Package ‘uSORT’

January 15, 2017

Title uSORT: A self-refining ordering pipeline for gene selection

Version 1.0.0

Author Mai Chan Lau, Hao Chen, Jinmiao Chen

Description This package is designed to uncover the intrinsic cell
progression path from single-cell RNA-seq data. It incorporates
data pre-processing, preliminary PCA gene selection,
preliminary cell ordering, feature selection, refined cell
ordering, and post-analysis interpretation and visualization.

Maintainer Hao Chen <chen_hao@immunol.a-star.edu.sg>

biocViews RNASeq, GUI, CellBiology, DNASEq

Depends R (>= 3.3.0), tcltk

VignetteBuilder knitr

Suggests knitr, RUnit, testthat, ggplot2

Imports igraph, Matrix, RANN, RSpectra, VGAM, gplots, parallel, plyr,
methods, cluster, Biobase, fpc, BiocGenerics, monocle,
grDevices, graphics, stats, utils

License Artistic-2.0

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

autoSPIN .. 2
clusterGenes1 .. 3
cmpareModels1 ... 4
differentialGeneTest1 ... 5
diff_test_helper1 ... 5
distance.function ... 6
driving_force_gene_selection 6
elbow_detection .. 7
EXP_to_CellDataSet ... 8
fluidigmSC_analyzeGeneDetection 8
fluidigmSC_identifyExpOutliers 9
autoSPIN

A wrapper function for autoSPIN sorting method

Description

A wrapper function for autoSPIN method which implements optimized local refinement using the selected SPIN sorting method, i.e. STS or Neighborhood.

Usage

autoSPIN(data, data_type = c("linear", "cyclical"),
 sorting_method = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
 no_randomization = 20, window_perc_range = c(0.1, 0.9),
 window_size_incre_perct = 0.05)
Arguments

- **data**
 An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.

- **data_type**
 A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

- **sorting_method**
 A character string indicating the choice of SPIN sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.

- **alpha**
 A fraction value denoting the size of locality used for calculating the summed local variance.

- **sigma_width**
 An integer number denoting the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

- **no_randomization**
 An integer number indicating the number of repeated sorting, each of which uses randomly selected initial cell position.

- **window_perc_range**
 A fraction value indicating the range of window size to be examined during local refinement.

- **window_size_incre_perct**
 A fraction value indicating the step size at each iteration for incrementing window size.

Value

A data frame containing single column of ordered sample IDs.

Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
ownames(da) <- paste0('sp1_', seq(1, nrow(da)))
d <- da[, 1:4]
dl <- da[, 5, drop = FALSE]
res <- autoSPIN(data = d)
dl <- dl[match(res$SampleID, rownames(dl)), ]
annot <- data.frame(id = seq(1, nrow(res)), label = dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x = id, y = id, colour = label)) + geom_point() + theme_bw()
```

Description

A modified monocle’s function for 'compareModels' which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

Usage

```r
clusterGenes1(expr_matrix, krange, method = function(x) { as.dist((1 - cor(t(x)))/2), ...})```
compareModels1

**Arguments**

- `expr_matrix` Expression matrix.
- `krange` `krange`.
- `method` method function.
- `...` Other parameters.

**Value**

test_res a dataframe containing status of modeling and adjusted p-value

**Author(s)**

MaiChan Lau

---

**compareModels1**  
*A modified monocle’s function*

**Description**

A modified monocle’s function for `compareModels` which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

**Usage**

```r
compareModels1(full_models, reduced_models)
```

**Arguments**

- `full_models` a Monocle’s vgam full model
- `reduced_models` a Monocle’s vgam reduced/ null model

**Value**

test_res a dataframe containing status of modeling and adjusted p-value

**Author(s)**

MaiChan Lau
differentialGeneTest1  differential gene test

Description
modified from FludigmSC package

Usage
differentialGeneTest1(cds,
  fullModelFormulaStr = "expression~sm.ns(Pseudotime, df=3)",
  reducedModelFormulaStr = "expression~1", cores = 1)

Arguments
cds Input object.
fullModelFormulaStr Full model formula.
reducedModelFormulaStr Reduced model formula.
cores Number of cores will be used.

