Package ‘splicegear’

December 22, 2016

Title splicegear
Version 1.46.0
Author Laurent Gautier <laurent@cbs.dtu.dk>
Description A set of tools to work with alternative splicing
Maintainer Laurent Gautier <laurent@cbs.dtu.dk>
License LGPL
Depends R (>= 2.6.0), methods, Biobase(>= 2.5.5)
Imports annotate, Biobase, graphics, grDevices, grid, methods, utils, XML
LazyLoad yes
biocViews Infrastructure, Transcription
NeedsCompilation no

R topics documented:

as.data.frame.SpliceExprSet .. 2
barplot.SpliceSites ... 3
buildSpliceSites ... 4
getRelSignStrength ... 5
grid.expand.gp .. 6
grid.plot.Probes .. 7
isProbeOnSpliceSite .. 8
matchprobes2Probes .. 9
plot.SpliceExprSet ... 10
plot.SpliceSites .. 11
plot.SpliceSitesGenomic ... 12
Probes-class .. 13
sort.SpliceExprSet ... 14
SpliceExprSet-class ... 15
spliceset ... 16
SpliceSites-class ... 17
SpliceSitesGenomic-class ... 18
split.SpliceSites .. 19

Index 21
as.data.frame.SpliceExprSet

SpliceExprSet object to data.frame converter

Description

Converts a SpliceExprSet object to a data.frame.

Usage

S3 method for class 'SpliceSites'
as.data.frame(x, row.names = NA, optional = NA, ...)

S3 method for class 'SpliceExprSet'
as.data.frame(x, row.names = NA, optional = NA, ...)

Arguments

x object SpliceSites-class or SpliceExprSet-class.
row.names NULL or a character vector giving the row names for the data frame. Missing
optional logical. If TRUE, setting row names is optional.
... currently ignored.

Details

Data are traditionally stored in objects of class data.frame. This function links the object-oriented

design of the package with the large amount of functions working on data.frames.

Value

A data.frame. For both functions the first column names are begin, end, isintypeI, isintypeII,
exprs and genenames. In the case of as.data.frame.SpliceExprSet, the next variable names
will be the ones in the AnnotatedDataFrame-class attribute of the ExpressionSet-class object
belonging the SpliceExprSet-class. The last variable names will be the ones in the slot info of
the Probes-class object.

Author(s)

Laurent Gautier

Examples

data(spliceset)
dataf <- as.data.frame(spliceset)

lm.panel <- function(x, y, ...) {
 points(x,y,...)
 p.lm <- lm(y~x); abline(p.lm)
}
probe intensity values conditioned by the position of the probes on
the mRNA
coplot(log(exprs) ~ Material | begin, data=dataf, panel=lm.panel)

barplot.SpliceSites
barplot for SpliceSites

Description

Displays a barplot of the associated AnnotatedDataFrame.

Usage

```r
## S3 method for class 'SpliceSites'
barplot(height, type.as = c("typeI", "typeII", "all"),
         info = "tissue", ...)
```

Arguments

- `height` object of class `SpliceSites-class`.
- `type.as` the type of alternative splicing (see `SpliceSites-class` for further details).
- `info` the name of the covariate in the AnnotatedDataFrame (see details).
- `...` optional parameters to be passed to the underlying function `barplot`.

Details

When the objects are built from the XML format we propose as an exchange, the parameter `info` can at least take the values "tissue" and "histology". One can refer to the slots `spsiteIpos.pData` and `spsiteIIpos.pData` to know what are the possible choices.

Value

See the value returned by the function `barplot`.

See Also

`SpliceSites-class`, `barplot`

Examples

```r
data(spsites)
barplot(spsites)
```
buildSpliceSites

Functions to query PALSdb

Description

Functions to make a query on PALSdb, and build objects from the result of a query.

Usage

queryPALSdb(query, disp = c("data", "browser"),
field = c("keyword", "ug.id", "gb.id", "human.cytoband", "mouse.cytoband", "cluster_count",
 species = c("human", "mouse"),
e.value = "1e-1",
 ident.threshold = c("90% 50b", "95% 50b", "90% 45b"))

getPALSdbURL(query, disp = c("data", "browser"),
field = c("keyword", "ug.id", "gb.id", "human.cytoband", "mouse.cytoband", "cluster_count",
 species = c("human", "mouse"),
e.value = "1e-1",
 ident.threshold = c("90% 50b", "95% 50b", "90% 45b"))

buildSpliceSites(xml, verbose=TRUE)

Arguments

query query string
xml an object of class XML (as returned by xmlTreeParse)
disp (idem genbank and pubmed)
field The field on which the query will be based
species the specie to work with
e.value E-value
ident.threshold threshold for matching sequences
verbose verbose output.

