Package ‘sights’

March 29, 2017

Type Package

Title Statistics and Diagnostic Graphs for HTS

Version 1.0.0

Author Elika Garg [aut, cre], Carl Murie [aut], Heydar Ensha [ctb], Robert Nadon [aut]

Maintainer Elika Garg <elika.garg@mail.mcgill.ca>

Description SIGHTS is a suite of normalization methods, statistical tests, and diagnostic graphical tools for high throughput screening (HTS) assays. HTS assays use microtitre plates to screen large libraries of compounds for their biological, chemical, or biochemical activity.

License GPL-3 | file LICENSE

URL https://eg-r.github.io/sights/

BugReports https://github.com/eg-r/sights/issues

Depends R(>= 3.3)

Imports MASS(>= 7.3), qvalue(>= 2.2), ggplot2(>= 2.0), reshape2(>= 1.4), lattice(>= 0.2), stats(>= 3.3)

LazyData TRUE

Suggests testthat, knitr, rmarkdown, gghthemes, gridExtra, xlsx

Collate 'ex_dataMatrix.R' 'inglese.R' 'internal.R' 'normZ.R'
 'normRobZ.R' 'normR.R' 'normSPAWN.R' 'normLoess.R'
 'normMedFil.R' 'normSights.R' 'plot3d.R' 'plotAutoco.R'
 'plotBox.R' 'plotHeatmap.R' 'plotHist.R' 'plotScatter.R'
 'statRVM.R' 'plotIGFit.R' 'plotSights.R' 'statFDR.R' 'statT.R'
 'statSights.R'

VignetteBuilder knitr

RoxygenNote 5.0.1

biocViews CellBasedAssays, MicrotitrePlateAssay, Normalization, MultipleComparison, Preprocessing, QualityControl, BatchEffect, Visualization

NeedsCompilation no
ex_dataMatrix

High-Throughput Screening example data - CMBA

Description
An example dataset containing High-Throughput Screening (HTS) output and experimental design information. See References for details.

Usage
data(ex_dataMatrix)

Format
A data frame with 80 rows and 9 columns:

- **Wells.** Plate well numbers for each sample
- **Rows.** Plate row identifiers for each sample
- **Columns.** Plate column identifiers for each sample
- **S1_R1.** Screen 1 Replicate 1
- **S1_R2.** Screen 1 Replicate 2
- **S1_R3.** Screen 1 Replicate 3
- **S2_R1.** Screen 2 Replicate 1
- **S2_R2.** Screen 2 Replicate 2
• S2_R3. Screen 2 Replicate 3

This example data matrix consists of 6 plates with 80 wells each. Although these are 96-well plates, only 80 wells in each plate contained the active compounds. Therefore, the subsequent data matrix for this package excludes the inactive wells.

Details

The sights data format requires each plate matrix to be converted into a 1-dimensional vector. The plate wells in this vector should be arranged by row first. For example, this 3x3 plate matrix:

<table>
<thead>
<tr>
<th>Row</th>
<th>Col 1</th>
<th>Col 2</th>
<th>Col 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
</tr>
</tbody>
</table>

can be converted into its vector form as:

<table>
<thead>
<tr>
<th>Row</th>
<th>Col</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>A1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>A2</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>A3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>B2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>C3</td>
</tr>
</tbody>
</table>

Here, number of columns in a plate is 3, and number of rows is 3 as well. Each such plate vector should form a column in the data matrix before application of sights functions. Only the active wells should be included in the data matrix; inactive wells containing mock/control compounds should be marked as NAs, or if they are in entire rows/columns they can be removed completely as in this example dataset and the arguments plateRows and plateCols modified accordingly.

Value

Dataframe of 80 rows and 9 columns as explained in Format

References

Examples

```r
## load dataset
data(ex_dataMatrix)

## structure of dataset
str(ex_dataMatrix)

## summary of dataset
summary(ex_dataMatrix)
```
See help pages of SIGHTS functions for examples of using this dataset

inglese

High-Throughput Screening example data - Inglese

Description

A published dataset containing High-Throughput Screening (HTS) output and experimental design information. See References for details.

Usage

```r
data(inglese)
```

Format

A data frame with 1280 rows and 45 columns:

- Row. Plate row identifiers for each sample
- Col. Plate column identifiers for each sample
- Exp1R1. Screen 1 Replicate 1
- Exp1R2. Screen 1 Replicate 2
- Exp1R3. Screen 1 Replicate 3
- Exp2R1. Screen 2 Replicate 1
- Exp2R2. Screen 2 Replicate 2
- Exp2R3. Screen 2 Replicate 3

... and so on until Exp14 totaling to 14 screens in triplicate.

