Package ‘synlet’

December 22, 2016

Type Package

Title Hits Selection for Synthetic Lethal RNAi Screen Data

Version 1.4.0

Date 2015-07-31

Author Chunxuan Shao <c.shao@dkfz.de>

Maintainer Chunxuan Shao <c.shao@dkfz.de>

Description Select hits from synthetic lethal RNAi screen data. For example, there are two identical celllines except one gene is knocked-down in one cellline. The interest is to find genes that lead to stronger lethal effect when they are knocked-down further by siRNA. Quality control and various visualisation tools are implemented. Four different algorithms could be used to pick up the interesting hits. This package is designed based on 384 wells plates, but may apply to other platforms with proper configuration.

License GPL-3

LazyData TRUE

biocViews CellBasedAssays, QualityControl, Preprocessing, Visualization, FeatureExtraction

Depends R (>= 3.2.0), ggplot2

Imports doBy, dplyr, grid, magrittr, RColorBrewer, RankProd, reshape2

Suggests knitr, testthat

VignetteBuilder knitr

NeedsCompilation no

R topics documented:

bScore .. 2
eexampleDat ... 2
madSelect .. 3
plateHeatmap .. 4
rankProdHits ... 4
rsaHits .. 5
scatterPlot .. 7
siRNAPlot ... 7
tTest ... 8
zFactor ... 9
Calculate B-score

Calculate the B-score for plates belonging to the same master plate. Positive/negative controls are removed from the calculation.

Usage

\[
\text{bScore(masterPlate, dat, treatment, control, outFile = FALSE)}
\]

Arguments

- `masterPlate` - a master plate to be normalized
- `dat` - synthetic lethal RNAi screen data
- `treatment` - the treatment experiment condition in `EXPERIMENT_MODIFICATION`
- `control` - the control experiment condition in `EXPERIMENT_MODIFICATION`
- `outFile` - should calculated B-score files be written to the current folder? File names is `(masterPlate).bscore.csv`.

Value

A list contains B-score for each master plate, treatment plates are the first columns, followed by control plates

References

Examples

\[
\text{bscore.res <- sapply(as.character(unique(exampleDat$MASTER_PLATE)), bScore, exampleDat, control = "control", treatment = "treatment", simplify = FALSE)}
\]

exampleDat

Synthetic lethal RNAi screen example data.
madSelect

Format

A data frame with 4320 rows and 8 variables

Details

• PLATE. plate names.
• MASTER PLATE. master plate names.
• WELL_CONTENT_NAME. siRNA targets of wells.
• EXPERIMENT_TYPE. sample, negative/positive controls.
• EXPERIMENT_MODIFICATION. experiment conditions, "treatment" or "control".
• ROW_NAME. row names of plates.
• COL_NAME. column names of plates.
• READOUT. screen results.

Value

A data frame containing RANi screen data, the READOUT value has no real biological meaning.

\[
\text{madSelect} \quad \text{Select hits basing on median +/- k*MAD}
\]

Description

Select hits basing on median +/- k*MAD, by default k is three.

Usage

\[
\text{madSelect(masterPlate, dat, k = 3, treatment, control, outFile = FALSE,}
\quad \text{normMethod = "PLATE")}
\]

Arguments

- masterPlate: the master plate to analysis
- dat: synthetic lethal RNAi screen data
- k: cutoff for selecting hits, default is three
- treatment: the treatment condition in EXPERIMENT_MODIFICATION
- control: the control condition in EXPERIMENT_MODIFICATION
- outFile: whether or not write the median normalized results
- normMethod: normalization methods to be used. If "PLATE", the raw readouts are normalized by plate median, otherwise use median provided control siRNA.

Value

A data frame contains the hits selection results.

- MASTER PLATE: location of siRNA
- treat_cont_ratio: ratio of treatment / control
- treat_median: median value of treatment plates
- control_median: median value of control plates
- Hits: Is this siRNA a hit?
References

Examples

```r
madSelection <- sapply(as.character(unique(exampleDat$MASTER_PLATE)),
madSelect, exampleDat, control = "control",
treatment = "treatment", simplify = FALSE)
madSelection.c <- do.call(rbind,
  lapply(names(madSelection), function(x) madSelection[[x]]))
```

plateHeatmap

Heatmap of all plates

Description

Put all individual plates in one graph, values are the readout in experiments.

