Package ‘splicegear’

March 29, 2017

Title splicegear
Version 1.46.0
Author Laurent Gautier <laurent@cbs.dtu.dk>
Description A set of tools to work with alternative splicing
Maintainer Laurent Gautier <laurent@cbs.dtu.dk>
License LGPL
Depends R (>= 2.6.0), methods, Biobase(>= 2.5.5)
Imports annotate, Biobase, graphics, grDevices, grid, methods, utils,
XML
LazyLoad yes
biocViews Infrastructure, Transcription
NeedsCompilation no

R topics documented:

as.data.frame.SpliceExprSet ... 2
barplot.SpliceSites ... 3
buildSpliceSites .. 4
getRelSignStrength .. 5
grid.expand.gp ... 6
grid.plot.Probes .. 7
isProbeOnSpliceSite .. 8
matchprobes2Probes .. 9
plot.SpliceExprSet .. 10
plot.SpliceSites ... 11
plot.SpliceSitesGenomic .. 12
Probes-class ... 13
sort.SpliceExprSet ... 14
SpliceExprSet-class .. 15
spliceset ... 16
SpliceSites-class ... 17
SpliceSitesGenomic-class .. 18
split.SpliceSites ... 19

Index 21
as.data.frame.SpliceExprSet

SpliceExprSet object to data.frame converter

Description

Converts a SpliceExprSet object to a data.frame.

Usage

S3 method for class 'SpliceSites'
as.data.frame(x, row.names = NA, optional = NA, ...)

S3 method for class 'SpliceExprSet'
as.data.frame(x, row.names = NA, optional = NA, ...)

Arguments

x
 object SpliceSites-class or SpliceExprSet-class.

row.names
 NULL or a character vector giving the row names for the data frame. Missing
 values are not allowed.

optional
 logical. If TRUE, setting row names is optional.

...
 currently ignored.

Details

Data are traditionally stored in objects of class data.frame. This function links the object-oriented

design of the package with the large amount of functions working on data.frames.

Value

A data.frame. For both functions the first column names are begin, end, isintypeI, isintypeII,
exprs and genenames. In the case of as.data.frame.SpliceExprSet, the next variable names
will the ones in the AnnotatedDataFrame-class attribute of the ExpressionSet-class object
belonging the SpliceExprSet-class. The last variable names will be the ones in the slot info
of the Probes-class object.

Author(s)

Laurent Gautier

Examples

data(spliceset)
dataf <- as.data.frame(spliceset)

lm.panel <- function(x, y, ...) {
 points(x,y,...)
 p.lm <- lm(y~x); abline(p.lm)
probe intensity values conditioned by the position of the probes on
the mRNA

coplot(log(exprs) ~ Material | begin, data=dataf, panel=lm.panel)

Description

Displays a barplot of the associated AnnotatedDataFrame.

Usage

```r
## S3 method for class 'SpliceSites'
barplot(height, type.as = c("typeI", "typeII", "all"),
        info = "tissue", ...)
```

Arguments

- `height` object of class `SpliceSites-class`
- `type.as` the type of alternative splicing (see `SpliceSites-class` for further details).
- `info` the name of the covariate in the AnnotatedDataFrame (see details).
- `...` optional parameters to be passed to the underlying function `barplot`.

Details

When the objects are built from the XML format we propose as an exchange, the parameter `info` can at least take the values "tissue" and "histology". One can refer to the slots `spsiteIpos.pData` and `spsiteIIpos.pData` to know what are the possible choices.

Value

See the value returned by the function `barplot`.

See Also

- `SpliceSites-class`, `barplot`

Examples

```r
data(spsites)
barplot(spsites)
```
buildSpliceSites Functions to query PALSdb

Description

Functions to make a query on PALSdb, and build objects from the result of a query.