Details

queryPALSdb returns an an object of class XML when disp = "data".
The function buildSpliceSites constructs SpliceSites objects from the XML data. The variables in the slots spsiteIpos.pData and spsiteIIpos.pData are at least tissue (tissue information), histology and site (site numbering).

Value

An object of class XML for queryPALSdb, an URL for getPALSdbURL or a list of objects of class SpliceSites.

Author(s)

laurent@cbs.dtu.dk
getRelSignStrength

References

See Also

queryPALSdb

Examples

library(XML)

filename <- system.file("extdata", "example.xml", package="splicegear")

xml <- xmlTreeParse(filename, asTree=TRUE)

spsites <- buildSpliceSites(xml)

getRelSignStrength functions to perform SPLICE

Description

Implementations of the SPLICE algorithm

Usage

getRelSignStrength(x, tissue = as.factor(1:ncol(x)), fun = mean, nipt = 30, nitt = 30, ...)

getFinalRatio(x, tissue=as.factor(1:ncol(x)), fun=mean, ...)

Arguments

x

a matrix. One probe per line, one column per sample. Typically this would be the slot exprs of an instance of class ExprSet.

tissue

a covariate (factor) about the samples.

fun

a function to obtain a summary value (mean by default)

nipt

see reference.

nitt

see reference.

...

optional parameters for the function fun

Details

getFinalRatio will call getRelSignStrength. The values are log-transformed. It is probably a good idea to avoid feeding function with values that are already on log scale.

Value

A matrix of the same dimension than the input x, holding 'RSS' (Relative Signal Strength) or 'final ratios' respectively, as described in the reference. Two attributes nip and nit are attached the returned matrix.
grid.expand.gp

Convenience function to use the package grid

Usage

grid.expand.gp(n, parlist = list())
grid.make.numeric2npc(x, xlim=NULL, lower.blank=0, upper.blank=0)

Arguments

n number of parameters
parlist list of parameters
x numeric value
xlim range for Xs
lower.blank, upper.blank size for margins

details

call the function gpar on the list of parameters.

Value

Function used for its side effect.
grid.plot.Probes

See Also
lattice

grid.plot.Probes Plot splicegear objects

Description
Plot objects defined in the package splicegear

Usage
grid.plot.Probes(x, col = "black", add = FALSE, probepos.yscale = NULL, xlim = NULL, vp = NULL, ...)
grid.plot.SpliceSites(x, col.typeI = "orange", col.typeI.window = "yellow", col.typeII = "red", add = FALSE, ylim = NULL, vp = NULL, ...)
grid.plot.SpliceExprSet(x, probes.opt = list(), expr.opt = list(col = NA, lty = 1:6), fig.xratio = c(2, 1), fig.yratio = c(2, 1), probepos.yscale = NULL, ylim = NULL, ...)

Arguments
x object of Probes-class, SpliceSites-class or SpliceExprSet-class
add add to an existing plot
col color(s) for the probes (recycled if necessary).
col.typeI color(s) for the type I spliced out exons
col.typeI.window background color for the type I spliced out ‘windows’
col.typeII color for the type II splicing events
expr.opt list of options to plot expression values
probepos.yscale specify coordinates on the y-axis for the probes.
probes.opt options to plot the probes
fig.xratio ratio for the left and right parts of the plot
fig.yratio ratio for the upper and lower parts of the plot
vp a viewport (grid package stuff)
xlim range for the x-axis (see plot).
ylim range for the y-axis
... optional parameters

Details
The ‘type I’/‘type II’ thing is described in the references found in the help files for plot.SpliceSites.
isProbeOnSpliceSite

Value

These functions are mainly used for their side effects. grid.plot.SpliceSites returns the range for the y-axis when needed.

See Also

plot.SpliceSites, plot.Probes

Examples

```r
## plot splice sites
data(spsites)
grid.plot(spsites)

## plot probes
data(probes)
grid.plot(probes)

## combined plot
grid.plot(probes, spsites)
```

isProbeOnSpliceSite

Check the presence of probes on certain exons

Description

Return whether the probes are located on exons involved in (putative) alternative splicing or not.