Usage

```r
plateHeatmap(dat, baseSize = 12)
```

Arguments

- **dat**: synthetic lethal RNAi screen data
- **baseSize**: basic font size used for x/y axis and title for heatmaps

Value

A ggplot object

Examples

```r
tem.1 <- plateHeatmap(exampleDat)
ggsave("platesHeatmap.pdf", plot = tem.1, width = 500, height = 500, limitsize = FALSE)
```

rankProdHits

Select hits by the rank product method

Description

Select hits by rank product methods by comparing treatment and control.

Usage

```r
rankProdHits(masterPlate, dat, treatment, control, normMethod = "PLATE")
```
rsaHits

Arguments

- **masterPlate**: the master plate to be analyzed
- **dat**: synthetic lethal RNAi screen data
- **treatment**: the treatment condition in EXPERIMENT_MODIFICATION
- **control**: the control condition in EXPERIMENT_MODIFICATION
- **normMethod**: normalization methods to be used. If "PLATE", the raw readouts are normalized by plate median, otherwise use provided control siRNA

Value

A list contains results by the rank product method for each master plate.

- **MASTER_PLATE**: location of siRNA
- **pvalue_treat_lowerthan_cont**: p-value for the hypothesis that treatment has lower normalized readout compared to control
- **FDR_treat_lowerthan_cont**: FDR value
- **treat_cont_log2FC**: log2 fold change of treatment / control

References

Examples

```r
crankp.res <- sapply(as.character(unique(exampleDat$MASTER_PLATE)),
  rankProdHits, exampleDat, control = "control", treatment = "treatment",
  simplify = FALSE)
crankp.c <- data.frame(do.call(rbind,
  lapply(names(crankp.res), function(x) crankp.res[[x]])))
```

rsaHits

Select hits by RSA

Description

Selected hits by redundant siRNA activity method. Here is a wrapper function of RSA 1.8 by Yingyao Zhou.

Usage

```r
rsaHits(dat, treatment, control, normMethod = "PLATE", LB, UB,
  revHits = FALSE, Bonferroni = FALSE, outputfile = "RSAhits.csv",
  scoreFile = "RSA_score.csv")
```
Arguments

dat: synthetic lethal RNAi screen data

treatment: the treatment condition in EXPERIMENT_MODIFICATION

treatment: the control condition in EXPERIMENT_MODIFICATION

normMethod: normalization methods. If "PLATE", then values are normalized by plate me-
dian, otherwise use the provided control siRNA

LB: Low bound

UB: up bound

revHits: reverse hit picking, default the lower the score the better

Bonferroni: conceptually useful when there are different number of siRNAs per gene, default FALSE

outputFile: output file name

scoreFile: name of the score file to be written under the current folder

Value

A result file written to the current folder.

• Gene_ID,Well_ID,Score: columns from input spreadsheet

• LogP: OPI p-value in log10, i.e., -2 means 0.01

• OPI_Hit: whether the well is a hit, 1 means yes, 0 means no

• #hitWell: number of hit wells for the gene

• #totalWell: total number of wells for the gene. If gene A has three wells w1, w2 and w3, and w1 and w2 are hits, #totalWell should be 3, #hitWell should be 2, w1 and w2 should have OPI_Hit set as 1 and w3 should have OPI_Hit set as 0.

• OPI_Rank: ranking column to sort all wells for hit picking

• Cutoff_Rank: ranking column to sort all wells based on Score in the simple activity-based method

Note: a rank value of 999999 means the well is not a hit

References

Examples

rsaHits(exampleDat, treatment = "treatment", control = "control", normMethod = "PLATE", LB = 0.2, UB = 0.8, revHits = FALSE, Bonferroni = FALSE, outputFile = "RSAhits.csv")
scatterPlot

Scatter plot of RNAi screen results

Description

Produce a single plot for readouts of each plate, with the option of highlighting specific signals, like positive/negative controls.

Usage

scatterPlot(dat, controlOnly = FALSE, colour, ...)