- Hits. Presence or absence of hits identified for each sample

Value

Dataframe of 1280 rows and 45 columns as explained in Format

Note

For information on how to arrange your dataset, please see ([ex_dataMatrix](#))

References

Examples

```r
## load dataset
data(inglese)

## structure of dataset
str(inglese)
## summary of dataset
summary(inglese)

## See SIGHTS vignette for examples of using this dataset and its analysis
```

normLoess
Normalization by loess method

Description

Apply loess normalization to data

Usage

```r
normLoess(dataMatrix, plateRows, plateCols, dataRows = NULL, 
dataCols = NULL)
```

Arguments

- `dataMatrix`
 Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows, plateCols`
 Number of rows/columns in plate.
- `dataRows, dataCols`
 Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.

Details

Loess normalization adjusts each well by the fitted row and column values generated by calculating the loess curve for each row and column.

Value

Numeric matrix of normalized data in the same format as `dataMatrix`

Note

For information on how to arrange your dataset for `dataMatrix`, please see [*ex_dataMatrix*](#).

References

See Also

Other normalization methods: `normMedFil`, `normRobZ`, `normR`, `normSPAWN`, `normZ`

Examples

```r
## load dataset
data(ex_dataMatrix)

## apply loess method
ex_normMatrix <- normLoess(dataMatrix = ex_dataMatrix, dataCols = 5:10, plateRows = 8, plateCols = 10)
```

normMedFil

Normalization by median filter method

Description

Apply median filter normalization to data

Usage

```r
normMedFil(dataMatrix, plateRows, plateCols, dataRows = NULL, dataCols = NULL, seqFilter = TRUE)
```

Arguments

- `dataMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows`, `plateCols`: Number of rows/columns in plate.
- `dataRows`, `dataCols`: Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.
- `seqFilter`: Optional logical. If TRUE apply initial row median filter then standard filter, else just apply standard filter.

Details

Median Filter normalization uses a two-step median filter process where each well is adjusted by the median score of a neighbouring group of wells [Bushway et al (2011)]. The first median filter uses a neighbour set based on the Manhattan distance to each well. The second median filter uses a neighbour set based on the proximity along each row or column.

Value

Numeric matrix of normalized data in the same format as `dataMatrix`

Note

For information on how to arrange your dataset for `dataMatrix`, please see (ex_dataMatrix)
normR

References

See Also

Other normalization methods: normLoess, normRobZ, normR, normSPAWN, normZ

Examples

```r
## load dataset
data(ex_dataMatrix)

## apply standard median filter method
ex_normMatrix <- normMedFil(dataMatrix = ex_dataMatrix, dataCols = 5:10,
plateRows = 8, plateCols = 10, seqFilter = FALSE)

## apply initial row median filter then standard filter
ex_normMatrix <- normMedFil(dataMatrix = ex_dataMatrix, dataCols = 5:10,
plateRows = 8, plateCols = 10, seqFilter = TRUE)
```

Description

Normalization by R score method

Usage

```r
normR(dataMatrix, plateRows, plateCols, dataRows = NULL, dataCols = NULL)
```

Arguments

- `dataMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows`, `plateCols`: Number of rows/columns in plate.
- `dataRows`, `dataCols`: Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.

Details

R score normalization uses the robust regression method described by Wu et al (2008). Parameters are estimated through the `rlm` function. Data is pre-normalized by median normalization prior to applying the regression algorithm. R scores are the residuals produced by the model and rescaled by dividing with the standard deviation estimate from the regression function.

Value

Numeric matrix of normalized data in the same format as `dataMatrix`
normRobZ

Note

For information on how to arrange your dataset for dataMatrix, please see (ex_dataMatrix)

References

See Also

Other normalization methods: normLoess, normMedFil, normRobZ, normSPAWN, normZ

Examples

```r
## load dataset
data(ex_dataMatrix)

## apply R score
ex_normMatrix <- normR(dataMatrix = ex_dataMatrix, dataCols = 5:10, plateRows = 8, plateCols = 10)
```

Description

Apply robust Z score to data

Usage

```r
normRobZ(dataMatrix, dataRows = NULL, dataCols = NULL)
```

Arguments

- `dataMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `dataRows`: Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.
- `dataCols`: Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.

Details

Robust Z score normalization subtracts the median of the raw well intensities of a given plate from the signal intensity of a given compound and divides it by the median absolute deviation of the raw well intensities of that plate.