Value
test results

diff_test_helper1 A modified monocle’s helper function

Description
A modified monocle’s function for ‘diff_test_helper1’ which includes more attempts on finding
models and also compute max. magnitude change in expression values predicted by GLM model

Usage
diff_test_helper1(x, fullModelFormulaStr, reducedModelFormulaStr,
  expressionFamily, lowerDetectionLimit = 0.1, type_ordering = “linear”)

Arguments
x an expression data
fullModelFormulaStr a Monocle’s model structure
reducedModelFormulaStr a Monocle’s model structure
expressionFamily a Monocle’s family character
lowerDetectionLimit a threshold value
type_ordering a character indicating the type of underlying cell progression, i.e. linear or cir-
cular
**Value**

test_res a dataframe containing status of modeling and adjusted p-value

**Author(s)**

MaiChan Lau

---

**distance.function**  
*A distance function*  
*A distance function computes cell-to-cell distance matrix.*

**Description**

A distance function A distance function computes cell-to-cell distance matrix.

**Usage**

distance.function(expr, method = c("Euclidean", "Correlation", "eJaccard", "none"))

**Arguments**

- **expr**  
  An expression matrix containing n-rows of cells and m-cols of genes.

- **method**  
  A character string indicating the distance function.

**Value**

A matrix containing n-by-n cell distance.

---

**driving_force_gene_selection**  
*A feature/ gene selection function*

**Description**

A feature/ gene selection function (1) removes sparsely expressed genes, (2) identifies differentially expressed genes based on preliminary cell ordering, (3) removes highly dispersed genes from the identified DEGs, (4) further picks genes which are expected to have large expression difference on the 2 extreme ends of preliminary cell ordering.

**Usage**

driving_force_gene_selection(cds, scattering.cutoff.prob = 0.75,  
  driving.force.cutoff = NULL, qval_cutoff = 0.05, min_expr = 0.1,  
  data_type = c("linear", "cyclical"), nCores = 1)
elbow_detection

A elbow detection function

A elbow detection function detects the elbow/knee of a given vector of values. Values will be sorted
descendingly before detection, and the ID of those values above the elbow will be returned.

Usage

elbow_detection(scores, if_plot = FALSE)

Arguments

scores A vector of numeric scores.
if_plot Boolean determine if plot the results.

Value

a vector of selected elements IDs

Arguments

cds a Monocle’s CellDataSet object
scattering.cutoff.prob probability used for removing largely dispersed genes
driving.force.cutoff a value used for removing genes which do not change much along cell progress
along cell progress path
qval_cutoff a user-defined adjusted p-value below which genes are retained
min_expr the minimum expression value
data_type a character indicating the type of underlying cell progression, i.e. linear or cycli-
cal.
nCores Number of cores to use.

Value

integer

Author(s)

MaiChan Lau

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt', full=TRUE)
#exprs <- uSORT_preProcess(exprs_file = file)
#exp_raw <- t(exprs$exprs_raw)
#exp_trimmed <- t(exprs$exprs_log_trimed)
#cds <- uSORT:::EXP_to_CellDataSet(exp_trimmed, exp_raw)
#driver_genes <- driving_force_gene_selection(cds = cds)
fluidigmSC_analyzeGeneDetection

**Examples**

```r
scores <- c(10, 9, 8, 6, 3, 2, 1, 0.1)
elbow_detection(scores, if_plot = TRUE)
```

---

**EXP_to_CellDataSet**  
*A function for constructing a Monocle’s CellDataSet object from an expression matrix*

---

**Description**

A function for constructing a Monocle’s CellDataSet object from an expression matrix

**Usage**

```r
EXP_to_CellDataSet(log2_exp = NULL, expression_data_raw = NULL, lod = 1)
```

**Arguments**

- `log2_exp`: An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
- `expression_data_raw`: A data frame containing raw expression values, with rownames of cells and colnames of genes.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM.

**Value**

A CellDataSet object.

---

**fluidigmSC_analyzeGeneDetection**  
*A gene detection function*

---

**Description**

A gene detection function computes the fraction of genes detected in each cell, reproduced from FluidigmSC package.

**Usage**

```r
fluidigmSC_analyzeGeneDetection(expression_data, threshold = 1)
```

**Arguments**

- `expression_data`: A data frame containing raw expression values, with rownames of genes and colnames of cells.
- `threshold`: A limit of detection in the unit of TPM/CPM/RPMK.
**fluidigmSC_identifyExpOutliers**

**Value**

A data frame containing a column of number of genes detected, and a column of the corresponding percentage of gene detection, rownames of cells.

---

**fluidigmSC_identifyExpOutliers**

*An outlier detection function*

---

**Description**

An outlier detection function identifies cells with median expression below that of the bulk, reproduced from FluidigmSC package.

