
BUScorrect: Batch Effects Correction with
Unknown Subtypes
User’s Guide

Xiangyu Luo ∗ and Yingying Wei
The Chinese University of Hong Kong
∗xyluo1991@gmail.com

April 15, 2025

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Estimated Subtypes and Batch Effects . . . . . . . . . . . . . . . . . . 9

5 Intrinsic Gene Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Visualize the Adjusted Genomic Data . . . . . . . . . . . . . . . . . . . 12

7 Model Selection using BIC . . . . . . . . . . . . . . . . . . . . . . . . . . 15

mailto:xyluo1991@gmail.com


BUScorrect: Batch Effects Correction with Unknown Subtypes
User’s Guide

1 Introduction
High-throughput experimental data are accumulating exponentially in public databases. How-
ever, mining valid scientific discoveries from these abundant resources is hampered by technical
artifacts and inherent biological heterogeneity. The former are usually termed “batch effects,”
and the latter is often modelled by subtypes.

Researchers have long been aware that samples generated on different days are not directly
comparable. Samples processed at the same time are usually referred to as coming from the
same “batch.” Even when the same biological conditions are measured, data from different
batches can present very different patterns. The variation among different batches may be
due to changes in laboratory conditions, preparation time, reagent lots, and experimenters [1].
The effects caused by these systematic factors are called “batch effects.”

Various “batch effects” correction methods have been proposed when the subtype information
for each sample is known [2, 3]. Here we adopt a “broad” definition for “subtype.” “Subtype”
is defined as a set of samples that share the same underlying genomic profile, in other words
biological variability, when measured with no technical artifacts. For instance, groupings such
as “case” and “control” can be viewed as two subtypes. However, subtype information is
usually unknown, and it is often the main interest of the study to learn the subtype for each
collected sample, especially in personalized medicine.

Here, the R package BUScorrect fits a Bayesian hierarchical model—the Batch-effects-correction-
with-Unknown-Subtypes model (BUS)—to correct batch effects in the presence of unknown
subtypes [4]. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples
that share similar characteristics into subtypes, (c) identifying features that distinguish sub-
types, and (d) enjoying a linear-order computation complexity. After correcting the batch
effects with BUS, the corrected value can be used for other analysis as if all samples are
measured in a single batch. BUS can integrate batches measured from different platforms and
allow subtypes to be measured in some but not all of the batches as long as the experimental
design fulfils the conditions listed in [4].

This guide provides step-by-step instructions for applying the BUS model to correct batch
effects and identify the unknown subtype information for each sample.
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2 Data Preparation
To fit the BUS model, we first look at the input data format. Two types of data formats are
allowed, the R list and the SummarizedExperiment object [5]. Specifically, assuming there are
3 batches, the R list consists of 3 gene expression matrices with genes in rows and samples
in columns. Alternatively, the user may have a SummarizedExperiment object at hand. The
SummarizedExperiment object is a matrix, where rows represent genes, columns are samples,
and the column data record the batch information for each sample. In the following, we pro-
vide concrete examples for the two allowable input formats.

library(BUScorrect)

data("BUSexample_data", package="BUScorrect")

#BUSexample_data is a list

class(BUSexample_data)

## [1] "list"

#The list's length is three, thus we have three batches

length(BUSexample_data)

## [1] 3

#Each element of the list is a matrix

class(BUSexample_data[[1]])

## [1] "matrix" "array"

#In the matrix, a row is a gene, and a column corresponds to a sample

dim(BUSexample_data[[1]])

## [1] 2000 70

dim(BUSexample_data[[2]])

## [1] 2000 80

dim(BUSexample_data[[3]])

## [1] 2000 70

#Look at the expression data

head(BUSexample_data[[1]][ ,1:4])
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## [,1] [,2] [,3] [,4]

## [1,] 2.263650 2.250625 2.128499 1.614491

## [2,] 1.912706 2.568451 1.791857 2.378035

## [3,] 1.887739 2.438090 2.139468 1.697558

## [4,] 2.027666 1.818928 2.102251 1.764076

## [5,] 2.712226 1.654110 2.213404 1.482805

## [6,] 2.263879 2.070646 2.058670 1.985701

The example data BUSexample_data consist of 3 batches. In total, 2000 genes are measured.
The sample sizes of each batch are 70, 80, and 70, respectively. Because it is a simulation
data set, we actually know that all of the samples come from 3 subtypes. In addition, we can
prepare a SummarizedExperiment object named BUSdata_SumExp using the BUSexample_data

as follows.