Usage

queryPALSdb(query, disp = c("data", "browser"),
 field = c("keyword", "ug.id", "gb.id", "human.cytoband", "mouse.cytoband", "cluster_count",
 species = c("human", "mouse"),
 e.value = "1e-1",
 ident.threshold = c("90% 50b", "95% 50b", "90% 45b"))

getPALSdbURL(query, disp = c("data", "browser"),
 field = c("keyword", "ug.id", "gb.id", "human.cytoband", "mouse.cytoband", "cluster_count",
 species = c("human", "mouse"),
 e.value = "1e-1",
 ident.threshold = c("90% 50b", "95% 50b", "90% 45b"))

buildSpliceSites(xml, verbose=TRUE)

Arguments

query query string
xml an object of class XML (as returned by xmlTreeParse)
disp (idem genbank and pubmed)
field The field on which the query will be based
species the specie to work with
e.value E-value
ident.threshold threshold for matching sequences
verbose verbose output.

Details

queryPALSdb returns an an object of class XML when disp = "data".
The function buildSpliceSites constructs SpliceSites objects from the XML data. The variables in the slots spsiteIpos.pData and spsiteIIpos.pData are at least tissue (tissue information), histology and site (site numbering).

Value

An object of class XML for queryPALSdb, an URL for getPALSdbURL or a list of objects of class SpliceSites.

Author(s)

laurent@cbs.dtu.dk
getRelSignStrength

References

See Also

queryPALSdb

Examples

```r
library(XML)

filename <- system.file("extdata", "example.xml", package="splicegear")

xml <- xmlTreeParse(filename, asTree=TRUE)
sites <- buildSpliceSites(xml)
```

getRelSignStrength
functions to perform SPLICE

Description

Implementations of the SPLICE algorithm

Usage

```r
getRelSignStrength(x, tissue = as.factor(1:ncol(x)), fun = mean, nipt = 30, nitt = 30, ...)

getFinalRatio(x, tissue=as.factor(1:ncol(x)), fun=mean, ...)
```

Arguments

- **x**: a matrix. One probe per line, one column per sample. Typically this would be the slot `exprs` of an instance of class `ExprSet`.
- **tissue**: a covariate (factor) about the samples.
- **fun**: a function to obtain a summary value (mean by default)
- **nipt**: see reference.
- **nitt**: see reference.
- **...**: optional parameters for the function `fun`

Details

getFinalRatio will call getRelSignStrength. The values are log-transformed. It is probably a good idea to avoid feeding function with values that are already on log scale.

Value

A matrix of the same dimension than the input `x`, holding 'RSS' (Relative Signal Strength) or 'final ratios' respectively, as described in the reference. Two attributes `nip` and `nit` are attached the returned matrix.
grid.expand.gp

Convenience function to use the package grid

Usage

grid.expand.gp(n, parlist = list())
grid.make.numeric2npc(x, xlim=NULL, lower.blank=0, upper.blank=0)

Arguments

n number of parameters
parlist list of parameters
x numeric value
xlim range for Xs
lower.blank, upper.blank size for margins

Details

call the function gpar on the list of parameters.

Value

Function used for its side effect.

data(spliceset)

The intensity values in the example are log-transformed.
Undo by taking the exponential
exprs(spliceset) <- exp(exprs(spliceset))

Re-order the rows of different slots to have the probes sorted by
position
spliceset <- sort.SpliceExprSet(spliceset)

extract the expression matrix
expr.m <- exprs(spliceset)
fr <- getFinalRatio(expr.m, tissue=pData(spliceset@eset)[[1]])
grid.plot.Probes

See Also
lattice

grid.plot.Probes Plot splicegear objects

Description
Plot objects defined in the package splicegear

Usage
grid.plot.Probes(x, col = "black", add = FALSE, probepos.yscale = NULL,
xlim = NULL, vp = NULL, ...)

grid.plot.SpliceSites(x, col.typeI = "orange", col.typeI.window = "yellow",
col.typeII = "red", add = FALSE, ylim = NULL, vp = NULL,
...)

grid.plot.SpliceExprSet(x, probes.opt = list(), expr.opt = list(col = NA, lty = 1:6),
fig.xratio = c(2, 1), fig.yratio = c(2, 1), probepos.yscale = NULL,
ylim = NULL, ...)