**Usage**

```r
fluidigmSC_identifyExpOutliers(log2ex_data, expression_data_raw, threshold, step, fine_step, num_fine_test, pct_goodsample_threshold = 0.5, quantile_threshold = 0.95, low_quantile_threshold = 0.25, min_gene_number = 25, lod)
```

**Arguments**

- `log2ex_data`: A data frame containing log2 transformed expression values, with rownames of genes and colnames of cells.
- `expression_data_raw`: A data frame containing raw expression values, with rownames of genes and colnames of cells.
- `threshold`: A value in raw expression used as the starting threshold value.
- `step`: An integer number indicating the increment of threshold value at each iteration.
- `fine_step`: An integer number indicating the increment of threshold value at each iteration, at the refining stage.
- `num_fine_test`: An integer number indicating the number of iteration of the refining stage.
- `pct_goodsample_threshold`: A fraction value indicating the minimum percentage of samples on which the representative genes are detectable.
- `quantile_threshold`: A probability of gene detection rate above which a sample is considered as good sample.
- `low_quantile_threshold`: A probability of average gene expression value below which a sample is taken as an outlier.
- `min_gene_number`: An integer indicating the minimum size of representative genes.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM.

**Value**

A vector of character stating the IDs of outlier cells.
fluidigmSC_isElementIgnoreCase

A gene finding function

Description
A gene finding function looking for genes in the target set x from the source set y, reproduced from FluidigmSC package.

Usage
fluidigmSC_isElementIgnoreCase(x, y, ignore_case = TRUE)

Arguments
x A vector of characters representing gene names (target genes).
y A vector of characters representing gene names (source genes).
ignore_case Boolean, if TRUE ignores letter case.

Value
A vector of characters representing gene names.

fluidigmSC_readLinearExp

An expression reading function

Description
An expression reading function which imports expression data from .txt file, and then computes log2 transformed data, reproduced from FluidigmSC package.

Usage
fluidigmSC_readLinearExp(exp_file = TRUE, lod = 1)

Arguments
exp_file Input file name in txt format, with rownames of cells and colnames of genes.
lod A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

Value
A list containing expression_data_raw(data frame), log2ex_data(data frame), and log2ex_avg_data(data frame).
**Description**

A gene trimming function removes genes whose average expression value is below the log2(threshold), and also present in at least 10

**Usage**

```r
fluidigmSC_removeGenesByLinearExpForAllType(log2ex_data, log2ex_avg_data, threshold)
```

**Arguments**

- `log2ex_data`: A data frame containing log2 transformed expression values, with rownames of genes and colnames of cells.
- `log2ex_avg_data`: A data frame containing log2 transformed average expression values for individual gene.
- `threshold`: A limit of detection in the unit of TPM/CPM/RPMK.

**Value**

A vector of character containing gene names of those passed the filtering.

---

**Description**

A gene trimming function removes genes whose average expression value is below the log2(threshold); reproduced from FluidigmSC package.

**Usage**

```r
fluidigmSC_removeGenesByLinearExpForAllType_log2(log2ex_data, threshold)
```

**Arguments**

- `log2ex_data`: A data frame containing log2 transformed expression values, with rownames of genes and colnames of cells.
- `threshold`: A limit of detection in the unit of TPM/CPM/RPMK.

**Value**

A vector of character containing gene names of those passed the filtering.
monocle_wrapper

*Description*

A wrapper function for Monocle sorting method

*Usage*

```r
monocle_wrapper(log2_exp, expression_data_raw, lod = 1)
```

*Arguments*

- `log2_exp`: An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
- `expression_data_raw`: A data frame containing raw expression values, with rownames of cells and colnames of genes.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM.

*Value*

A data frame containing single column of ordered sample IDs.

*Examples*

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE),]
rownames(da) <- paste0('spl_', seq(1, nrow(da)))
d <- da[, 1:4]
dl <- da[, 5, drop = FALSE]
#res <- monocle_wrapper(log2_exp = d, expression_data_raw = d)
#dl <- dl[match(res, rownames(dl)),]
#annot <- data.frame(id = seq(1, length(res)), label = dl, stringsAsFactors = FALSE)
#ggsplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

neighborhood_sorting

*Description*

A sorting function using the Neighborhood algorithm

*Usage*

```r
neighborhood_sorting(d, weights_mat = NULL, max_iter = 100)
```
Arguments

d  A matrix containing n-by-n cell distance.
weights_mat  A weight matrix of size n-by-n.
max_iter  An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).

