NGSk

Author(s)
Weil Lai

---

importGeneSets

Import gene sets stored in GMT, GMX, GRP, and XML file formats

Description
Imports gene sets stored in GMT, GMX, GRP, and XML file formats and converts them to sigPathway’s preferred format.

Usage

```r
importGeneSets(fileNames, verbose = TRUE)
gmtToG(fileNames, verbose = TRUE)
gmxToG(fileNames, verbose = TRUE)
grpToG(fileNames, verbose = TRUE)
xmlToG(fileNames, verbose = TRUE)
```

Arguments

- `fileNames`: a character vector specifying the file(s) containing the gene sets of interest
- `verbose`: a boolean to indicate whether to print debugging messages to the R console

Details
These functions read in gene sets stored in GMT, GMX, GRP, and XML file formats and converts them to a list format that sigPathway can use. Redundant gene IDs in each gene set are removed during conversion. The `importGeneSets` function can read in GMT, GMX, GRP, and XML files in one pass. The `gmtToG`, `gmxToG`, `grpToG`, and `xmlToG` functions are specific to reading in their respective file formats.

Value
A list containing sublists representing each imported gene set. The vignette contains more details about the list structure.
Note

These functions do not check whether the files are in the correct format and will give spurious output when given files in the wrong format. The xmlToG function requires the XML package, which is available on CRAN. The xmlToG function also requires XML files to be formatted based on the MSigDB Document Type Definition.

Author(s)

Weil Lai

References


MuscleExample is an R workspace containing the following objects: (1) tab: a matrix of 5000 rows and 15 columns (2) phenotype: a indicator vector which denotes which columns in tab are arrays from normal (NORM) and inclusion body myositis (IBM) (3) G: a list containing the source, title, and the probe set IDs associated with 626 pathways

The full inflammatory myopathy dataset (which includes all probe sets and samples, including more NORM, IBM, and dermatomyositis arrays) and a more comprehensive pathway annotation list for the HG-U133A and other selected array platforms are available at http://www.chip.org/~ppark/PNAS05/

Although the objects contained in MuscleExample are subsets of the full dataset, the results obtained from running pathway analysis with MuscleExample are comparable to those obtained using the full dataset. This example dataset contains 8 IBM and 7 NORM arrays. The 5000 probe sets were selected by considering the variance of the expression values of each probe set among the 15 arrays.

Usage

data(MuscleExample)

Format

1 integer matrix, 1 numeric vector, and 1 list

Source

http://www.chip.org/~ppark/PNAS05/

References


http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102
**rankPathways**

*Summarizes Top Pathways from Pathway Analyses*

**Description**
Summarizes top pathways from pathway analyses.

**Usage**

```r
calculate.rankPathways(res.A, res.B, G, tab, phenotype, gsList, ngroups, 
methodNames = NULL, npath = 25, allpathways = FALSE)
```

**Arguments**

- `res.A`: a list from the output of `calculate.NTk` or `calculate.NEk`
- `res.B`: a list from the output of `calculate.NTk` or `calculate.NEk`
- `G`: a list containing the source, title, and probe sets associated with each curated pathway
- `tab`: a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
- `phenotype`: a numeric (or character if `ngroups >= 2`) vector indicating the phenotype
- `gsList`: a list containing three vectors from the output of the `selectGeneSets` function
- `ngroups`: an integer indicating the number of groups in the matrix
- `methodNames`: a character vector of length 2 giving the names for `res.A` and `res.B`
- `npath`: an integer indicating the number of top gene sets to consider from each statistic when ranking the top pathways
- `allpathways`: a boolean to indicate whether to include the top `npath` pathways from each statistic or just consider the top `npath` pathways (sorted by the sum of ranks of both statistics) when generating the summary table

**Details**

This function ranks together the statistics given in `res.A` and `res.B` and summarizes the top gene sets in a tabular format similar to Table 2 in Tian et al. (2005)

**Value**
A data frame showing the pathways’ indices in `G`, gene set category, pathway title, set size, `res.A`’s statistics, `res.B`’s statistics, the corresponding q-values, and the ranks for the top gene sets.