Value

Numeric matrix of normalized data in the same format as dataMatrix
normSights

Note

For information on how to arrange your dataset for dataMatrix, please see (ex_dataMatrix)

References

See Also

Other normalization methods: normLoess, normMedFil, normR, normSPAWN, normZ

Examples

```r
## load dataset
data(ex_dataMatrix)

## apply robust Z score
ex_normMatrix <- normRobZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)
```

normSights | **Normalization methods**

Description

Apply any of the available SIGHTS normalization methods

Usage

```
normSights(normMethod, dataMatrix, plateRows, plateCols, dataRows = NULL, dataCols = NULL, trimFactor = 0.2, wellCorrection = FALSE, biasMatrix = NULL, biasCols = NULL, seqFilter = TRUE)
```

Arguments

- `normMethod` Normalization method name from SIGHTS ('Z', 'RobZ', 'R', 'SPAWN', 'Loess', or 'MedFil')
- `dataMatrix` Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows, plateCols` Number of rows/columns in plate. Applies to normMethods 'R', 'SPAWN', 'Loess', and 'MedFil'.
- `dataRows, dataCols` Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.
- `trimFactor` Optional trim value to be used in trimmed mean polish. It should be between 0 and 0.5. Default is 0.2. Applies to normMethod 'SPAWN'.
- `wellCorrection` Optional logical. If TRUE then individual wells are corrected based on spatial bias. Applies to normMethod 'SPAWN'.
biasMatrix Optional data frame or numeric matrix, in the same format as dataMatrix and with the same plateRows and plateCols specifications. If NULL then normalized data is used as bias template. Applies to normMethod 'SPAWN'.

biasCols Optional integer vector. Indicate which column numbers from biasMatrix or normalized dataMatrix (subset of dataCols) should be used to calculate bias template. Control plates or selection of dataMatrix plates to be used for well correction. If NULL then all plates of biasMatrix or normalized dataMatrix are used. Applies to normMethod 'SPAWN'.

seqFilter Optional logical. If TRUE apply initial row median filter then standard filter, else just apply standard filter. Applies to normMethod 'MedFil'.

Details

One of the following SIGHTS normalization methods may be chosen: normZ, normRobZ, normR, normSPAWN, normLoess, or normMedFil. See their individual help pages for more details.

Value

Numeric matrix of normalized data in the same format as dataMatrix

Note

For information on how to arrange your dataset for dataMatrix, please see (ex_dataMatrix)

References

See Also

Other SIGHTS functions: plotSights, statSights

Examples

```r
## load dataset
data(ex_dataMatrix)

## choose a normalization method and provide relevant information
ex_normMatrix <- normSights(dataMatrix = ex_dataMatrix, dataCols = 5:10, normMethod = 'RobZ')
```

normSPAWN Normalization by SPAWN method

Description

Apply trimmed mean polish to data
Usage

```r
normSPAWN(dataMatrix, plateRows, plateCols, dataRows = NULL,
          dataCols = NULL, trimFactor = 0.2, wellCorrection = FALSE,
          biasMatrix = NULL, biasCols = NULL)
```

Arguments

dataMatrix Data frame or numeric matrix. Columns are plates, and rows are plate wells.
plateRows, plateCols
 Number of rows/columns in plate.
dataRows, dataCols
 Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.
trimFactor Optional trim value to be used in trimmed polish. It should be between 0 and 0.5. Default is 0.2.
wellCorrection Optional logical. If TRUE then individual wells are corrected based on spatial bias.
biasMatrix Optional data frame or numeric matrix, in the same format as dataMatrix and with the same plateRows and plateCols specifications. If NULL then normalized data is used as bias template.
biasCols Optional integer vector. Indicate which column numbers from biasMatrix or normalized dataMatrix (subset of dataCols) should be used to calculate bias template. Control plates or selection of dataMatrix plates to be used for well correction. If NULL then all plates of biasMatrix or normalized dataMatrix are used.

Details

Spatial Polish And Well Normalization (SPAWN) uses a trimmed mean polish on individual plates to remove row and column effects. Data from each well location on each plate are initially fitted to the same model as the R score. Model parameters are estimated with an iterative polish technique but with a trimmed mean, rather than a median, as a measure of central tendency for row and column effects. The residuals are rescaled by dividing by the median average deviation of their respective plates. Well correction uses a bias template, which can either be the normalized plates themselves or be supplied externally (and SPAWN normalized before application). At each well location of this bias template, a median of all plates is calculated and subtracted from the normalized plates, thus correcting for well location bias.

Value

Numeric matrix of normalized data in the same format as dataMatrix

Note

For information on how to arrange your dataset for dataMatrix, please see (ex_dataMatrix)

References

normZ

Normalization by Z score method

Description

Apply Z score to data

Usage

```r
normZ(dataMatrix, dataRows = NULL, dataCols = NULL)
```

Arguments

- `dataMatrix` Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `dataRows`, `dataCols` Optional integer vector. Indicate which row/column numbers from the dataMatrix should be normalized. If NULL then all rows/columns from the dataMatrix are used.