---

**neighborhood_sortingcost**

*A cost computation function for Neighborhood algorithm*

Description

A cost computation function for Neighborhood algorithm

Usage

```r
neighborhood_sortingcost(expr = NULL, sigma_width = 1, method = c("Euclidean", "Correlation", "eJaccard", "none"))
```

Arguments

- `expr`  An expression matrix containing n-rows of cells and m-cols of genes.
- `sigma_width`  An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
- `method`  A character string indicating the distance function.

Value

A numeric value of sorting cost.

Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE),]
d <- da[,1:4]
randomOrdering_cost <- neighborhood_sortingcost(d, method = 'Euclidean')
randomOrdering_cost
da <- iris
d <- da[,1:4]
properOrdering_cost <- neighborhood_sortingcost(d, method = 'Euclidean')
properOrdering_cost
```
neighborhood_sorting_wrapper

A wrapper function for Neighborhood sorting.

Description
A wrapper function for Neighborhood sorting as proposed in [Tsafrir et al. 2005].

Usage
neighborhood_sorting_wrapper(expr, sigma_width = 1, no_randomization = 10)

Arguments
expr
An expression matrix containing n-rows of cells and m-cols of genes.
sigma_width
An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
no_randomization
An integer number indicating the number of repeated sorting, each of which uses a randomly selected initial cell ordering.

Value
A list containing permutated.expr (data frame) and best.cost (a numeric value).

pca_gene_selection

Gene selection using PCA technique

Description
Gene selection using PCA technique

Usage
pca_gene_selection(data)

Arguments
data
A matrix of data.frame with row.name of cells, and col.name of genes

Value
A vector of the names of selected genes.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.*.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
Rwanderlust

R implementation of wanderlust

Description
R implementation of wanderlust

Usage
Rwanderlust(data, s, l = 15, k = 15, num_graphs = 1,
num_waypoints = 250, waypoints_seed = 123, flock_waypoints = 2,
metric = "euclidean", voting_scheme = "exponential",
band_sample = FALSE, partial_order = NULL, verbose = TRUE)

Arguments
- data: Input data matrix.
- s: Starting point ID.
- l: l nearest neighbours.
- k: k nearest neighbours, k < l.
- num_graphs: Number of repeated graphs.
- num_waypoints: Number of waypoints to guide the trajectory detection.
- waypoints_seed: The seed for reproducing the results.
- flock_waypoints: The number of times for flocking the waypoints, default is 2.
- metric: Distance calculation metric for nearest neighbour detection.
- voting_scheme: The scheme of voting.
- band_sample: Boolean, if band the sample.
- partial_order: default NULL
- verbose: Boolean, if print the details

Value
a list containing Trajectory, Order, Waypoints

Author(s)
Hao Chen

Examples
set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE), ]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- Rwanderlust(data = data, num_waypoints = 100, waypoints_seed = 2)
pd1 <- data.frame(id = wishbone$Trajectory, label=data_label, stringsAsFactors = FALSE)
pd2 <- data.frame(id = seq_along(row.names(data)), label=data_label, stringsAsFactors = FALSE)
#ggplot(pd1, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
#ggplot(pd2, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
scattering_quantification_per_gene

An expression scattering measurement function

Description

An expression scattering measurement function computes the level of scattering for individual genes along the cell ordering.

Usage

scattering_quantification_per_gene(CDS = NULL)

Arguments

CDS: a Monocle's CellDataSet object

Value

integer

Author(s)

MaiChan Lau

sorting_method_parameter_GUI

GUI for sorting method parameters

Description

The parameters appeared on GUI are based on input method, this function is called by uSORT_parameters_GUI. For internal use only.

Usage

sorting_method_parameter_GUI(method = c("autoSPIN", "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"))

Arguments

method: method name.

Value

a list of parameters.

Author(s)

Hao Chen
A wrapper function for SPIN sorting method

Description
A wrapper function for SPIN method provides a R version of SPIN [Tsafir et al. 2005].

Usage

```r
SPIN(data, sorting_method = c("STS", "neighborhood"), sigma_width = 1)
```

Arguments

data An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.

sorting_method A character string indicating the choice of sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.

sigma_width An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

Value
A data frame containing single column of ordered sample IDs.

Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE),]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
res <- SPIN(data = d)
dl <- dl[match(res$SampleID,rownames(dl)),]
annot <- data.frame(id = seq(1,nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

A sorting function using the Side-to-Side (STS) algorithm

Description
A sorting function using the Side-to-Side (STS) algorithm

Usage