Arguments

dat synthetic lethal RNAi screen data
controlOnly whether or not to plot control wells only
colour colour for different signals
... positive/negative signals, must be specified

Value

a ggplot object

Examples

scatterPlot(exampleDat, controlOnly = FALSE, colour = rainbow(10),
"PLK1 si1", "scrambled control si1", "lipid only")

siRNAPlot

Plot siRNA data and quality metrics.

Description

Plot the normalized RNAi screen data, row data, control signals and Z’ factor.

Usage

siRNAPlot(gene, dat, controlsiRNA, FILEPATH = ".", colour = rainbow(10),
zPrimeMed, zPrimeMean, treatment, control, normMethod = c("PLATE"),
width = 15, height = 14)
Arguments

gene gene symbol, case sensitive
dat synthetic lethal RNAi screen data
controlsiRNA controlsiRNA could be a vector of several siRNA, including positive/negative control
FILEPATH path to store the figure
colour colour used in graphs
zPrimeMed zPrime factor basing on median
zPrimeMean zPrime factor basing on mean
treatment the treatment condition in EXPERIMENT_MODIFICATION
treatment the control condition in EXPERIMENT_MODIFICATION
normMethod could be a PLATE and negative controls
width width of the plot
height height of the plot

Value

Return the ggplot2 objects in a list, which could be plotted individually.

Examples

zF_mean <- zFactor(exampleDat, negativeCon = "scrambled control si1",
 positiveCon = "PLK1 si1")
zF_med <- zFactor(exampleDat, negativeCon = "scrambled control si1",
 positiveCon = "PLK1 si1", useMean = FALSE)
tem.1 <- siRNAPlot("AAK1", exampleDat,
 controlsiRNA = c("lipid only", "scrambled control si1"),
 FILEPATH = ".", zPrimeMed = zF_med, zPrimeMean = zF_mean,
 treatment = "treatment", control = "control",
 normMethod = c("PLATE", "lipid only", "scrambled control si1"))

tTest

student’s t-test basing on B-score

Description

Select hits by student’s t-test using B-score from treatment and control plates.

Usage

tTest(masterPlate, bScore, numTreat, numCont)

Arguments

masterPlate the master plate to be analyzed
bScore normalized bScore
numTreat number of treatment plates
numCont number of control plates
zFactor

Value

A list containing student’s t-test for each master plate

- **pvalue**: p-value of the t-test
- **Treat_Cont**: difference in bscore: treatment - control
- **p_adj**: BH adjusted p-value

References

Examples

```r
bscore.res <- sapply(as.character(unique(exampleDat$MASTER_PLATE)), bScore, exampleDat, control = "control", treatment = "treatment", simplify = FALSE)
bscore.ttest <- sapply(names(bscore.res), tTest, bscore.res, numTreat = 3, numCont = 3, simplify = FALSE, USE.NAMES = TRUE)
bscore.combined <- data.frame(do.call(rbind, lapply(names(bscore.ttest), function(x) if (!is.null(bscore.ttest[[x]])) {data.frame(MASTER_PLATE = x, siRNAs = rownames(bscore.ttest[[x]]), bscore.ttest[[x]]应有的 })))))
```

zFactor

Calculate the Z and Z’ factor

Description

calculate the Z and Z’ factor for each plate.

Usage

```r
zFactor(dat, negativeCon, positiveCon, useMean = TRUE)
```

Arguments

- **dat**: synthetic lethal RNAi screen data.
- **negativeCon**: the negative control used in the WELL_CONTENT_NAME.
- **positiveCon**: the positive control used in the WELL_CONTENT_NAME.
- **useMean**: use mean to calculate Z factor and Z’ factor by default; otherwise use median.

Value

A data.frame contains Z factor and Z’ factor

References

Examples

zFactor(exampleDat, negativeCon = "scrambled control si1", positiveCon = "PLK1 si1")
Index

«Topic datasets
 exampleDat, 2
bScore, 2
test, 2
madSelect, 3
plateHeatmap, 4
rankProdHits, 4
test, 5
rsaHits, 5
scatterPlot, 7
siRNAPlot, 7
tTest, 8
zFactor, 9