Usage

```r
isProbeOnSpliceSite(probes, spSites)
## isSpliceSiteOnProbe is not yet implemented
```

Arguments

- `probes`: object of class `Probes`
- `spSites`: object of class `spliceSites`

Value

The returned value in a list of two vectors of mode `logical` of the same length:

- `isintypeI`: whether the probes are in a ‘type I’ region or not.
- `isintypeII`: whether the probe are in a ‘type II’ region or not.

Author(s)

Laurent
matchprobes2Probes

References

matchprobes2Probes
create Probes object from matchprobes results

Description

Create Probes object from results the results of the function `matchprobes` (in the package `matchprobes`).

Usage

```r
matchprobes2Probes(mpo, probes.length, names = NULL)
```

Arguments

- `mpo` Probes-class object
- `probes.length` Length for the probes (see details).
- `names` names for the elements in the list returned.

Details

Currently only probes of unique length are assumed. In the case of Affymetrix chips, 25 base pairs is the value you probably want.

Value

A list of Probes-class objects.

References

http://www.cbs.dtu.dk/laurent/download/splicegear/

See Also

Probes-class, the package `matchprobes`
plot.SpliceExprSet

Description

Plot a object of class SpliceExprSet

Usage

```
## S3 method for class 'SpliceExprSet'
plot(x,
     probes.opt = list(), expr.opt = list(col = NA, lty = 1:6),
     fig.xratio = c(2, 1), fig.yratio = c(2, 1),
     probepos.yscale = NULL, ylim,
     ...)  
```

Arguments

- `x`
 a `SpliceExprSet`-class
- `probes.opt`
 optional parameters to be passed for the plotting of the `Probes-class`
- `expr.opt`
 optional parameters to be passed for the plotting of the `ExpressionSet-class`
- `fig.xratio`
 ratio between the left and right parts of the plot
- `fig.yratio`
 ratio between the upper and lower parts of the plot
- `probepos.yscale`
 enforce 'y' positions for the probes.
- `ylim`
 range for the y-axis
- `...`
 optional parameters to be passed to the function `plot`

Details

The argument `probepos.yscale` can be used to scale probes according to their position on the reference sequence, as shown in the last example below.

Value

function used for its side-effect(s).

Author(s)

laurent

See Also

`SpliceExprSet-class`
Examples

data(spliceset)

levels(pData(spliceset@eset)$Material)
Liver, Mix and SNB19
c.l.mat <- c("red", "yellow","blue")[as.integer(pData(spliceset@eset)$Material)]
colored in red, yellow and blue respectively
plot(spliceset, expr.opt = list(col = c.l.mat, log = "x"))

sort
spliceset <- sort.SpliceExprSet(spliceset)
begin.pos <- spliceset@probes@pos[, 1]
plot(spliceset, expr.opt = list(col=c.l.mat), probepos.yscale = begin.pos)

Description

plot objects.

Usage

S3 method for class 'Probes'
plot(x, col="black",
 xlab = "sequence", ylab = "probes",
 add=FALSE, probepos.yscale=NULL, xlim=NULL,
 ...
)

S3 method for class 'SpliceSites'
plot(x, col.typeI = "orange",
col.typeI.window = "yellow",
col.typeII = "red",
add=FALSE, ylim=NULL, ...
)

Arguments

x object of class Probes or SpliceSites.
col color argument for the probes.
col.typeI color argument for the type I splice sites
col.typeI.window color argument for the type I ‘window’
col.typeII color argument for the type II splice sites
add add the plot to an existing plot. Make a new plot if ‘FALSE’
probe proporos.yscale scaling argument
xlim, ylim range of plotting window
xlab, ylab labels for the axis
... optional parameters to be passed to the function plot.
plot.SpliceSitesGenomic

Details

If the parameter `main` is not specified, the function tries to extract the attribute 'name' from `x`. The two functions can be combined to display both objects on the same plot.

Value

The range for the y-axis is returned whenever needed (see `invisible`).

Author(s)

Laurent

References

See Also

`SpliceSites-class`

Examples

data(spsites)

plot(spsites, main=attr(spsites, "name"))

sp.pData <- spsites@spsiteIpos.pData

##col <- as.integer(factor(sp.pData$tissue))

##plot(spsites, col.typeI=col, main=attr("name", spsites))

Description

Function to plot SpliceSitesGenomic objects.