Arguments
x object of Probes-class, SpliceSites-class or SpliceExprSet-class
add add to an existing plot
col color(s) for the probes (recycled if necessary).
col.typeI color(s) for the type I spliced out exons
col.typeI.window background color for the type I spliced out ‘windows’
col.typeII color for the type II splicing events
expr.opt list of options to plot expression values
probes.opt specify coordinates on the y-axis for the probes.
probes.opt options to plot the probes
fig.xratio ratio for the left and right parts of the plot
fig.yratio ratio for the upper and lower parts of the plot
vp a viewport (grid package stuff)
xlim range for the x-axis (see plot).
ylim range for the y-axis
... optional parameters

Details
The ‘type I’/‘type II’ thing is described in the references found in the help files for plot.SpliceSites.
Value

These functions are mainly used for their side effects. `grid.plot.SpliceSites` returns the range for the y-axis when needed.

See Also

`plot.SpliceSites`, `plot.Probes`

Examples

```r
## plot splice sites
data(spsites)
grid.plot(spsites)

## plot probes
data(probes)
grid.plot(probes)

## combined plot
grid.plot(probes, spsites)
```

isProbeOnSpliceSite

`isProbeOnSpliceSite`
Check the presence of probes on certain exons

Description

Return whether the probes are located on exons involved in (putative) alternative splicing or not.

Usage

```r
isProbeOnSpliceSite(probes, spSites)
## isSpliceSiteOnProbe is not yet implemented
```

Arguments

- `probes`
 object of class `Probes`
- `spSites`
 object of class `spliceSites`

Value

The returned value in a list of two vectors of mode `logical` of the same length:
- `isintypeI`
 whether the probes are in a 'type I' region or not.
- `isintypeII`
 whether the probes are in a 'type II' region or not.

Author(s)

Laurent
References

matchprobes2Probes

create Probes object from matchprobes results

Description

Create Probes object from results the results of the function matchprobes (in the package ‘matchprobes’).

Usage

matchprobes2Probes(mpo, probes.length, names = NULL)

Arguments

mpo Probes-class object
probes.length Length for the probes (see details).
names names for the elements in the list returned.

Details

Currently only probes of unique length are assumed. In the case of Affymetrix chips, 25 base pairs is the value you probably want.

Value

A list of Probes-class objects.

References

http://www.cbs.dtu.dk/laurent/download/splicegear/

See Also

Probes-class, the package matchprobes
plot.SpliceExprSet

plot.SpliceExprSet plot a SpliceExprSet

Description

Plot a object of class SpliceExprSet

Usage

S3 method for class 'SpliceExprSet'
plot(x,
 probes.opt = list(), expr.opt = list(col = NA, lty = 1:6),
 fig.xratio = c(2, 1), fig.yratio = c(2, 1),
 probepos.yscale = NULL, ylim,
 ...)

Arguments

x a SpliceExprSet-class
probes.opt optional parameters to be passed for the plotting of the Probes-class
expr.opt optional parameters to be passed for the plotting of the ExpressionSet-class
fig.xratio ratio between the left and right parts of the plot
fig.yratio ratio between the upper and lower parts of the plot
probepos.yscale enforce 'y' positions for the probes.
ylim range for the y-axis
... optional parameters to be passed to the function plot

Details

The argument probepos.yscale can be used to scale probes according to their position on the reference sequence, as shown in the last example below.

Value

function used for its side-effect(s).