#require the SummarizedExperiment from Bioconductor

require(SummarizedExperiment)

## Loading required package: SummarizedExperiment

## Loading required package: MatrixGenerics

## Loading required package: matrixStats

##

## Attaching package: ’MatrixGenerics’

## The following objects are masked from ’package:matrixStats’:

##

## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,

## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,

## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,

## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,

## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,

## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,

## colWeightedMeans, colWeightedMedians, colWeightedSds,

## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,

## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,

## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,

## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
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## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs,

## rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians,

## rowWeightedSds, rowWeightedVars

## Loading required package: GenomicRanges

## Loading required package: stats4

## Loading required package: BiocGenerics

## Loading required package: generics

##

## Attaching package: ’generics’

## The following objects are masked from ’package:base’:

##

## as.difftime, as.factor, as.ordered, intersect, is.element,

## setdiff, setequal, union

##

## Attaching package: ’BiocGenerics’

## The following objects are masked from ’package:stats’:

##

## IQR, mad, sd, var, xtabs

## The following objects are masked from ’package:base’:

##

## Filter, Find, Map, Position, Reduce, anyDuplicated, aperm,

## append, as.data.frame, basename, cbind, colnames, dirname,

## do.call, duplicated, eval, evalq, get, grep, grepl, is.unsorted,

## lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,

## pmin.int, rank, rbind, rownames, sapply, saveRDS, table, tapply,

## unique, unsplit, which.max, which.min

## Loading required package: S4Vectors

##

## Attaching package: ’S4Vectors’

## The following object is masked from ’package:utils’:

##

## findMatches
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## The following objects are masked from ’package:base’:

##

## I, expand.grid, unname

## Loading required package: IRanges

## Loading required package: GenomeInfoDb

## Loading required package: Biobase

## Welcome to Bioconductor

##

## Vignettes contain introductory material; view with

## ’browseVignettes()’. To cite Bioconductor, see

## ’citation("Biobase")’, and for packages ’citation("pkgname")’.

##

## Attaching package: ’Biobase’

## The following object is masked from ’package:MatrixGenerics’:

##

## rowMedians

## The following objects are masked from ’package:matrixStats’:

##

## anyMissing, rowMedians

#batch number

B <- length(BUSexample_data)

#sample size vector

n_vec <- sapply(1:B, function(b){

ncol(BUSexample_data[[b]])})

#gene expression matrix

GE_matr <- NULL

for(b in 1:B){

GE_matr <- cbind(GE_matr, BUSexample_data[[b]])

}

rownames(GE_matr) <- NULL

colnames(GE_matr) <- NULL
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#batch information

Batch <- NULL

for(b in 1:B){

Batch <- c(Batch, rep(b, n_vec[b]))

}

#column data frame

colData <- DataFrame(Batch = Batch)

#construct a SummarizedExperiment object

BUSdata_SumExp <- SummarizedExperiment(assays=list(GE_matr=GE_matr), colData=colData)

head(assays(BUSdata_SumExp)$GE_matr[ ,1:4])

## [,1] [,2] [,3] [,4]

## [1,] 2.263650 2.250625 2.128499 1.614491

## [2,] 1.912706 2.568451 1.791857 2.378035

## [3,] 1.887739 2.438090 2.139468 1.697558

## [4,] 2.027666 1.818928 2.102251 1.764076

## [5,] 2.712226 1.654110 2.213404 1.482805

## [6,] 2.263879 2.070646 2.058670 1.985701

head(colData(BUSdata_SumExp)$Batch)

## [1] 1 1 1 1 1 1

In a nutshell, the user can use either the R list or the SummarizedExperiment object as input.
Regarding the R list, the list length is equal to the batch number, and each list component is a
gene expression matrix from a batch. With respect to the SummarizedExperiment object, it is
a matrix where rows are genes and columns represent samples, and the user has to specify the
sample-specific batch indicators through the Batch vector in the colData column data frame.

3 Model Fitting
Once we have prepared the input data and specified the subtype number, we are able to fit
the BUS model, which requires the function BUSgibbs. The first argument, Data, of BUSgibbs
should be either an R list or a SummarizedExperiment object. If Data is an R list, each el-
ement of Data is a data matrix for a specific batch, where each row corresponds to a gene
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or a genomic feature and each column corresponds to a sample. If Data is a Summarized-
Experiment object, assays(Data) must contain a gene expression matrix named “GE_matr,”
where one row represents a gene and one column corresponds to a sample. colData(Data)

must include a vector named “Batch”, which indicates the batch information for each sample.
The second argument, n.subtypes, is the number of subtypes among samples, which needs
to be specified by the user in advance. As discussed later, if n.subtypes is unknown, we can
vary the subtype number and use BIC to select the optimal number. The third argument,
n.iterations, is the total number of iterations to run by the Gibbs sampler for posterior
inference of the BUS model. The first n.iterations/2 iterations are treated as burn-in, and
posterior samples from the second n.iterations/2 iterations are kept for statistical inference.
The fourth argument, showIteration, lets the user decide whether BUSgibbs should display
the number of iterations that have been run. To reproduce the results, the users are highly
recommended to set set.seed before running BUSgibbs.