Usage

```r
## S3 method for class 'SpliceSitesGenomic'
plot(x, col.variant = par("col"), col.exon = "white",
    split = FALSE, main = names(x@variants), ...)
```
Arguments

- x: SpliceSitesGenomic-class
- col.variant: a vector of colors for the different variants. The colors are recycled as necessary.
- col.exon: a vector of colors for the exons. The colors are recycled as necessary.
- split: split the plot of the variants in individual plots
- main: character to use as a title. Recycled as necessary.
- ...: optional graphical parameters

Value

This function is used for its side-effect.

Author(s)

Laurent

See Also

SpliceSitesGenomic-class

Examples

```r
## a 10 bp window
seq.length <- as.integer(10)
## positions of the exons
spsiteIpos <- matrix(c(1, 3.5, 5, 9, 3, 4, 8, 10), nc=2)
## known variants
variants <- list(a=c(1,2,3,4), b=c(1,2,3), c=c(1,3,4))
##
n.exons <- nrow(spsiteIpos)

spvar <- new("SpliceSitesGenomic", spsiteIpos=spsiteIpos,
variants=variants, seq.length=seq.length)

par(mfrow = c(3,1), mar = c(3.1, 2.1, 2.1, 1.1))

plot(spvar, split=TRUE, col.exon=rainbow(n.exons))
```

Probes-class

Class "Probes"

Description

Information about a set of probes

Objects from the Class

Objects can be created by calls of the form `new("Probes", pos)` or `new("Probes", pos, info)`. The object are primarily storing the location of the probe on a matching sequence sequence. Optional information can be stored in the slot `info` (a data.frame).
sort.SpliceExprSet

Slots

pos: Object of class "matrix". It expects one row per probe. The first column should give the start position while the second column should give the end position

info: Object of class "data.frame". Optional information one wishes to carry around can be stored here.

Methods

initialize signature(.Object = "Probes"): ...
show signature(object): show minimal information
plot signature(x = "Probes", y = "missing"): plot the position of the probes. (see plot.Probes)
plot signature(x = "Probes", y = "SpliceSites"): plot the positions of the probes and the positions of the splice sites

See Also

SpliceSites-class, SpliceExprSet-class.

Examples

data(probes)

plot(probes)

sort.SpliceExprSet A function to sort a SpliceExprSet

Description

Sort the probes in a SpliceExprSet (and reflect this in all the relevant places).

Usage

S3 method for class 'SpliceExprSet'
sort(x, decreasing, fun = function(x) order(x@probes@pos[, 1]), reverse = FALSE, ...)

Arguments

x a SpliceExprSet.

decreasing currently ignored

fun a function to do the sorting

reverse return the reverse of the sorting order

... currently ignored

Value

An object of class SpliceExprSet
Description
A class to store probe expression values with alternative splicing information

Objects from the Class
Objects can be created by calls of the form new("SpliceExprSet", ...).

Slots
spliceSites: Object of class "SpliceSites". The probes and splice site information.
probes: Object of class "Probes". The matching expression values.
eset: Object of class "ExpressionSet". The matching expression values.

Methods
grid.plot signature(x = "SpliceExprSet", y = "missing"): ...
plot signature(x = "SpliceExprSet", y = "missing"): a plotting method.
show signature(object = "SpliceExprSet"): a printing method.
spliceSites signature(object = "SpliceExprSet"): accessor.

Author(s)
laurent@cbs.dtu.dk

References
a manuscript in preparation

See Also
as.data.frame.SpliceExprSet, sort.SpliceExprSet and SpliceSites-class
Examples

```r
data(eset, package="splicegear")
data(probes, package="splicegear")
data(spsites, package="splicegear")

spliceset <- new("SpliceExprSet", eset=eset,
                  probes=probes, splicesites=spsites)

plot(spliceset)
```

spliceset
Example data for splicegear

Description

The putative splice variants for a reference sequence, the matching probes from the Affymetrix chip 'HG-U95A' and probe intensities from the 'dilution' dataset.

Usage

```r
#data(eset, package="splicegear")
#data(probes, package="splicegear")
#data(spsites, package="splicegear")
#data(spliceset, package="splicegear")
```

Format

The formats are objects of class `ExpressionSet-class`, `Probes-class`, `SpliceSites-class` and `SpliceExprSet-class` respectively.

Details

The attribute "name" is set to the ID of the Unigene cluster from which the reference sequence is taken.

