Counting reads with `summarizeOverlaps`

Valerie Obenchain

Edited: April 2016; Compiled: April 30, 2018

Contents

1 Introduction .. 1
2 A First Example .. 1
3 Counting Modes .. 2
4 Counting Features ... 3
5 `pasilla` Data ... 6
 5.1 source files ... 6
 5.2 counting .. 7
6 References .. 8

1 Introduction

This vignette illustrates how reads mapped to a genome can be counted with `summarizeOverlaps`. Different "modes" of counting are provided to resolve reads that overlap multiple features. The built-in count modes are fashioned after the "Union", "IntersectionStrict", and "IntersectionNotEmpty" methods found in the HTSeq package by Simon Anders (see references).

2 A First Example

In this example reads are counted from a list of BAM files and returned in a `matrix` for use in further analysis such as those offered in `DESeq2` and `edgeR`.

```r
> library(GenomicAlignments)
> library(DESeq2)
> library(edgeR)
> fls <- list.files(system.file("extdata", package="GenomicAlignments"), recursive=TRUE, pattern="*bam", full=TRUE)
> features <- GRanges(
```
Counting reads with **summarizeOverlaps**

```r
+ seqnames = c(rep("chr2L", 4), rep("chr2R", 5), rep("chr3L", 2)),
+ ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600, 4000,
+ 7500, 5000, 5400), width=c(rep(500, 3), 600, 900, 500, 300, 900,
+ 300, 500, 500)), ",",
+ group_id=c(rep("A", 4), rep("B", 5), rep("C", 2)))
> olap <- summarizeOverlaps(features, fls)
> deseq <- DESeqDataSet(olap, design= ~ 1)
> edger <- DGEList(assay(olap), group=rownames(colData(olap)))
```

By default, the **summarizeOverlaps** function iterates through files in 'chunks' and with files processed in parallel. For finer-grain control over memory consumption, use the **BamFileList** function and specify the `yieldSize` argument (e.g., `yieldSize=1000000`) to determine the size of each 'chunk' (smaller chunks consume less memory, but are a little less efficient to process). For controlling the number of processors in use, use **BiocParallel::register** to use an appropriate back-end, e.g., in Linux or Mac to process on 6 cores of a single machine use `register(MulticoreParam(workers=6))`; see the **BiocParallel** vignette for further details.

3 Counting Modes

The modes of "Union", "IntersectionStrict" and "IntersectionNotEmpty" provide different approaches to resolving reads that overlap multiple features. Figure 1 illustrates how both simple and gapped reads are handled by the modes. Note that a read is counted a maximum of once; there is no double counting. For additional detail on the counting modes see the **summarizeOverlaps** man page.
Counting reads with \texttt{summarizeOverlaps}

<table>
<thead>
<tr>
<th></th>
<th>Union</th>
<th>IntersectionStrict</th>
<th>IntersectionNotEmpty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>Feature I</td>
<td>No hit</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>No hit</td>
<td>Feature I</td>
<td>Feature I</td>
</tr>
<tr>
<td>Feature I</td>
<td>No hit</td>
<td>No hit</td>
<td>No hit</td>
</tr>
</tbody>
</table>

* Picture reproduced from HTSeq web site: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Figure 1: Counting Modes

4 Counting Features

Features can be exons, transcripts, genes or any region of interest. The number of ranges that define a single feature is specified in the \texttt{features} argument.

When annotation regions of interest are defined by a single range a \texttt{GRanges} should be used as the \texttt{features} argument. With a \texttt{GRanges} it is assumed that each row (i.e., each range) represents a distinct feature. If \texttt{features} was a \texttt{GRanges} of exons, the result would be counts per exon.
Counting reads with `summarizeOverlaps`

When the region of interest is defined by one or more ranges the `features` argument should be a `GRangesList`. In practice this could be a list of exons by gene or transcripts by gene or other similar relationships. The count result will be the same length as the `GRangesList`. For a list of exons by genes, the result would be counts per gene.

The combination of defining the features as either `GRanges` or `GRangesList` and choosing a counting mode controls how `summarizeOverlaps` assigns hits. Regardless of the mode chosen, each read is assigned to at most a single feature. These options are intended to provide flexibility in defining different biological problems.