#For R list input format

set.seed(123)

BUSfits <- BUSgibbs(Data = BUSexample_data, n.subtypes = 3, n.iterations = 300,

showIteration = FALSE)

## running the Gibbs sampler ...

## The Gibbs sampler takes: 0.372 mins

## calculating posterior means and posterior modes...

## calculating BIC...

#For SummarizedExperiment object input format

#set.seed(123)

#BUSfits_SumExp <- BUSgibbs(Data = BUSdata_SumExp, n.subtypes = 3, n.iterations = 300,

# showIteration = FALSE)

The summary command provides an overview of the output object BUSfits from BUSgibbs.
BUSfits collects all the posterior samples and posterior estimates for the intrinsic gene indica-
tors, the subtype class for each sample, the subtype proportions for each batch, the baseline
expression levels, the subtype effects, the location batch effects, and the scale batch effects.

summary(BUSfits)

## B = 3 batches
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## G = 2000 genes

## K = 3 subtypes

## n.records = 150 iterations are recorded.

##

## BUSfits is an R list that contains the following main elements:

##

## BUSfits$Subtypes : estimated subtype indicators, an R list with length B.

## BUSfits$pi : estimated subtype proportions across batches, a B by K matrix.

## BUSfits$alpha : estimated baseline expression levels, a vector with length G.

## BUSfits$gamma : estimated location batch effects a G by B matrix.

## BUSfits$mu : estimated subtype effects, a G by K matrix.

## BUSfits$sigma_sq : estimated variances across batches, a G by B matrix.

## BUSfits$BIC : estimated BIC, a scalar.

## BUSfits$L_PosterSamp : the posterior samples of the intrinsic gene indicators,

## a G by K-1 by n.records array.

## For more output values, please use "?BUSgibbs"

4 Estimated Subtypes and Batch Effects
Our main interests lie in the estimation of the subtype class for each sample and the batch
effects. We can call the Subtypes function to extract the subtype information from BUSfits.

est_subtypes <- Subtypes(BUSfits)

## Batch 1 samples’ subtype indicators: 222... ...

## Batch 2 samples’ subtype indicators: 222... ...

## Batch 3 samples’ subtype indicators: 222... ...

## The output format is a list with length equal to the batch number.

## Each element of the list is a subtype indicator vector in that batch.

There is a message from the function Subtypes to remind the user of the format of est_subtypes.
est_subtypes is a list of length 3, corresponding to the three batches in the study. est_subtypes[[1]]

shows the subtype for each of the 70 samples on batch 1.
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Similarly, you can call location_batch_effects and scale_batch_effects functions to get
the estimated location and scale batch effects.

est_location_batch_effects <- location_batch_effects(BUSfits)

## The output format is a matrix.

## Each row represents a gene, and each column corresponds to a batch.

head(est_location_batch_effects)

## [,1] [,2] [,3]

## [1,] 0 3.027846 0.9788055

## [2,] 0 2.956818 1.0375224

## [3,] 0 2.974575 1.0098305

## [4,] 0 3.008553 1.0328079

## [5,] 0 3.019663 0.9759860

## [6,] 0 2.882450 0.8925550

est_scale_batch_effects <- scale_batch_effects(BUSfits)

## The output format is a matrix.

## Each row represents a gene, and each column corresponds to a batch.

head(est_scale_batch_effects)

## [,1] [,2] [,3]

## [1,] 1 1.420293 1.1468249

## [2,] 1 1.179968 1.2829231

## [3,] 1 1.066596 0.9038884

## [4,] 1 1.456537 1.1398424

## [5,] 1 1.343309 1.2217145

## [6,] 1 1.187621 1.0607870

The first batch is taken as the reference batch, therefore its location batch effects are zeros
for all the genes and its scale batch effects are all ones.

The subtype effects can be obtained by the subtype_effects function. Notice that the first
subtype is taken as the baseline subtype.
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est_subtype_effects <- subtype_effects(BUSfits)

## The output format is a matrix.

## Each row represents a gene, and each column corresponds to a subtype.

5 Intrinsic Gene Identification
The intrinsic genes are the genes that differentiate subtypes [6]. We use the following func-
tions to identify the intrinsic genes by controlling the false discovery rate.