References

"PALSdb", ref. GeneLogic’s dilution dataset.

Examples

```r
data(spliceset, package="splicegear")
plot(spliceset, main=attr(spliceset, "name"))
```
Description

A class to store (putative) splice sites

Objects from the Class

Objects can be created by calls of the form `new("SpliceSites", ...)`.

Slots

- `seq`: Object of class "character". The reference sequence.
- `seq.length`: Object of class "integer". The length for the reference sequence (used when the slot `seq` is set to "").
- `spsiteIpos`: Object of class "matrix". A two-columns matrix to store the begin and end positions of type I splice variant.
- `spsiteIIpos`: Object of class "integer". A vector to store the positions for type II splice variants.
- `spsiteIIIpos`: Object of class "matrix". Idem `spsiteIpos`, but for type III splice variants.
- `spsiteIpos.pData`: Object of class `AnnotatedDataFrame`. Used to store covariate information related to the splice variants.
- `spsiteIIpos.pData`: Object of class `AnnotatedDataFrame`.
- `spsiteIIIpos.pData`: Object of class `AnnotatedDataFrame`.

Methods

- `show signature(object = "SpliceSites")`: A printing method.
- `plot signature(x = "SpliceSites", y = "missing")`: A plotting method

Author(s)

laurent@cbs.dtu.dk

References

"Plenty of splicin’ or ‘can regular Affymetrix chips be used to observe alternative splicing ?’", Gautier L. et al., 2003, manuscript in preparation (and the title might have to chang...)."
SpliceSitesGenomic-class

Examples

data(spliceset)
print(spliceset)
par(mfrow=c(1,2))
plot(spliceset, main=attr(spliceset, "name"))

filter out supporting matches with unique positions
filter.typeI <- function(x) {unique(x[duplicated(x), , drop=FALSE])}
spliceset.filter <- spliceset
sSites <- spliceset.filter@sites
sSites@spltIpos <- filter.typeI(sSites@spltIpos)
spliceset.filter@sites <- sSites
plot the resulting new object
plot(spliceset.filter)

SpliceSitesGenomic-class

Class "SpliceSitesGenomic"

Description

A class to store alternative splicing information on a genomic point of view.

Objects from the Class

Objects can be created by calls of the form new("SpliceSitesGenomic", seq, seq.length, spsiteIpos, spsiteIIpos, spsiteIIIpos, ...).

Slots

variants: Object of class "list". There is one element per splice variant. Each element in the list should be a vector of integers. Each integer refers to an exon. The sequence of integers determines the sequence of exons in the splice variant.

seq: Object of class "character", from class "SpliceSites".

seq.length: Object of class "integer", from class "SpliceSites".

spltIpos: Object of class "matrix", from class "SpliceSites".

spltIIpos: Object of class "integer", from class "SpliceSites". This should not have any practical use in this class.

spltIIpos: Object of class "matrix", from class "SpliceSites". This should not have any practical use in this class.

spltIpos.pData: Object of class "AnnotatedDataFrame", from class "SpliceSites".

spltIIpos.pData: Object of class "AnnotatedDataFrame", from class "SpliceSites". This should not have any practical use in this class.

spltIIIpos.pData: Object of class "AnnotatedDataFrame", from class "SpliceSites". This should not have any practical use in this class.
split.SpliceSites

Extends
Class "SpliceSites", directly.

Methods

- **plot** signature(x = "SpliceSitesGenomic", y = "missing"): a plotting method for demonstration purposes.

See Also
SpliceSites-class and plot.SpliceSitesGenomic.

Examples

```r
## a 10 bp window
seq.length <- as.integer(10)
## positions of the exons
spsiteIpos <- matrix(c(1, 3.5, 5, 9, 3, 4, 8, 10), nc=2)
## known variants
variants <- list(a=c(1,2,3,4), b=c(1,2,3), c=c(1,3,4))
spvar <- new("SpliceSitesGenomic", spsiteIpos=spsiteIpos, 
              variants=variants, seq.length=seq.length)
plot(spvar)
```

Description
Split an instance of SpliceSites into several instances of SpliceSites

Usage

```r
## S3 method for class 'SpliceSites'
split(x, f = list(typeI = NA, typeII = NA), drop=NULL, ...)
```

Arguments

- **x** an instance of class SpliceSites-class.
- **f** a list of two factors (see details).
- **drop** not used (here to keep R CMD check happy)
- **...** see drop above.