Author(s)

laurent

See Also

SpliceExprSet-class
Examples

data(spliceset)

levels(pData(spliceset@eset)$Material)
Liver, Mix and SNB19
cl.mat <- c("red", "yellow","blue").[as.integer(pData(spliceset@eset)$Material)]
colored in red, yellow and blue respectively
plot(spliceset, expr.opt = list(col = cl.mat, log = "x"))

sort
spliceset <- sort.SpliceExprSet(spliceset)
begin.pos <- spliceset@probes@pos[, 1]
plot(spliceset, expr.opt = list(col=cl.mat), probepos.yscale = begin.pos)

Description

plot a SpliceSites object

Usage

S3 method for class 'Probes'
plot(x, col="black",
xlab = "sequence", ylab = "probes",
add=FALSE, probepos.yscale=NULL, xlim=NULL,
...)

S3 method for class 'SpliceSites'
plot(x, col.typeI = "orange",
col.typeI.window = "yellow",
col.typeII = "red",
add=FALSE, ylim=NULL, ...)

Arguments

x object of class Probes or SpliceSites.
col color argument for the probes.
col.typeI color argument for the type I splice sites
col.typeI.window color argument for the type I ‘window’
col.typeII color argument for the type II splice sites
add add the plot to an existing plot. Make a new plot if ‘FALSE’
probepos.yscale scaling argument
xlim, ylim range of plotting window
xlab, ylab labels for the axis
... optional parameters to be passed to the function plot.
plot.SpliceSitesGenomic

Details

If the parameter main is not specified, the function tries to extract the attribute 'name' from x. The two functions can be combined to display both objects on the same plot.

Value

The range for the y-axis is returned whenever needed (see invisible).

Author(s)

Laurent

References

See Also

SpliceSites-class

Examples

data(spsites)
plot(spsites, main=attr(spsites, "name"))
sp.pData <- spsites@spsiteIpos.pData
##col <- as.integer(factor(sp.pData$tissue))
##plot(spsites, col.typeI=col, main=attr("name", spsites))

plot.SpliceSitesGenomic

Function to plot SpliceSitesGenomic objects

Description

Function to plot SpliceSitesGenomic objects.

Usage

S3 method for class 'SpliceSitesGenomic'
plot(x, col.variant = par("col"), col.exon = "white",
 split = FALSE, main = names(x@variants), ...)
Arguments

- \texttt{x} \hspace{1cm} \texttt{SpliceSitesGenomic-class}
- \texttt{col.variant} \hspace{1cm} a vector of colors for the different variants. The colors are recycled as necessary.
- \texttt{col.exon} \hspace{1cm} a vector of colors for the exons. The colors are recycled as necessary.
- \texttt{split} \hspace{1cm} split the plot of the variants in individual plots
- \texttt{main} \hspace{1cm} character to use as a title. Recycled as necessary.
- ... \hspace{1cm} optional graphical parameters

Value

This function is used for its side-effect.

Author(s)

Laurent

See Also

- \texttt{SpliceSitesGenomic-class}

Examples

```r
## a 10 bp window
seq.length <- as.integer(10)
## positions of the exons
spsiteIpos <- matrix(c(1, 3.5, 5, 9, 3, 4, 8, 10), nc=2)
## known variants
variants <- list(a=c(1,2,3,4), b=c(1,2,3), c=c(1,3,4))
##
n.exons <- nrow(spsiteIpos)

spvar <- new("SpliceSitesGenomic", spsiteIpos=spsiteIpos, 
variants=variants, seq.length=seq.length)

par(mfrow = c(3,1), mar = c(3.1, 2.1, 2.1, 1.1))

plot(spvar, split=TRUE, col.exon=rainbow(n.exons))
```

Probes-class

\textit{Class "Probes"}

Description

Information about a set of probes

Objects from the Class

Objects can be created by calls of the form \texttt{new("Probes", pos)} or \texttt{new("Probes", pos, info)}. The object are primarily storing the location of the probe on a matching sequence sequence. Optional information can be stored in the slot \texttt{info} (a \texttt{data.frame}).
Slots

- **pos**: Object of class "matrix". It expects one row per probe. The first column should give the start position while the second column should give the end position.
- **info**: Object of class "data.frame". Optional information one wishes to carry around can be stored here.