This next example demonstrates how the same read can be counted differently depending on how the `features` argument is specified. We use a single read that overlaps two ranges, gr1 and gr2.

```r
> rd <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(100),
  +   cigar = "300M", strand = strand("+"))
> gr1 <- GRanges("chr1", IRanges(start=50, width=150), strand="+")
> gr2 <- GRanges("chr1", IRanges(start=350, width=150), strand="+")
```

When provided as a `GRanges` both gr1 and gr2 are considered distinct features. In this case none of the modes count the read as a hit. Mode `Union` discards the read because more than 1 feature is overlapped. `IntersectionStrict` requires the read to fall completely within a feature which is not the case for either gr1 or gr2. `IntersectionNotEmpty` requires the read to overlap a single unique disjoint region of the `features`. In this case gr1 and gr2 do not overlap so each range is considered a unique disjoint region. However, the read overlaps both gr1 and gr2 so a decision cannot be made and the read is discarded.

```r
> gr <- c(gr1, gr2)
> data.frame(union = assay(summarizeOverlaps(gr, rd)),
  +   intStrict = assay(summarizeOverlaps(gr, rd,
  +     mode="IntersectionStrict")),
  +   intNotEmpty = assay(summarizeOverlaps(gr, rd,
  +     mode="IntersectionNotEmpty")))

<table>
<thead>
<tr>
<th></th>
<th>reads</th>
<th>reads.1</th>
<th>reads.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Next we count with `features` as a `GRangesList`; this is list of length 1 with 2 elements. Modes `Union` and `IntersectionNotEmpty` both count the read for the single feature.

```r
> grl <- GRangesList(c(gr1, gr2))
> data.frame(union = assay(summarizeOverlaps(grl, rd)),
  +   intStrict = assay(summarizeOverlaps(grl, rd,
  +     mode="IntersectionStrict")),
  +   intNotEmpty = assay(summarizeOverlaps(grl, rd,
  +     mode="IntersectionNotEmpty")))

<table>
<thead>
<tr>
<th></th>
<th>reads</th>
<th>reads.1</th>
<th>reads.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

In this more complicated example we have 7 reads, 5 are simple and 2 have gaps in the CIGAR. There are 12 ranges that will serve as the `features`.

```r
4
```
Counting reads with `summarizeOverlaps`

```r
> features <- GRanges(
+   seqnames = Rle(c("chr1", "chr2", "chr1", "chr2", "chr2",
+   "chr1", "chr1", "chr2", "chr1", "chr2")),
+   strand = strand(rep("+", length(group_id))),
+   ranges = IRanges(
+     start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000, 3000, 3350, 5000, 5400),
+     width=c(500, 900, 500, 300, 600, 300, 500, 900, 150, 200, 500, 500)),
+   DataFrame(group_id)
+ )
> reads <- GAlignments(
+   names = c("a","b","c","d","e","f","g"),
+   seqnames = Rle(c(rep(c("chr1", "chr2"), 3), "chr1")),
+   pos = as.integer(c(1400, 2700, 3400, 7100, 4000, 3100, 5200)),
+   cigar = c("500M", "100M", "300M", "500M", "300M", "50M200N50M", "50M150N50M"),
+   strand = strand(rep.int("+", 7L)))
>
Using a `GRanges` as the `features` all 12 ranges are considered to be different features and counts are produced for each row,

```r
data.frame(union = assay(summarizeOverlaps(features, reads)),
+ intStrict = assay(summarizeOverlaps(features, reads,
+ mode="IntersectionStrict")),
+ intNotEmpty = assay(summarizeOverlaps(features, reads,
+ mode="IntersectionNotEmpty"))
```

reads reads.1 reads.2
1 1 0 1
2 1 1 1
3 0 0 0
4 0 0 0
5 0 1 1
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 1 1
12 0 0 0

When the data are split by group to create a `GRangesList` the highest list-levels are treated as different features and the multiple list elements are considered part of the same features. Counts are returned for each group.

```r
> lst <- split(features, mcols(features)[["group_id"]])
> length(lst)
[1] 8
```

```r
data.frame(union = assay(summarizeOverlaps(lst, reads)),
+ intStrict = assay(summarizeOverlaps(lst, reads,
+ mode="IntersectionStrict")),
```

```
Counting reads with \texttt{summarizeOverlaps}

\begin{verbatim}
+ intNotEmpty = assay(summarizeOverlaps(lst, reads,
+ mode="IntersectionNotEmpty"))
\end{verbatim}

<table>
<thead>
<tr>
<th></th>
<th>reads</th>
<th>reads.1</th>
<th>reads.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

If desired, users can supply their own counting function as the \texttt{mode} argument and take advantage of the infrastructure for counting over multiple BAM files and parsing the results into a \texttt{RangedSummarizedExperiment} object. See \texttt{?BamViews-class} or \texttt{?BamFile-class} in the \texttt{Rsamtools} package.