Details

Z score normalization subtracts the mean of the raw well intensities of a given plate from the signal intensity of a given compound and divides it by the standard deviation of the raw well intensities of that plate.

Value

Numeric matrix of normalized data in the same format as `dataMatrix`
Note

For information on how to arrange your dataset for dataMatrix, please see (ex_dataMatrix)

See Also

Other normalization methods: normLoess, normMedFil, normRobZ, normR, normSPAWN

Examples

```r
## load dataset
data(ex_dataMatrix)

## apply Z score
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)
```

Description

Plot a three-dimensional plot for each plate

Usage

```r
plot3d(plotMatrix, plateRows, plateCols, plotRows = NULL, plotCols = NULL, plotName = NULL)
```

Arguments

- `plotMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows, plateCols`: Number of rows/columns in plate.
- `plotRows, plotCols`: Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
- `plotName`: Optional. Name of plotMatrix for plot title.

Details

3d plots can be used to assess the existence of spatial bias on a plate by plate basis. Spatial bias can be visually subtle, however, and sometimes difficult to detect with 3d plots. Auto-correlation plots (plotAutoco) can circumvent this problem.

Value

List of lattice objects

See Also

Other graphical devices: plotAutoco, plotBox, plotHeatmap, plotHist, plotIGFit, plotScatter
Examples

```r
## load dataset
data(ex_dataMatrix)

## plot raw data
plot3d(plotMatrix = ex_dataMatrix, plotCols = 5:10,
plotName = 'Example', plateRows = 8, plateCols = 10)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)

## plot normalized data
plot3d(plotMatrix = ex_normMatrix, plotName = 'Example',
plateRows = 8, plateCols = 10)
```

plotAutoco

Auto-correlation

Description

Plot auto-correlation for each plate

Usage

```r
plotAutoco(plotMatrix, plateRows, plateCols, plotRows = NULL,
plotCols = NULL, plotName = NULL, plotSep = TRUE, ...)
```

Arguments

- `plotMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows`, `plateCols`: Number of rows/columns in plate.
- `plotRows`, `plotCols`: Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
- `plotName`: Optional. Name of plotMatrix for plot title.
- `plotSep`: Optional logical. Should plots be presented in separate windows? Default is TRUE.
- `...`: Optional. Additional parameters passed to `geom_path`.

Details

Auto-correlation plots can be used to identify spatial bias. Non-zero auto-correlations indicate within-plate bias, namely that proximal wells within-plates are correlated and that the measured intensity of a feature depends partially on its well location in the plate. Cyclical patterns of auto-correlation, in particular indicate within-plate spatial bias. Normalization methods that produce auto-correlations close to zero indicate the removal of spatial bias.

Value

Modifiable ggplot2 object or list of objects
plotBox

Description

Construct an ordered boxplot for each plate

Usage

plotBox(plotMatrix, plotRows = NULL, plotCols = NULL, plotName = NULL, repIndex = NULL, plotSep = TRUE, ...)

Arguments

plotMatrix
Data frame or numeric matrix. Columns are plates, and rows are plate wells.

plotRows, plotCols
Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.

plotName
Optional. Name of plotMatrix for plot title.

repIndex
Optional. Vector of labels indicating replicate group. Each index in the vector matches the corresponding column of plotMatrix. If NULL then all plates are plotted together without grouping.

plotSep
Optional logical. Should plots of different replicate groups be presented in separate windows? Default is TRUE. Does not apply if repIndex is NULL.

Details

Box plots can be used to identify scaling shifts among replicates and view the general distribution of data among all plates.

See Also

Other graphical devices: plot3d, plotBox, plotHeatmap, plotHist, plotIGFit, plotScatter

Examples

```r
## load dataset
data(ex_dataMatrix)

## plot raw data
plotAutoco(plotMatrix = ex_dataMatrix, plateRows = 8, plateCols = 10, plotCols = 5:10, plotName = 'Example')

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)

## plot normalized data
plotAutoco(plotMatrix = ex_normMatrix, plotName = 'Example', plateRows = 8, plateCols = 10, plotSep = FALSE)
```
Value

Modifiable ggplot2 object or list of objects

See Also

Other graphical devices: plot3d, plotAutoco, plotHeatmap, plotHist, plotIGFit, plotScatter

Examples

```r
## load dataset
data(ex_dataMatrix)

## plot raw data
plotBox(plotMatrix = ex_dataMatrix, repIndex = c(1,1,2,2,2), plotCols = 5:10, plotName = 'Example')
## normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)
## plot normalized data
plotBox(plotMatrix = ex_normMatrix, repIndex = c(1,1,2,2,2), plotName = 'Example')
```