Methods

- **initialize** signature(.Object = "Probes"): ...
- **show** signature(object): show minimal information
- **plot** signature(x = "Probes", y = "missing"): plot the position of the probes. (see plot.Probes)
- **plot** signature(x = "Probes", y = "SpliceSites"): plot the positions of the probes and the positions of the splice sites

See Also

SpliceSites-class, SpliceExprSet-class.

Examples

```r
data(probes)
plot(probes)
```

Description

Sort the probes in a SpliceExprSet (and reflect this in all the relevant places.

Usage

```r
## S3 method for class 'SpliceExprSet'
sort(x, decreasing, fun = function(x) order(x@probes@pos[, 1]), reverse = FALSE, ...)
```

Arguments

- **x**: a SpliceExprSet.
- **decreasing**: currently ignored
- **fun**: a function to do the sorting
- **reverse**: return the reverse of the sorting order
- **...**: currently ignored

Value

An object of class SpliceExprSet
Description

A class to store probe expression values with alternative splicing information.

Objects from the Class

Objects can be created by calls of the form `new("SpliceExprSet", ...)`.

Slots

- `spliceSites`: Object of class "SpliceSites". The probes and splice site information.
- `probes`: Object of class "Probes". The matching expression values.
- `eset`: Object of class "ExpressionSet". The matching expression values.

Methods

- `grid.plot` signature(x = "SpliceExprSet", y = "missing"): ...
- `plot` signature(x = "SpliceExprSet", y = "missing"): a plotting method.
- `show` signature(object = "SpliceExprSet"): a printing method.
- `spliceSites` signature(object = "SpliceExprSet"): accessor.

Author(s)

laurent@cbs.dtu.dk

References

a manuscript in preparation

See Also

`as.data.frame.SpliceExprSet`, `sort.SpliceExprSet` and `SpliceSites-class`
Examples

```r
data(eset, package="splicegear")
data(probes, package="splicegear")
data(spsites, package="splicegear")

spliceset <- new("SpliceExprSet", eset=eset,
            probes=probes, spliceSites=spsites)

plot(spliceset)
```

<table>
<thead>
<tr>
<th>spliceset</th>
<th>Example data for splicegear</th>
</tr>
</thead>
</table>

Description

The putative splice variants for a reference sequence, the matching probes from the Affymetrix chip 'HG-U95A' and probe intensities from the 'dilution' dataset.

Usage

```r
#data(eset, package="splicegear")
#data(probes, package="splicegear")
#data(spsites, package="splicegear")
#data(spliceset, package="splicegear")
```

Format

The formats are objects of class `ExpressionSet-class`, `Probes-class`, `SpliceSites-class` and `SpliceExprSet-class` respectively.

Details

The attribute "name" is set to the ID of the Unigene cluster from which the reference sequence is taken.

References

"PALSdb", ref. GeneLogic’s dilution dataset.

Examples

```r
data(spliceset, package="splicegear")
plot(spliceset, main=attr(spliceset, "name"))
```
SpliceSites-class

Description

A class to store (putative) splice sites

Objects from the Class

Objects can be created by calls of the form `new("SpliceSites", ...)`.

Slots

- `seq`: Object of class "character". The reference sequence.
- `seq.length`: Object of class "integer". The length for the reference sequence (used when the slot `seq` is set to "").
- `spsiteIpos`: Object of class "matrix". A two-columns matrix to store the begin and end positions of type I splice variant.
- `spsiteIIpos`: Object of class "integer". A vector to store the positions for type II splice variants.
- `spsiteIIIpos`: Object of class "matrix". Idem `spsiteIpos`, but for type III splice variants.
- `spsiteIpos.pData`: Object of class `AnnotatedDataFrame`. Used to store covariate information related to the splice variants.
- `spsiteIIpos.pData`: Object of class `AnnotatedDataFrame`.
- `spsiteIIIpos.pData`: Object of class `AnnotatedDataFrame`.