5 \textbf{pasilla Data}

In this exercise we count the \texttt{pasilla} data by gene and by transcript then create a \texttt{DESeqDataSet}. This object can be used in differential expression methods offered in the \texttt{DESeq2} package.

5.1 source files

Files are available through NCBI Gene Expression Omnibus (GEO), accession number GSE18508. \url{http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508}. SAM files can be converted to BAM with the \texttt{asBam} function in the \texttt{Rsamtools} package. Of the seven files available, 3 are single-reads and 4 are paired-end. Smaller versions of untreated1 (single-end) and untreated2 (paired-end) have been made available in the \texttt{pasillaBamSubset} package. This subset includes chromosome 4 only.

\texttt{summarizeOverlaps} is capable of counting paired-end reads in both a \texttt{BamFile}-method (set argument \texttt{singleEnd=TRUE}) or a \texttt{GAlignmentPairs}-method. For this example, we use the 3 single-end read files,

- treated1.bam
- untreated1.bam
- untreated2.bam

Annotations are retrieved as a GTF file from the ENSEMBL web site. We download the file to our local disk, then use \texttt{Rtracklayer}'s \texttt{import} function to parse the file to a \texttt{GRanges} instance.

\begin{verbatim}
> library(rtracklayer)
+ "gtf/drosophila_melanogaster/",
+ "Drosophila_melanogaster.BDG5.25.62.gtf.gz")
> gffFile <- file.path(tempdir(), basename(fl))
\end{verbatim}
Counting reads with \texttt{summarizeOverlaps}

```r
> download.file(fl, gffFile)
> gff0 <- import(gffFile)
Subset on the protein-coding, exon regions of chromosome 4 and split by gene id.

```r
dx <- mcols(gff0)$source == "protein_coding" &
+ mcols(gff0)$type == "exon" &
+ seqnames(gff0) == "4"
> gff <- gff0[idx]
> ## adjust seqnames to match Bam files
> seqlevels(gff) <- paste("chr", seqlevels(gff), sep="")
> chr4genes <- split(gff, mcols(gff)$gene_id)
```5.2 counting

The \texttt{param} argument can be used to subset the reads in the bam file on characteristics such as position, unmapped or paired-end reads. Quality scores or the "NH" tag, which identifies reads with multiple mappings, can be included as metadata columns for further subsetting. See \texttt{?ScanBamParam} for details about specifying the \texttt{param} argument.

```r
> param <- ScanBamParam(
+ what='qual',
+ which=GRanges("chr4", IRanges(1, 1e6)),
+ flag=scanBamFlag(isUnmappedQuery=FALSE, isPaired=NA),
+ tag="NH")
We use \texttt{summarizeOverlaps} to count with the default mode of "Union". If a \texttt{param} argument is not included all reads from the BAM file are counted.

```r
> fls <- c("treated1.bam", "untreated1.bam", "untreated2.bam")
> path <- "pathToBAMFiles"
> bamlst <- BamFileList(fls)
> genehits <- summarizeOverlaps(chr4genes, bamlst, mode="Union")
```A \texttt{CountDataSet} is constructed from the counts and experiment data in \texttt{pasilla}.

```r
> expdata <- MIAME(
+   name="pasilla knockdown",
+   lab="Genetics and Developmental Biology, University of Connecticut Health Center",
+   contact="Dr. Brenton Graveley",
+   title="modENCODE Drosophila pasilla RNA Binding Protein RNAi knockdown RNA-Seq Studies",
+   pubMedIds="20921232",
+   abstract="RNA-seq of 3 biological replicates of from the Drosophila melanogaster S2-DRSC cells that have been RNAi depleted of mRNAs encoding pasilla, a mRNA binding protein and 4 biological replicates of the the untreated cell line.")
> design <- data.frame(
```
Counting reads with `summarizeOverlaps`

```r
+ condition=c("treated", "untreated", "untreated"),
+ replicate=c(1,1,2),
+ type=rep("single-read", 3),
+ countfiles=path(colData(genehits)[,1]), stringsAsFactors=TRUE)

> geneCDS <- DESeqDataSet(genehits, design=design, metadata=list(expdata=expdata))
```

If the primary interest is to count by transcript instead of by gene, the annotation file can be split on transcript id.

```r
> chr4tx <- split(gff, mcols(gff)$transcript_id)
> txhits <- summarizeOverlaps(chr4tx, bamlst)
> txCDS <- DESeqDataSet(txhits, design=design, metadata=list(expdata=expdata))
```

6 References

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html