```r
STS_sorting(d, max_iter = 10)
```
Arguments

d  A matrix containing n-by-n cell distance.

max_iter  An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).

Example

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE),]
d <- da[,1:4]
randomOrdering_cost <- STS_sortingcost(d, method='Euclidean')
randomOrdering_cost
da <- iris
d <- da[,1:4]
properOrdering_cost <- STS_sortingcost(d, method='Euclidean')
properOrdering_cost
```
**STS_sorting_wrapper**  
*A wrapper function for Side-to-Side (STS) sorting.*

**Description**
A wrapper function for Side-to-Side (STS) sorting as proposed in [Tsafrir et al. 2005].

**Usage**

```
STS_sorting_wrapper(expr, no_randomization = 10)
```

**Arguments**
- `expr` An expression matrix containing n-rows of cells and m-cols of genes.
- `no_randomization` An integer number indicating the number of repeated sorting, each of which uses a randomly selected initial cell ordering.

**Value**
A list containing `permutated.expr` (data frame) and `best.cost` (a numeric value).

---

**summed_local_variance**  
*A summed local variance function*

**Description**
A summed local variance function

**Usage**

```
summed_local_variance(expr = NULL, alpha = NULL, data_type = "linear")
```

**Arguments**
- `expr` An expression matrix containing n-rows of cells and m-cols of genes.
- `alpha` A fraction value indicating the size of window for local variance measurement.
- `data_type` A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

**Value**
A numeric value of the summed local variance.
summed_local_variance_cyclical

*A summed local variance function for cyclical linear data type*

**Description**

A summed local variance function for cyclical linear data type

**Usage**

`summed_local_variance_cyclical(d, alpha = 0.3)`

**Arguments**

- `d`: A cell-to-cell distance matrix.
- `alpha`: A fraction value indicating the size of window for local variance measurement.

**Value**

A numeric value of the summed local variance.

---

summed_local_variance_linear

*A summed local variance function for strictly linear data type*

**Description**

A summed local variance function for strictly linear data type

**Usage**

`summed_local_variance_linear(d, alpha = 0.3)`

**Arguments**

- `d`: A cell-to-cell distance matrix.
- `alpha`: A fraction value indicating the size of window for local variance measurement.

**Value**

A numeric value of the summed local variance.
Description
autoSPIN guided wanderlust. Specifically, we use autoSPIN to help find the starting point for wanderlust.

Usage
`sWanderlust(data, data_type = c("linear", "cyclical"),
SPIN_option = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
diffusionmap_components = 4, l = 15, k = 15, num_waypoints = 150,
flock_waypoints = 2, waypoints_seed = 2711)`

Arguments

data Input data matrix.
data_type The data type which guides the autoSPIN sorting, including linear, cyclical.
SPIN_option SPIN contains two options including STS(default), neighborhood.
alpha alpha parameter for autoSPIN, default is 0.2.
sigma_width Sigma width parameter for SPIN, default is 1.
diffusionmap_components Number of components from diffusion map used for wanderlust analysis, default is 4.
l Number of nearest neighbors, default is 15.
k Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.
num_waypoints Number of waypoint used for wanderlust, default is 150.
flock_waypoints The number of times for flocking the waypoints, default is 2.
waypoints_seed The seed for reproducing the results.

Value
a vector of the sorted oder.

Author(s)
Hao Chen

Examples
```r
set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE),]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- sWanderlust(data = data, num_waypoints = 100)
```
**trajectory_landmarks**

determining initial trajectory and landmarks

**Usage**

```r
trajectory_landmarks(knn, data, s, partial_order = NULL, waypoints = 250,
 waypoints_seed = 123, metric = "euclidean", flock_waypoints = 2,
 band_sample = FALSE)
```

**Arguments**

- **knn**: A sparse matrix of knn.
- **data**: data.
- **s**: The ID of starting point.
- **partial_order**: A vector of IDs specified as recommended waypoints, NULL to ignore.
- **waypoints**: Either the number of waypoints, or specify the waypoint IDs.
- **waypoints_seed**: Random sampling seed, for reproducible results.
- **metric**: Distance calculation metric for nearest neighbour detection.
- **flock_waypoints**: Iteration of using nearest points around waypoint to adjust its position.
- **band_sample**: if give more chance to nearest neighbours of starting point in randomly waypoints selection.