Details
The split usually is performed on a factor. Two factors are required because of the two categories of splicing events (type I (deletion of a fragment of the reference sequence) and type II (insertion of an element of the reference sequence)). A character can be used instead of a factor. In this case the covariates with the given name, in the slots spsiteIpos.pData and spsiteIIpos.pData respectively, are used to make the split. When equal to NA, the covariate named site will be used.
Value

A list of objects of class SpliceSites

See Also

SpliceSites-class

Examples

data(spsites)
split(spsites)
Index

*Topic classes
 Probes-class, 13
 SpliceExprSet-class, 15
 SpliceSites-class, 17
 SpliceSitesGenomic-class, 18
*Topic datasets
 spliceset, 16
*Topic hplot
 barplot.SpliceSites, 3
 grid.expand.gp, 6
 grid.plot.Probes, 7
 matchprobes2Probes, 9
 plot.SpliceExprSet, 10
 plot.SpliceSites, 11
 plot.SpliceSitesGenomic, 12
*Topic manip
 as.data.frame.SpliceExprSet, 2
 buildSpliceSites, 4
 getRelSignStrength, 5
 isProbeOnSpliceSite, 8
 sort.SpliceExprSet, 14
 split.SpliceSites, 19
AnnotatedDataFrame, 17
as.data.frame.SpliceExprSet, 2, 15
as.data.frame.SpliceSites
 (as.data.frame.SpliceExprSet), 2
barplot, 3
barplot.SpliceSites, 3
buildSpliceSites, 4

eset (spliceset), 16
exprs,SpliceExprSet-method
 (SpliceExprSet-class), 15
exprs<-,SpliceExprSet,ANY-method
 (SpliceExprSet-class), 15

genbank, 4
getFinalRatio (getRelSignStrength), 5
getPALSdbURL (buildSpliceSites), 4
getRelSignStrength, 5
grid.expand.gp, 6

grid.make.numeric2npc (grid.expand.gp), 6
grid.plot (SpliceExprSet-class), 15
grid.plot,Probes,missing-method
 (Probes-class), 13
grid.plot,Probes,SpliceSites-method
 (Probes-class), 13
grid.plot,SpliceExprSet,missing-method
 (SpliceExprSet-class), 15
grid.plot,SpliceSites,missing-method
 (SpliceExprSet-class), 15
grid.plot.Probes, 7
grid.plot.SpliceExprSet
 (grid.plot.Probes), 7
grid.plot.SpliceSites
 (grid.plot.Probes), 7
initialize,Probes-method
 (Probes-class), 13
initialize,SpliceSites-method
 (SpliceSites-class), 17
isProbeOnSpliceSite, 8, 17
isSpliceSiteOnProbe, 17
isSpliceSiteOnProbe
 (isProbeOnSpliceSite), 8
lattice, 7
matchprobes2Probes, 9
plot,Probes,missing-method
 (Probes-class), 13
plot,Probes,SpliceSites-method
 (Probes-class), 13
plot,Probes-method (Probes-class), 13
plot,SpliceExprSet,missing-method
 (SpliceExprSet-class), 15
plot,SpliceSites,missing-method
 (SpliceSites-class), 17
plot,SpliceSites-method
 (SpliceSites-class), 17
plot,SpliceSitesGenomic,missing-method
 (SpliceSitesGenomic-class), 18
plot,SpliceSitesGenomic-method
 (SpliceSitesGenomic-class), 18
plot.Probes, 14
plot.Probes(plot.SpliceSites), 11
plot.SpliceExprSet, 10
plot.SpliceSites, 7, 11, 17
plot.SpliceSitesGenomic, 12, 19
probes(spliceset), 16
Probes-class, 13
pubmed, 4

queryPALSdb, 5
queryPALSdb(buildSpliceSites), 4

show,Probes-method (Probes-class), 13
show,SpliceExprSet-method
(SpliceExprSet-class), 15
show,SpliceSites-method
(SpliceSites-class), 17
sort.SpliceExprSet, 14, 15
SpliceExprSet-class, 15
spliceset, 16, 17
spliceSites(SpliceExprSet-class), 15
spliceSites,SpliceExprSet-method
(SpliceExprSet-class), 15
SpliceSites-class, 17
SpliceSitesGenomic-class, 18
split.SpliceSites, 19
spsites(spliceset), 16

xmlTreeParse, 4