**Note**
See the help page for `calculate.NTk` or `calculate.NEk` for example code that uses `rankPathways`

**Author(s)**
Lu Tian, Peter Park, and Weil Lai
rankPathways.NGSk

Summarizes Top Pathways from One of the Pathway Analyses

Description
Summarizes top pathways from one of the pathway analyses (i.e., calculate.NTk, calculate.NEk, calculate.NGSk, or calculate.GSEA)

Usage
rankPathways.NGSk(res.NGSk, G, gsList, methodName = "NGSk", npath = 25)

Arguments
- res.NGSk: a list from the output of calculate.NTk, calculate.NEk, calculate.NGSk, or calculate.GSEA
- G: a list containing the source, title, and probe sets associated with each curated pathway
- gsList: a list containing three vectors from the output of the selectGeneSets function
- methodName: a character vector of length 1 giving the name of the pathway analysis used in making res.NGSk
- npath: an integer indicating the number of top gene sets to consider when ranking the top pathways

Details
This function ranks the statistics given in res.NGSk and summarizes the top gene sets in a tabular format similar to Table 2 in Tian et al. (2005)

Value
A data frame showing the pathways’ indices in G, gene set category, pathway title, set size, res.NGSk’s statistics, the corresponding q-values, and the numerical ranks for the top gene sets.

Note
See the help page for calculate.NGSk for example code that uses rankPathways.NGSk

Author(s)
Lu Tian, Peter Park, and Weil Lai

References
http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102
runSigPathway

References

http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102

---

runSigPathway  
*Perform pathway analysis*

Description

Performs pathway analysis

Usage

```
runSigPathway(G, minNPS = 20, maxNPS = 500, 
               tab, phenotype, nsim = 1000, 
               weightType = c("constant", "variable"), ngroups = 2, 
               npath = 25, verbose = FALSE, allpathways = FALSE, 
               annotpkg = NULL, alwaysUseRandomPerm = FALSE)
```

Arguments

- **G**: a list containing the source, title, and probe sets associated with each curated pathway
- **minNPS**: an integer specifying the minimum number of probe sets in `tab` that should be in a gene set
- **maxNPS**: an integer specifying the maximum number of probe sets in `tab` that should be in a gene set
- **tab**: a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
- **phenotype**: a numeric (or character if `ngroups` >= 2) vector indicating the phenotype
- **nsim**: an integer indicating the number of permutations to use
- **weightType**: a character string specifying the type of weight to use when calculating NEk statistics
- **ngroups**: an integer indicating the number of groups in the matrix
- **npath**: an integer indicating the number of top gene sets to consider from each statistic when ranking the top pathways
- **verbose**: a boolean to indicate whether to print debugging messages to the R console
- **allpathways**: a boolean to indicate whether to include the top `npath` pathways from each statistic or just consider the top `npath` pathways (sorted by the sum of ranks of both statistics) when generating the summary table
- **annotpkg**: a character vector specifying the name of the BioConductor annotation package to use to fetch accession numbers, Entrez Gene IDs, gene name, and gene symbols
- **alwaysUseRandomPerm**: a boolean to indicate whether the algorithm can use complete permutations for cases where `nsim` is greater than the total number of unique permutations possible with the phenotype vector
Details

runSigPathway is a wrapper function that

1. Selects the gene sets to analyze using selectGeneSets
2. Calculates NTk and NEk statistics using calculate.NTk and calculate.NEK
3. Ranks the top npath pathways from each statistic using rankPathways
4. Summarizes the means, standard deviation, and individual statistics of each probe set in each of the above pathways using getPathwayStatistics

Value

A list containing

- gsList a list containing three vectors from the output of the selectGeneSets function
- list.NTk a list from the output of calculate.NTk
- list.NEk a list from the output of calculate.NEK
- df.pathways a data frame from rankPathways which contains the top pathways’ indices in G, gene set category, pathway title, set size, NTk statistics, NEk statistics, the corresponding q-values, and the ranks.
- list.gPS a list from getPathwayStatistics containing nrow(df.pathways) data frames corresponding to the pathways listed in df.pathways. Each data frame contains the name, mean, standard deviation, the test statistic (e.g., t-test), and the corresponding unadjusted p-value. If ngroups = 1, the Pearson correlation coefficient is also returned. If a valid annotpkg is specified, the probes’ accession numbers, Entrez Gene IDs, gene name, and gene symbols are also returned.
- parameters a list of parameters (e.g., nsim) used in the analysis

Author(s)

Lu Tian, Peter Park, and Weil Lai

References


http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102

Examples

### Load in filtered, expression data
data(MuscleExample)

### Prepare the pathways to analyze and run analysis with 1 wrapper function

nsim <- 1000
groups <- 2
verbose <- TRUE
weightType <- "constant"
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"
selectGeneSets <- runSigPathway(G, 20, 500, tab, phenotype, nsim, 
    weightType, ngroups, npath, verbose, 
    allpathways, annotpkg)

## Summarize results
print(res.muscle$df.pathways)

## Get more information about the probe sets' means and other statistics
## for the top pathway in res.pathways
print(res.muscle$list.gPS[[1]])

## Write table of top-ranked pathways and their associated probe sets to
## HTML files
writeSigPathway(res.muscle, tempdir(), "sigPathway_rSP", 
    "TopPathwaysTable.html")

selectGeneSets

Select gene sets to be analyzed in pathway analysis

Description

Selects gene sets to be analyzed in pathway analysis based on minimum and maximum number of
probe sets to consider per pathway.