Description

Plot heat map for each plate

Usage

```r
plotHeatmap(plotMatrix, plateRows, plateCols, plotRows = NULL, plotCols = NULL, plotName = NULL, plotSep = TRUE, ...)
```

Arguments

- `plotMatrix`: Data frame or numeric matrix. Columns are plates, and rows are plate wells.
- `plateRows`, `plateCols`: Number of rows/columns in plate.
- `plotRows`, `plotCols`: Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
- `plotName`: Optional. Name of plotMatrix for plot title.
- `plotSep`: Optional logical. Should plots be presented in separate windows? Default is TRUE.
- `...`: Optional. Additional parameters passed to `geom_tile`.

Details

Heat maps can be used to assess the existence of spatial bias on a plate by plate basis. Spatial bias can be visually subtle, however, and sometimes difficult to detect with heat maps. Auto-correlation plots (`plotAutoco`) can circumvent this problem.
Plot histogram of p-values or q-values for each plate or all plates together

Value

Modifiable ggplot2 object or list of objects

See Also

Other graphical devices: `plot3d`, `plotAutoco`, `plotBox`, `plotHist`, `plotIGFit`, `plotScatter`

Examples

```r
## load dataset
data(ex_dataMatrix)

## plot raw data with graphs separated
plotHeatmap(plotMatrix = ex_dataMatrix, plotCols = 5:10, plotName = 'Example', plateRows = 8, plateCols = 10)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)

## plot normalized data with graphs together
plotHeatmap(plotMatrix = ex_normMatrix, plotName = 'Example', plateRows = 8, plateCols = 10, plotSep = FALSE)
```

plotHist

Histogram

Description

Plot histogram of p-values or q-values for each plate or all plates together

Usage

```r
plotHist(plotMatrix, plotRows = NULL, plotCols = NULL, plotAll = FALSE, plotSep = TRUE, plotName = NULL, colNames = NULL, ...)
```

Arguments

- `plotMatrix`: Data frame or numeric matrix consisting only of p-values or q-values. Columns are samples, and rows are plate wells.
- `plotRows, plotCols`: Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
- `plotAll`: Optional logical. Should all p-values or q-values be plotted together? Default is FALSE.
- `plotSep`: Optional logical. If plotAll is FALSE, should plots be presented in separate windows? Default is TRUE.
- `plotName`: Optional. Name of plotMatrix for plot title.
- `colNames`: Optional. If plotAll is FALSE, names of plotCols for plot titles.
- `...`: Optional. Additional parameters passed to `geom_histogram`.
Details

Histograms can be used to compare actual to expected p-value distributions obtained from statistical tests of replicated features. In the presence of rare biological events, the p-value distribution should be approximately uniformly distributed with somewhat more small p-values. Deviations from these patterns indicate that the activity measurements are incorrect and/or that the statistical model is incorrectly specified.

Value

Modifiable ggplot2 object or list of objects

Note

If using output from `statT`, `statRVM`, `statFDR` or `statSights`, please only select the `plotCols` corresponding to p-value and/or q-value columns, i.e., every 5th and/or 6th column in that output. Also, the x-axis label is derived from these column names indicating either ’p-values’ or ’q-values’.

See Also

Other graphical devices: `plot3d`, `plotAutoco`, `plotBox`, `plotHeatmap`, `plotIGFit`, `plotScatter`

Examples

```r
## load dataset
data(ex_dataMatrix)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)

## apply any test to normalized data and store in new variable
ex_testMatrix <- statRVM(normMatrix = ex_normMatrix,
repIndex = c(1,1,1,2,2,2))

## plot p-value data by selecting the p-value columns from test result matrix
plotHist(plotMatrix = ex_testMatrix, plotCols = c(5,10), plotName = 'Example',
colNames = c('Set_A', 'Set_B'))
```