**Value**

a list

---

**uSORT**

_uSORT: A self-refining ordering pipeline for gene selection_

**Description**

This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data.

The main function of _uSORT_ package which provides a workflow of sorting scRNA-seq data.
uSORT

Usage

uSORT(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
preliminary_sorting_method = c("autoSPIN", "sWanderlust", "monocle",
"Wanderlust", "SPIN", "none"), refine_sorting_method = c("autoSPIN",
"sWanderlust", "monocle", "Wanderlust", "SPIN", "none"),
project_name = "uSORT", result_directory = getwd(), nCores = 1,
save_results = TRUE, reproduce_seed = 1234,
scattering_cutoff_prob = 0.75, driving_force_cutoff = NULL,
qval_cutoff_featureSelection = 0.05, pre_data_type = c("linear",
"cyclical"), pre_SPIN_option = c("STS", "neighborhood"),
pre_SPIN_sigma_width = 1, pre_autoSPIN_alpha = 0.2,
pre_autoSPIN_randomization = 20, pre_wanderlust_start_cell = NULL,
pre_wanderlust_num_waypoints = 150,
pre_wanderlust_flock_waypoints = 2,
pre_wanderlust_num_waypoints = 2,
pre_wanderlust_flock_waypoints = 2,
ref_data_type = c("linear", "cyclical"), ref_SPIN_option = c("STS", "neighborhood"),
ref_SPIN_sigma_width = 1, ref_autoSPIN_alpha = 0.2,
ref_autoSPIN_randomization = 20, ref_wanderlust_start_cell = NULL,
ref_wanderlust_num_waypoints = 150,
ref_wanderlust_flock_waypoints = 2,
ref_wanderlust_num_waypoints = 2)

Arguments

eexprs_file Input file name in txt format, with rownames of cells and colnames of genes.
log_transform Boolean, if log transform the data.
remove_outliers Boolean, if remove the outliers.
preliminary_sorting_method Method name for preliminary sorting, including autoSPIN, sWanderlust, monocle,
Wanderlust, SPIN, or none.
refine_sorting_method Method name for refined sorting, including autoSPIN, sWanderlust, monocle,
Wanderlust, SPIN, or none.
project_name A character name as the prefix of the saved result file.
result_directory The directory indicating where to save the results.
nCores Number of cores that will be employed for drive gene selection (parallel computing), default is 1.
save_results Boolean determining if save the results.
reproduce_seed A seed used for reproducing the result.
scattering_cutoff_prob Scattering cutoff value probability for gene selection, default 0.75.
scattering_cutoff_prob Driving force cutoff value for gene selection, default NULL(automatically).
qval_cutoff_featureSelection Q value cutoff for gene selection, default 0.05.
pre_data_type The data type which guides the autoSPIN sorting, including linear, cyclical.
pre_SPIN_option
SPIN contains two options including STS (default), neighborhood.

pre_SPIN_sigma_width
Sigma width parameter for SPIN, default is 1.

pre_autoSPIN_alpha
alpha parameter for autoSPIN, default is 0.2.

pre_autoSPIN_randomization
Number of randomizations for autoSPIN, default is 20.

pre_wanderlust_start_cell
The name of starting cell for wanderlust, default is the first cell from the data.

pre_wanderlust_dfmap_components
Number of components from diffusion map used for wanderlust analysis, default is 4.

pre_wanderlust_l
Number of nearest neighbors used for wanderlust, default is 15.

pre_wanderlust_num_waypoints
Number of waypoint used for wanderlust, default is 150.

pre_wanderlust_waypoints_seed
The seed for reproducing the wanderlust results.

pre_wanderlust_flock_waypoints
The number of times for flocking the waypoints, default is 2.

ref_data_type
The data type which guides the autoSPIN sorting, including linear, cyclical.

ref_SPIN_option
SPIN contains two options including STS (default), neighborhood.

ref_SPIN_sigma_width
Sigma width parameter for SPIN, default is 1.

ref_autoSPIN_alpha
alpha parameter for autoSPIN, default is 0.2.

ref_autoSPIN_randomization
Number of randomizations for autoSPIN, default is 20.

ref_wanderlust_start_cell
The name of starting cell for wanderlust, default is the first cell from the data.

ref_wanderlust_dfmap_components
Number of components from diffusion map used for wanderlust analysis, default is 4.

ref_wanderlust_l
Number of nearest neighbors used for wanderlust, default is 15.

ref_wanderlust_num_waypoints
Number of waypoint used for wanderlust, default is 150.

ref_wanderlust_flock_waypoints
The number of times for flocking the waypoints, default is 2.

ref_wanderlust_waypoints_seed
The seed for reproducing the wanderlust results.