Methods

- `plot` signature(`x = "SpliceSites", y = "missing"`): A plotting method

Author(s)

laurent@cbs.dtu.dk

References

"Plenty of splicin’ or ’can regular Affymetrix chips be used to observe alternative splicing ?’", Gautier L. et al., 2003, manuscript in preparation (and the title might have to chang…).

See Also

`isSpliceSiteOnProbe, isProbeOnSpliceSite, plot.SpliceSites, spliceset`.
SpliceSitesGenomic-class

Examples

data(spliceset)
print(spliceset)
par(mfrow=c(1,2))
plot(spliceset, main=attr(spliceset, "name"))

filter out supporting matches with unique positions
filter.typeI <- function(x) {unique(x[duplicated(x), , drop=FALSE])}
spliceset.filter <- spliceset
sSites <- spliceset.filter@sspliceSites
sSiteIpos <- filter.typeI(sSites@ssiteIpos)
spliceset.filter@sspliceSites <- sSites
plot the resulting new object
plot(spliceset.filter)

SpliceSitesGenomic-class

Class "SpliceSitesGenomic"

Description

A class to store alternative splicing information on a genomic point of view.

Objects from the Class

Objects can be created by calls of the form new("SpliceSitesGenomic", seq, seq.length, spsiteIpos, spsiteIIpos, spsiteIIIpos, ...).

Slots

variants: Object of class "list". There is one element per splice variant. Each element in the list should be a vector of integers. Each integer refers to an exon. The sequence of integers determines the sequence of exons in the splice variant.

seq: Object of class "character", from class "SpliceSites".

seq.length: Object of class "integer", from class "SpliceSites".

spsiteIpos: Object of class "matrix", from class "SpliceSites".

spsiteIIpos: Object of class "integer", from class "SpliceSites". This should not have any practical use in this class.

spsiteIIIpos: Object of class "matrix", from class "SpliceSites". This should not have any practical use in this class.

spsiteIpos pData: Object of class "AnnotatedDataFrame", from class "SpliceSites".

spsiteIIpos pData: Object of class "AnnotatedDataFrame", from class "SpliceSites". This should not have any practical use in this class.

spsiteIIIpos pData: Object of class "AnnotatedDataFrame", from class "SpliceSites". This should not have any practical use in this class.
split.SpliceSites

Extends

Class "SpliceSites", directly.

Methods

- **plot** signature(x = "SpliceSitesGenomic", y = "missing"): a plotting method for demonstration purposes.

See Also

SpliceSites-class and plot.SpliceSitesGenomic.

Examples

```r
## a 10 bp window
seq.length <- as.integer(10)
## positions of the exons
spsiteIpos <- matrix(c(1, 3.5, 5, 9, 3, 4, 8, 10), nc=2)
## known variants
variants <- list(a=c(1,2,3,4), b=c(1,2,3), c=c(1,3,4))
spvar <- new("SpliceSitesGenomic", spsiteIpos=spsiteIpos, 
variants=variants, seq.length=seq.length)
plot(spvar)
```

Description

Split an instance of SpliceSites into several instances of SpliceSites

Usage

```r
## S3 method for class 'SpliceSites'
split(x, f = list(typeI = NA, typeII = NA), drop=NULL, ...)
```

Arguments

- **x** an instance of class SpliceSites-class.
- **f** a list of two factors (see details).
- **drop** not used (here to keep R CMD check happy)
- **...** see drop above.