plotIGFit
Inverse gamma

Description

Plot an inverse gamma fit plot for all plates together

Usage

```r
plotIGFit(plotMatrix, repIndex, plotRows = NULL, plotCols = NULL,
plotName = NULL, ...)```

plotScatter

Arguments

plotMatrix Data frame or numeric matrix. Columns are plates, and rows are plate wells.
repIndex Optional. Vector of labels indicating replicate group. Each index in the vector
matches the corresponding column of plotMatrix. If NULL then all plates are
plotted together without grouping.
plotRows, plotCols Optional integer vector. Indicate which row/column numbers from the plotMa-
trix should be plotted. If NULL then all rows/columns from the plotMatrix are
used.
plotName Optional. Name of plotMatrix for plot title.
... Optional. Additional parameters passed to geom_step.

Details

Inverse gamma fit plot can be used to check if RVM test (statRVM) assumptions are valid and it can
be applied to the data.

Value

Modifiable ggplot2 object

See Also

Other graphical devices: plot3d, plotAutoco, plotBox, plotHeatmap, plotHist, plotScatter

Examples

## load dataset
data(ex_dataMatrix)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(dataMatrix = ex_dataMatrix, dataCols = 5:10,
normMethod = 'Var normZ')

## plot normalized data
plotIGFit(plotMatrix = ex_normMatrix, repIndex = c(1,1,1,2,2,2),
plotName = 'Example')

plotScatter Scatter plot

Description

Construct a scatter plot of all pairwise combinations of replicates

Usage

plotScatter(plotMatrix, repIndex, plotRows = NULL, plotCols = NULL,
plotName = NULL, ...)
Arguments

plotMatrix  Data frame or numeric matrix. Columns are plates, and rows are plate wells.
repIndex   Optional. Vector of labels indicating replicate group. Each index in the vector matches the corresponding column of plotMatrix. If NULL then all plates are plotted together without grouping.
plotRows, plotCols  Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
plotName  Optional. Name of plotMatrix for plot title.
...  Optional. Additional parameters passed to geom_point.

Details

Scatter plots with robust regression lines of replicate plates can reveal a kind of bias which acts independently of within-plate biases and which cannot be detected by heat maps (plotHeatmap) or auto-correlation plots (plotAutoco). A mixture of active and inactive features should produce a zero-correlation flat regression line within most of the range and a positively sloped line within the active range(s) at the extreme(s) of the distribution.

Value

List of modifiable ggplot2 objects

See Also

Other graphical devices: plot3d, plotAutoco, plotBox, plotHeatmap, plotHist, plotIGFit

Examples

```r
load dataset
data(ex_dataMatrix)

plot raw data
plotScatter(plotMatrix = ex_dataMatrix, repIndex = c(1,1,1), plotCols = 5:7, plotName = 'Example')

normalize data matrix using any method and store in new variable
ex_normMatrix <- normZ(dataMatrix = ex_dataMatrix, dataCols = 5:10)

plot normalized data
plotScatter(plotMatrix = ex_normMatrix, repIndex = c(1,1,1), plotCols = 1:3, plotName = 'Example')
```

plotSights  *Graphical devices*

Description

Apply any of the available SIGHTS graphical devices
plotSights

Usage

plotSights(plotMethod, plotMatrix, plateRows, plateCols, repIndex = NULL,
plotRows = NULL, plotCols = NULL, plotName = NULL, plotSep = TRUE,
plotAll = FALSE, colNames = NULL, ...)

Arguments

plotMethod  Plotting method name from SIGHTS ('3d', 'Autoco', 'Box', 'Heatmap', 'Hist', 'IGFit', or 'Scatter').
plotMatrix  Data frame or numeric matrix. Columns are plates, and rows are plate wells. For
             plotMethod 'Hist', this is a p-value matrix with each column a single sample.
plateRows, plateCols
             Number of rows/columns in plate. Applies to plotMethods '3d', 'Autoco' and 'Heatmap'.
repIndex    Vector of labels indicating replicate group. Each index in the vector matches the
             corresponding column of plotMatrix. Applies to plotMethods 'Box', 'Scatter' and 'IGFit'.
plotRows, plotCols
             Optional integer vector. Indicate which row/column numbers from the plotMatrix should be plotted. If NULL then all rows/columns from the plotMatrix are used.
plotName    Optional. Name of plotMatrix for plot title.
plotSep     Optional logical. Should plots be presented in separate windows? Default is TRUE. Applies to plotMethods 'Autoco', 'Box', 'Hist' and 'Heatmap'. For 'Box', each replicate group is presented in a separate window and it only applies if replIndex is not NULL.
plotAll     Optional logical. Should all p-values be plotted together? Default is FALSE. Applies to plotMethod 'Hist'.
colNames    Optional. Names of plotCols for plot title. Applies to plotMethod 'Hist'.
...         Optional. Additional parameters passed to ggplot functions.

Details

One of the following SIGHTS graphical devices may be chosen: plot3d, plotAutoco, plotBox,
plotHeatmap, plotHist, plotIGFit, or plotScatter. See their individual help pages for more
details.

Value

List of lattice objects for 'plot3d'. Modifiable ggplot2 object or list of objects for all others.

References


See Also

Other SIGHTS functions: normSights, statSights
Examples

