Usage of MODA

Dong Li
dxl466@cs.bham.ac.uk
School of Computer Science, The University of Birmingham, UK

Date modified: 2016-10-17

In this example we embed parts of the examples from the MODA help page into a single document.

1 Module detection

First of all we conduct the experiment on the synthetic dataset which contains two expression profiles \(datExpr_1 \) and \(datExpr_2 \) with 500 genes, and each has 20 and 25 samples. Details of data generation can be found in supplementary file of MODA paper [1]. Basic module detection functions are provided by WGCNA [2].

```r
library(MODA)
##
data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1 #threshold to define conserved modules
##modules detection for network 1
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder,
                                           indicator1,CuttingCriterion)
## ..done.
##modules detection for network 2
intModules2 <- WeightedModulePartitionDensity(datExpr2,ResultFolder,
                                           indicator2,CuttingCriterion)
## ..done.
```

which shows how to detect modules using hierarchical clustering with the optimal cutting height of dendrogram. The heatmap of correlation matrix of gene expression profile 1 may looks like Figure 1. Another package [3] has the similar function.

The selection of optimal cutting height for each expression profile would be stored under directory \(ResultFolder \). Take \(datExpr_1 \) in the synthetic data for example, a file named \(Partitions_X.pdf \) may looks like Figure 2.

At the same time, each module for each expression profile would be stored as plain text file, with the name indicator from \(indicator_1 \) and \(indicator_2 \). Each secondary directory under \(ResultFolder \) has the same name of condition name, e.g \(indicator_2 \), used to store differential analysis results.
The condition-specific networks can be specified by two vectors if there are more. There are three files under the secondary directory named by condition name: two text files of them are condition specific and conserved modules id

2 Network comparison

After the module detection for background network and all condition-specific networks, we can compare them using following function

\[
\text{CompareAllNets(RESULTFolder, intModules1, indicator1, intModules2, indicator2, specificTheta, conservedTheta)}
\]

The condition specific networks can be specified by two vectors if there are more. There are three files under the secondary directory named by condition name: two text files of them are condition specific and conserved modules id
from background network, and one pdf for showing how to determine these modules by two parameters specific\textit{Theta} and conserved\textit{Theta} based on a Jaccard index matrix. Theoretical details can be found in supplementary file of MODA paper. The figure may looks like Figure 3.

3 Biological explanation

Finally we can do gene annotation enrichment analysis with integrative tools like DAVID1 or Enrichr2, to see whether a module gene list can be explained by existing biological process, pathways or even diseases.

4 Session info

- R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: MODA 1.0.0, knitr 1.14
- Loaded via a namespace (and not attached): AnnotationDbi 1.36.0, Biobase 2.34.0, BiocGenerics 0.20.0, BiocStyle 2.2.0, DBI 0.5-1, Formula 1.2-1, GO.db 3.4.0, Hmisc 3.17-4, IRanges 2.8.0, Matrix 1.2-7.1, RColorBrewer 1.1-2, RSQLite 1.0.0, Rcpp 0.12.7, S4Vectors 0.12.0, WGCNA 1.51, acepack 1.3-3.3, chron 2.3-47, cluster 2.0.5, codetools 0.2-15, colorspace 1.2-7, data.table 1.9.6, doParallel 1.0.10, dynamicTreeCut 1.63-1, evaluate 0.10, fastcluster 1.1.21, foreach 1.4.3, foreign 0.8-67, formatR 1.4, ggplot2 2.1.0, grid 3.3.1, gridExtra 2.2.1, gtable 0.2.0, igraph 1.0.1, impute 1.48.0, iterators 1.0.8, lattice 0.20-34, latticeExtra 0.6-28, magrittr 1.5, matrixStats 0.51.0, munsell 0.4.3, nnet 7.3-12, parallel 3.3.1, plyr 1.8.4, preprocessCore 1.36.0, rpart 4.1-10, scales 0.4.0, splines 3.3.1, stats4 3.3.1, stringi 1.1.2, stringr 1.1.0, survival 2.39-5, tools 3.3.1

1https://david.ncifcrf.gov

2http://amp.pharm.mssm.edu/Enrichr
References