Details
This package incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization. The uSORT workflow can be implemented through calling the main function or the GUI uSORT.


Value
results object (a list)

See Also
uSORT-package, uSORT_GUI

Examples

```r
dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.*\.txt$', full=TRUE)
remove the # symbol of the following codes to test
uSORT_results <- uSORT(exprs_file = file, project_name = "test",
preliminary_sorting_method = "autoSPIN",
refine_sorting_method = "sWanderlust",
save_results = FALSE)
```

The user friendly GUI for uSORT-package

Description
This GUI provides an easy way for applying the uSORT package.

Usage
uSORT_GUI()

Value
the GUI for uSORT-package

Author(s)
Hao Chen

References
http://JinmiaoChenLab.github.io/uSORT/

See Also
uSORT-package, uSORT

Examples

```r
interactive()
#if(interactive()) uSORT_GUI() # remove the hash symbol to run
```
**uSORT_parameters_GUI**  
*The GUI for inputting parameters for uSORT*

**Description**

This is a function for generating the GUI for uSORT, it’s called by `uSORT_GUI`. For internal use only.

**Usage**

`uSORT_parameters_GUI()`

**Value**

a list of parameters.

**Author(s)**

Hao Chen

---

**uSORT_preProcess**  
*A data loading and pre-processing function*

**Description**

A data loading and pre-processing function which firstly identifies outlier cells and scarcely expressed genes.

**Usage**

`uSORT_preProcess(exprs_file, log_transform = TRUE, remove_outliers = TRUE, lod = 1)`

**Arguments**

- `exprs_file`: Input file name in txt format, with rownames of cells and colnames of genes.
- `log_transform`: Boolean, if TRUE log transform the data.
- `remove_outliers`: Boolean, if TRUE remove the outliers.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

**Value**

A list containing `exprs_raw` (data frame) and `exprs_logTrimed` (data frame).

**Examples**

```r
dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
```
uSORT_sorting_wrapper

**Description**

Sorting methods include autoSPIN, sWanderlust, monocle, Wanderlust, SPIN. Any of the sorting method can be called directly using this function.

**Usage**

```r
uSORT_sorting_wrapper(data, data_raw, method = c("autoSPIN", "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"), data_type = c("linear", "cyclical"), SPIN_option = c("STS", "neighborhood"), SPIN_sigma_width = 1, autoSPIN_alpha = 0.2, autoSPIN_randomization = 20, wanderlust_start_cell = NULL, wanderlust_dfmap_components = 4, wanderlust_l = 15, wanderlust_num_waypoints = 150, wanderlust_waypoints_seed = 2711, wanderlust_flock_waypoints = 2)
```

**Arguments**

- `data` : Input preprocessed data matrix with row.name of cells and col.name of genes.
- `data_raw` : Input raw data matrix with row.name of cells and col.name of genes, for monocle method.
- `method` : The name of the sorting method to use, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN and none.
- `data_type` : The type of the data, either linear or cyclical.
- `SPIN_option` : The running option of SPIN, STS or neighborhood.
- `SPIN_sigma_width` : Sigma width for SPIN.
- `autoSPIN_alpha` : alpha for autoSPIN.
- `autoSPIN_randomization` : Number of randomization for autoSPIN.
- `wanderlust_start_cell` : The id of the starting cell for wanderlust.
- `wanderlust_dfmap_components` : The number of components from diffusionmap for wanderlust.
- `wanderlust_l` : The number of nearest neighbors used for wanderlust.
- `wanderlust_num_waypoints` : The number of waypoints for wanderlust.
- `wanderlust_waypoints_seed` : The seed for reproducible analysis.
- `wanderlust_flock_waypoints` : The number of flock times for wanderlust.

**Value**

return the order of sorting results.
Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
exp_PCA_genes <- exp_trimmed[, PCA_selected_genes]
#order <- uSORT_sorting_wrapper(data = exp_PCA_genes, method = 'autoSPIN')

uSORT_write_results(uSORT_results, project_name, result_directory)

Arguments

uSORT_results Result object from uSort function, a list.
project_name A prefix for the saving files.
result_directory The path where to save the results.