```r
load dataset
data(ex_dataMatrix)

normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(normMethod = 'RobZ', dataMatrix = ex_dataMatrix, dataCols = 5:10, wellCorrection = TRUE)
choose a graphical device and provide relevant information
plotSights(plotMethod = 'Autoco', plotMatrix = ex_normMatrix, plotName = 'Example', plateRows = 8, plateCols = 10)
```

---

### statFDR

#### FDR control

#### Description

Apply Storey’s FDR control to p-values

#### Usage

```r
statFDR(testMatrix, ctrlMethod = "smoother", ...)
```

#### Arguments

- `testMatrix`:
  Data frame or numeric matrix consisting of output from `statT` or `statRVM` functions. P-value columns from this matrix are automatically selected for FDR calculation. Columns are samples, and rows are plate wells.

- `ctrlMethod`:
  Optional. Method to use either 'smoother' or 'bootstrap' to estimate null. Default is 'smoother'.

- `...`:
  Optional. Additional parameters passed to `qvalue` function.

#### Details

False Discovery Rate procedure is used to control the proportion of false positives in the results. This is an implementation of the positive false discovery (pFDR) procedure of the `qvalue` function.

#### Value

A matrix of parameters for each replicate group is returned:

- **T-statistic or RVM T-statistic**
  Value of the t-statistic.

- **Mean_Difference**
  Difference between the calculated and the true mean.

- **Standard_Error**
  Standard error of the difference between means.

- **Degrees_Of_Freedom**
  Degrees of freedom for the t-statistic.

- **P-value**
  P-value for the t-test.

- **q-value**
  FDR q-value for the P-value.
Note

Please install the package 'qvalue' from Bioconductor, if not already installed.

References


See Also

Other statistical methods: statRVM, statT

Examples

```r
load dataset
data(ex_dataMatrix)

normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(dataMatrix = ex_dataMatrix, dataCols = 5:10,
 normMethod = 'normZ')

test normalized data matrix using either the RVM or T test and store in new variable
ex_testMatrix <- statT(normMatrix = ex_normMatrix, trueMean = 0,
 repIndex = c(1,1,1,2,2,2))

apply FDR control to test matrix with bootstrap control method
ex_ctrlMatrix <- statFDR(testMatrix = ex_testMatrix,
 ctrlMethod = 'bootstrap')
```

\begin{itemize}
  \item \textbf{statRVM}
  \end{itemize}

\textit{RVM Test}

Description

Apply one-sample RVM t-test separately to each plate

Usage

```r
statRVM(normMatrix, repIndex, normRows = NULL, normCols = NULL,
 testSide = "two.sided")
```

Arguments

- `normMatrix`: Data frame or numeric matrix of normalized data. Columns are plates, and rows are plate wells.
- `repIndex`: Integer vector indicating replicates in normMatrix. Which plates are replicates of each other? Provide the same number for plates belonging to a replicate group. Each index in the vector matches the corresponding column of normMatrix.
- `normRows`, `normCols`: Optional integer vector. Indicate which row/column numbers from the normMatrix should be tested. If NULL then all rows/columns from the normMatrix are used.
- `testSide`: Optional. Type of t-test: 'two.sided', 'less', or 'greater'. Default is 'two.sided'.
Details

Random Variance Model one-sample t-test is applied to the normalized data. RVM assumes that the across replicate variances are distributed according to an inverse gamma distribution. This can be checked by using the `plotIGFit` function.

Value

A matrix of parameters for each replicate group is returned:

- **RVM T-statistic**
  - Value of the RVM t-statistic.

- **Mean_Difference**
  - Difference between the calculated and the true mean.

- **Standard_Error**
  - Standard error of the difference between means.

- **Degrees_Of_Freedom**
  - Degrees of freedom for the t-statistic.

- **P-value**
  - P-value for the RVM test.

References


See Also

Other statistical methods: `statFDR`, `statT`

Examples

```r
load dataset
data(ex_dataMatrix)

normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(dataMatrix = ex_dataMatrix, dataCols = 5:10, normMethod = 'Var')

apply RVM test to normalized data matrix and get the p-values
ex_testMatrix <- statRVM(normMatrix = ex_normMatrix, repIndex = c(1,1,1,2,2,2))
```

statSights

Statistical methods

Description

Apply any of the available SIGHTS statistical methods

Usage

```r
statSights(statMethod, normMatrix, repIndex, normRows = NULL, normCols = NULL, ctrlMethod = NULL, testSide = "two.sided", trueMean = 0, ...)```
Arguments

- **statMethod**: Statistical testing method to use either 'T' or 'RVM'.

- **normMatrix**: Data frame or numeric matrix of normalized data. Columns are plates, and rows are plate wells.