Details

The split usually is performed on a factor. Two factors are required because of the two categories of splicing events (type I (deletion of a fragment of the reference sequence) and type II (insertion of an element of the reference sequence). A character can be used instead of a factor. In this case the covariates with the given name, in the slots spsiteIpos.pData and spsiteIIpos.pData respectively, are used to make the split. When equal to NA, the covariate named site will be used.
Value

A list of objects of class SpliceSites

See Also

SpliceSites-class

Examples

data(spsites)
split(spsites)
Index

*Topic classes
Probes-class, 13
SpliceExprSet-class, 15
SpliceSites-class, 17
SpliceSitesGenomic-class, 18

*Topic datasets
spliceset, 16

*Topic hplot
barplot.SpliceSites, 3
grid.expand.gp, 6
grid.plot.Probes, 7
matchprobes2Probes, 9
plot.SpliceExprSet, 10
plot.SpliceSites, 11
plot.SpliceSitesGenomic, 12

*Topic manip
as.data.frame.SpliceExprSet, 2
buildSpliceSites, 4
getRelSignStrength, 5
isProbeOnSpliceSite, 8
sort.SpliceExprSet, 14
split.SpliceSites, 19

AnnotatedDataFrame, 17
as.data.frame.SpliceExprSet, 2, 15
as.data.frame.SpliceSites
(as.data.frame.SpliceExprSet), 2

barplot, 3
barplot.SpliceSites, 3
buildSpliceSites, 4

eset(spliceset), 16
exprs,SpliceExprSet-method
(SpliceExprSet-class), 15
exprs<-,SpliceExprSet,ANY-method
(SpliceExprSet-class), 15

genbank, 4
getFinalRatio (getRelSignStrength), 5
getPALSdbURL (buildSpliceSites), 4
getRelSignStrength, 5
grid.expand.gp, 6
grid.make.numeric2npc (grid.expand.gp), 6
grid.plot (SpliceExprSet-class), 15
grid.plot,Probes,missing-method
(Probes-class), 13
grid.plot,Probes,SpliceSites-method
(Probes-class), 13
grid.plot,SpliceExprSet,missing-method
(SpliceExprSet-class), 15
grid.plot,SpliceSites,missing-method
(SpliceExprSet-class), 15
grid.plot.Probes, 7
grid.plot.SpliceExprSet
(grid.plot.Probes), 7
grid.plot.SpliceSites
(grid.plot.Probes), 7
initialize,Probes-method
(Probes-class), 13
initialize,SpliceSites-method
(SpliceSites-class), 17
isProbeOnSpliceSite, 8, 17
isSpliceSiteOnProbe, 17

lattice, 7
matchprobes2Probes, 9

plot,Probes,missing-method
(Probes-class), 13
plot,Probes,SpliceSites-method
(Probes-class), 13
plot,Probes-method (Probes-class), 13
plot,SpliceExprSet,missing-method
(SpliceExprSet-class), 15
plot,SpliceSites,missing-method
(SpliceSites-class), 17
plot,SpliceSites-method
(SpliceSites-class), 17
plot,SpliceSitesGenomic,missing-method
(SpliceSitesGenomic-class), 18
plot,SpliceSitesGenomic-method
(SpliceSitesGenomic-class), 18
plot.Probes, 14
plot.Probes(plot.SpliceSites), 11
plot.SpliceExprSet, 10
plot.SpliceSites, 7, 11, 17
plot.SpliceSitesGenomic, 12, 19
probes(spliceset), 16
Probes-class, 13
pubmed, 4

queryPALSdb, 5
queryPALSdb(buildSpliceSites), 4

show,Probes-method (Probes-class), 13
show,SpliceExprSet-method (SpliceExprSet-class), 15
show,SpliceSites-method (SpliceSites-class), 17
sort.SpliceExprSet, 14, 15
SpliceExprSet-class, 15
spliceset, 16, 17
spliceSites (SpliceExprSet-class), 15
spliceSites,SpliceExprSet-method (SpliceExprSet-class), 15
SpliceSites-class, 17
SpliceSitesGenomic-class, 18
split.SpliceSites, 19
spsites (spliceset), 16

xmlTreeParse, 4