Value

save the results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
# remove the # symbol of the following codes to test
# uSORT_results <- uSORT(exprs_file = file,
# project_name = 'test',
# preliminary_sorting_method = 'autoSPIN',
# refine_sorting_method = 'sWanderlust',
# save_results = FALSE)
# uSORT_write_results(uSORT_results,
# project_name = 'test',
# result_directory = getwd())
**variability_per_gene**

A utility function for `scattering_quantification_per_gene` which computes the degree of scattering for single gene, whereby the value is computed by summing over the local values of smaller local windows.

**Usage**

```r
variability_per_gene(logExp = NULL, min_expr = 0.1,
window_size_perct = 0.1, nonZeroExpr_perct = 0.1)
```

**Arguments**

- `logExp` a log-scale expression vector of a gene
- `min_expr` a minimum expression value
- `window_size_perct` a window size (in dispersion level)
- `nonZeroExpr_perct` a minimum amount of cells (in expression, otherwise the associated window will be assigned to 0 dispersion value)

**Value**

integer

**Author(s)**

MaiChan Lau

---

**wanderlust_wrapper**

A wrapper of wanderlust for `sWanderlust`

**Description**

A wrapper of wanderlust for `sWanderlust`

**Usage**

```r
wanderlust_wrapper(data, s, diffusionmap_components = 4, l = 15, k = 15,
um_graphs = 1, num_waypoints = 150, waypoints_seed = 123,
flock_waypoints = 2)
```
Arguments

data  Input data matrix.
s  The ID of starting point.
diffusionmap_components  Number of components from diffusion map used for wanderlust analysis, default is 4.
l  Number of nearest neighbors, default is 15.
k  Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.
num_graphs  Number of repeated graphs.
num_waypoints  Number of waypoint used for wanderlust, default is 150.
waypoints_seed  The seed for reproducing the results.
flock_waypoints  The number of times for flocking the waypoints, default is 2.

Value

sorted order.

Author(s)

Hao Chen
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoSPIN, 2</td>
</tr>
<tr>
<td>clusterGenes1, 3</td>
</tr>
<tr>
<td>compareModels1, 4</td>
</tr>
<tr>
<td>diff_test_helper1, 5</td>
</tr>
<tr>
<td>differentialGeneTest1, 5</td>
</tr>
<tr>
<td>distance_function, 6</td>
</tr>
<tr>
<td>driving_force_gene_selection, 6</td>
</tr>
<tr>
<td>elbow_detection, 7</td>
</tr>
<tr>
<td>EXP_to_CellDataSet, 8</td>
</tr>
<tr>
<td>fluidigmSC_analyzeGeneDetection, 8</td>
</tr>
<tr>
<td>fluidigmSC_identifyExpOutliers, 9</td>
</tr>
<tr>
<td>fluidigmSC_isElementIgnoreCase, 10</td>
</tr>
<tr>
<td>fluidigmSC_readLinearExp, 10</td>
</tr>
<tr>
<td>fluidigmSC_removeGenesByLinearExpForAllType, 11</td>
</tr>
<tr>
<td>fluidigmSC_removeGenesByLinearExpForAllType_log2, 11</td>
</tr>
<tr>
<td>monocle_wrapper, 12</td>
</tr>
<tr>
<td>neighborhood_sorting, 12</td>
</tr>
<tr>
<td>neighborhood_sorting_wrapper, 14</td>
</tr>
<tr>
<td>neighborhood_sortingcost, 13</td>
</tr>
<tr>
<td>pca_gene_selection, 14</td>
</tr>
<tr>
<td>Rwanderlust, 15</td>
</tr>
<tr>
<td>scattering_quantification_per_gene, 16</td>
</tr>
<tr>
<td>sorting_method_parameter_GUI, 16</td>
</tr>
<tr>
<td>SPIN, 17</td>
</tr>
<tr>
<td>STS_sorting, 17</td>
</tr>
<tr>
<td>STS_sorting_wrapper, 19</td>
</tr>
<tr>
<td>STS_sortingcost, 18</td>
</tr>
<tr>
<td>summed_local_variance, 19</td>
</tr>
<tr>
<td>summed_local_variance_cyclical, 20</td>
</tr>
<tr>
<td>summed_local_variance_linear, 20</td>
</tr>
<tr>
<td>sWanderlust, 21</td>
</tr>
<tr>
<td>trajectory_landmarks, 22</td>
</tr>
<tr>
<td>uSORT, 22, 24, 25</td>
</tr>
</tbody>
</table>