Usage

selectGeneSets(G, probeID, minNPS = 20, maxNPS = 500)

Arguments

G a list containing the source, title, and probe sets associated with each curated
pathway

probeID a character vector containing the names of probe sets associated with a matrix
of expression values

minNPS an integer specifying the minimum number of probe sets in probeID that should
be in a gene set

maxNPS an integer specifying the maximum number of probe sets in probeID that should
be in a gene set

Details

This function selects the appropriate pathways from a large, curated list based on the minimum and
maximum number of probe sets that should be considered in a gene set. It creates three vectors:
npromesV and indexV representing a sparse indicator matrix and indGused indicating which gene
sets were selected from G.
writeSigPathway

Value

A list containing

nprobesV an integer vector indicating the number of probe sets in probeID that is in each selected gene set

indexV an integer vector containing positions for each 1s in the sparse indicator matrix

indGused an integer vector indicating which pathways in G were chosen

Note

See the help page for calculate.NTk or calculate.NEk for example code that uses getPathwayStatistics

Author(s)

Lu Tian, Peter Park, and Weil Lai

References


http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102

writeSigPathway Write results of pathway analysis to HTML format

Description

Writes the table of top-ranked pathways and their associated probe set to HTML files.

Usage

writeSigPathway(spList, resDir = getwd(),
    outputDirName = "sigPathway_results",
    topIndexFileName = "TopPathwaysTable.html")
writeSP(rpDF, gpsList, parameterList = NULL, resDir = getwd(),
    outputDirName = "sigPathway_results",
    topIndexFileName = "TopPathwaysTable.html")

Arguments

spList a list containing the output from the runSigPathway function
rpDF a data frame of top-ranked pathways from rankPathways or rankPathways.NGsk
gpsList a list containing data frames of probes represented in gene sets from getPathwayStatistics or getPathwayStatistics.NGsk
parameterList a list containing the values of parameters used in the analysis
resDir a character string specifying the file directory to write the results
outputDirName a character string specifying the folder to write the results within resDir
topIndexFileName a character string specifying the name for the HTML file containing the table of top-ranked pathways
writeSigPathway

Details
These functions export the results of the pathway analysis (e.g., runSigPathway) to several HTML files. The user can then quickly browse through the files for genes of interest within the top-ranked genes.

Value
None returned

Note
This function only uses the output of runSigPathway to generate the HTML files. Please see the help page of runSigPathway for example usage. The writeSP function should be used for those who have taken calculated the pathway statistics separately as shown in the help file of calculate.NTk, calculate.NEk, and calculate.NGSk

Author(s)
Weil Lai
Index

*Topic* **array**
- calcTNullFast, 2
- calcTStatFast, 3
- calculate.GSEA, 4
- calculate.NGsk, 5
- calculatePathwayStatistics, 7
- estimateNumPerm, 9
- getPathwayStatistics, 10
- getPathwayStatistics.NGsk, 11
- rankPathways, 14
- rankPathways.NGsk, 15
- runSigPathway, 16
- selectGeneSets, 18
- writeSigPathway, 19

*Topic* **datagen**
- importGeneSets, 12

*Topic* **datasets**
- MuscleExample, 13

*Topic* **file**
- importGeneSets, 12

*Topic* **htest**
- calcTNullFast, 2
- calcTStatFast, 3
- calculate.GSEA, 4
- calculate.NGsk, 5
- calculatePathwayStatistics, 7
- estimateNumPerm, 9
- getPathwayStatistics, 10
- getPathwayStatistics.NGsk, 11
- rankPathways, 14
- rankPathways.NGsk, 15
- runSigPathway, 16
- selectGeneSets, 18
- writeSigPathway, 19
- estimateNumPerm, 9
- G (MuscleExample), 13
- getPathwayStatistics, 10
- getPathwayStatistics.NGsk, 11
- gmtToG (importGeneSets), 12
- gmxToG (importGeneSets), 12
- grpToG (importGeneSets), 12
- importGeneSets, 12
- MuscleExample, 13
- phenotype (MuscleExample), 13
- rankPathways, 14
- rankPathways.NGsk, 15
- runSigPathway, 16
- selectGeneSets, 18
- tab (MuscleExample), 13
- writeSigPathway, 19
- writeSP (writeSigPathway), 19
- xmlToG (importGeneSets), 12

calcTNullFast, 2
calcTStatFast, 3
calculate.GSEA, 4
calculate.NGsk, 5
calculate.NTk
  (calculatePathwayStatistics), 7
calculate.NGsk, 5
calculate.NTk
  (calculatePathwayStatistics), 7
calculatePathwayStatistics, 7