#select posterior probability threshold to identify the intrinsic gene indicators

thr0 <- postprob_DE_thr_fun(BUSfits, fdr_threshold=0.01)

## Posterior probability threshold = 0.42

## The output is a scalar.

est_L <- estimate_IG_indicators(BUSfits, postprob_DE_threshold=thr0)

## The output format is a matrix.

## Each row represents a gene, and each column corresponds to a subtype from 2

to K

#obtain the intrinsic gene indicators

intrinsic_gene_indices <- IG_index(est_L)

## 199intrinsic genes are found.

## The output format is a vector showing the intrinsic gene indices.

The function postprob_DE_thr_fun calculates the best posterior probability threshold that re-
sults in a false discovery rate less than fdr_threshold. postprob_DE_thr_fun also gives the
user a message about the selected posterior probability threshold. estimate_IG_indicators

then obtain the selected threshold to estimate intrinsic gene indicators. Finally, one can obtain
the intrinsic gene indices by calling the function IG_index.

The postprob_DE function calculates the posterior probability of being differentially expressed
for genes in subtypes k (k ≥ 2).

11



BUScorrect: Batch Effects Correction with Unknown Subtypes
User’s Guide

postprob_DE_matr <- postprob_DE(BUSfits)

## Showing the posterior probability of being differentiallyexpressed

## for gene g in subtype k (k>=2) compared to subtype 1.

## The output format is a matrix.

## Each row represents a gene, and each column corresponds to a subtype.

6 Visualize the Adjusted Genomic Data
The function adjusted_values adjusts the batch effects for the original data.

adjusted_data <- adjusted_values(BUSfits, BUSexample_data)

## The output format is a list with length equal to the batch number.

## Each element of the list is the adjusted gene expression matrix.

## In the matrix, each row represents a gene, and each column corresponds to a

sample.

The message is a reminder of the output format. Subsequently, we can compare the original
data suffering from batch effects and the adjusted data with the batch effects removed.

The function visualize_data plots a heatmap for the expression values across batches. The
user can specify the argument gene_ind_set, which is a vector, to select the genes to be
displayed in the heatmap.
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#only show the first 100 genes

visualize_data(BUSexample_data, title_name = "original expression values",

gene_ind_set = 1:100)
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#try the following command to show the whole set of genes

#visualize_data(BUSexample_data, title_name = "original expression values",

# gene_ind_set = 1:2000)
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#only show the first 100 genes

visualize_data(adjusted_data, title_name = "adjusted expression values",

gene_ind_set = 1:100)
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#try the following command to show the whole set of genes

#visualize_data(adjusted_data, title_name = "adjusted expression values",

# gene_ind_set = 1:2000)
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In these two heatmaps, the top bar indicates the batch origin for each sample. Samples under
the same colour are from the same batch. The batch effects present in the original data are
correctly removed, and only the biological variability is kept.

7 Model Selection using BIC
If we have no prior knowledge about the subtype number, we can vary the argument n.subtypes
in the function BUSgibbs, e.g., from 2 to 10 and identify the underlying true subtype number
K as the one that achieves the minimal BIC.

In BUScorrect R package, one can obtain the BIC value as follows.

BIC_val <- BIC_BUS(BUSfits)

## BIC is 644136.818607818

## The output is a scalar.

In this example, the underlying true subtype number is three. For an illustration, we vary the
n.subtypes from 2 to 4.

BIC_values <- NULL

for(k in 2:4){

set.seed(123)

BUSfits <- BUSgibbs(Data = BUSexample_data, n.subtypes = k, n.iterations = 300,

showIteration = FALSE)

BIC_values <- c(BIC_values, BIC_BUS(BUSfits))

}

## running the Gibbs sampler ...

## The Gibbs sampler takes: 0.33 mins

## calculating posterior means and posterior modes...

## calculating BIC...

## BIC is 616387.188250276

## The output is a scalar.
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## running the Gibbs sampler ...

## The Gibbs sampler takes: 0.352 mins

## calculating posterior means and posterior modes...

## calculating BIC...

## BIC is 644136.818607818

## The output is a scalar.

## running the Gibbs sampler ...

## The Gibbs sampler takes: 0.361 mins

## calculating posterior means and posterior modes...

## calculating BIC...

## BIC is 668089.736809492

## The output is a scalar.

plot(2:4, BIC_values, xlab="subtype number", ylab="BIC", main="BIC plot", type="b")
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The BIC attains the minimum at n.subtypes= 3, thus correctly recovering the true subtype
number.
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