- **repIndex**: Integer vector indicating replicates in normMatrix. Which plates are replicates of each other? Provide the same number for plates belonging to a replicate group. Each index in the vector matches the corresponding column of normMatrix.

- **normRows, normCols**: Optional integer vector. Indicate which row/column numbers from the normMatrix should be tested. If NULL then all rows/columns from the normMatrix are used.

- **ctrlMethod**: Optional. FDR method to use either 'smoother' or 'bootstrap' to estimate null. Default is NULL, which does not apply FDR control to the statistical testing output.

- **testSide**: Optional. Type of t-test: 'two.sided', 'less', or 'greater'. Default is 'two.sided'.

- **trueMean**: Optional. Number indicating true value of mean. Applies to statMethod 'T'. Default is 0.

- **...**: Optional. Additional parameters passed to qvalue function.

Details

One of the two SIGHTS statistical testing methods may be chosen: `statT` or `statRVM`, and FDR control may be applied by `statFDR`. See their individual help pages for more details.

Value

A matrix of parameters for each replicate group including p-values and q-values, if FDR control is applied.

References

See Also

Other SIGHTS functions: `normSights`, `plotSights`

Examples

```r
## load dataset
data(ex_dataMatrix)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(normMethod = 'RobZ', dataMatrix = ex_dataMatrix, dataCols = 5:10, wellCorrection = TRUE)

## choose a statistical testing method, indicate FDR control
## and provide relevant information
ex_statMatrix <- statSights(normMatrix = ex_normMatrix, statMethod = 'RVM', ctrlMethod = 'smoother', repIndex = c(1,1,1,2,2,2))
```
statT

t-test

Description

Apply one-sample t-test separately to each plate

Usage

statT(normMatrix, repIndex, normRows = NULL, normCols = NULL,
 testSide = "two.sided", trueMean = 0)

Arguments

 normMatrix Data frame or numeric matrix of normalized data. Columns are plates, and rows are plate wells.
 repIndex Integer vector indicating replicates in normMatrix. Which plates are replicates of each other? Provide the same number for plates belonging to a replicate group. Each index in the vector matches the corresponding column of normMatrix.
 normRows, normCols
 Optional integer vector. Indicate which row/column numbers from the normMatrix should be tested. If NULL then all rows/columns from the normMatrix are used.
 testSide Optional. Type of t-test: 'two.sided', 'less', or 'greater'. Default is 'two.sided'.
 trueMean Optional. Number indicating true value of mean. Default is 0.

Details

Standard one-sample t-test is applied to the normalized data.

Value

A matrix of parameters for each replicate group is returned:

 T-statistic Value of the t-statistic.
 Mean_Difference
 Difference between the calculated and the true mean.
 Standard_Error Standard error of the difference between means.
 Degrees_of_Freedom Degrees of freedom for the t-statistic.
 P-value P-value for the t-test.

See Also

Other statistical methods: statFDR, statRVM
Examples

```r
## load dataset
data(ex_dataMatrix)

## normalize data matrix using any method and store in new variable
ex_normMatrix <- normSights(dataMatrix = ex_dataMatrix, dataCols = 5:10,
normMethod = 'normZ')

## apply T test to normalized data matrix and get the p-values
ex_testMatrix <- statT(normMatrix = ex_normMatrix, trueMean = 0,
repIndex = c(1,1,1,2,2,2))
```
Index

*Topic datasets
 ex_dataMatrix, 2
 inglese, 4

ex_dataMatrix, 2, 4–6, 8–11, 13
 geom_boxplot, 15
 geom_histogram, 17
 geom_path, 14
 geom_point, 20
 geom_step, 19
 geom_tile, 16
 ggplot, 21
 inglese, 4
 normLoess, 5, 7–10, 12, 13
 normMedFil, 6, 6, 8–10, 12, 13
 normR, 6, 7, 7, 9, 10, 12, 13
 normRobZ, 6–8, 8, 10, 12, 13
 normSights, 9, 21, 25
 normSPAWN, 6–10, 10, 13
 normZ, 6–10, 12, 12
 plot3d, 13, 15–21
 plotAutoco, 13, 14, 16–21
 plotBox, 13, 15, 15, 17–21
 plotHeatmap, 13, 15, 16, 16, 18–21
 plotHist, 13, 15–17, 17, 19–21
 plotIGFit, 13, 15–18, 18, 20, 21, 24
 plotScatter, 13, 15–19, 19, 21
 plotSights, 10, 20, 25

qvalue, 22, 25

rlm, 7

statFDR, 18, 22, 24–26
statRVM, 18, 19, 22, 23, 23, 25, 26
statSights, 10, 18, 21, 24
statT, 18, 22–25, 26