
Supplementary manual. Sequential design of
RNA-seq experiments

Camille Stephan-Otto Attolini, Victor Peña, David Rossell

This manual explains how to use casper to help design RNA-seq experi-
ments, for the main manual please load the package and type vignette(’casper’)
at the command prompt. casper provides tools to design RNA-seq isoform
expression experiments, both single and multiple sample studies. The former
may e.g. estimate relative isoform expression within a gene or perform de
novo isoform discovery, whereas the latter usually search for isoforms that are
differentially expressed across sample groups (e.g. healthy vs. sick). When
designing such an experiment researchers face numerous decisions, including
the sequencing setup (e.g. number of reads, read length), sample preparation
(e.g. insert sizes) and the sample size (in multiple sample studies). Choosing
the optimal strategy is challenging, as it depends on the structure of the iso-
forms, their (unknown) absolute and relative expressions, the extent to which
they differ across groups and on non-trivial interactions with the sequencing
technology and sample preparation.

Because it is impossible to anticipate all these issues, casper adopts a
sequential strategy. Based on preliminary data, it simulates RNA-seq data
under several experimental setups and evaluates their relative merits using
Bayesian decision theory. The approach is sequential in that, whenever new
experimental data is observed it can be added to the preliminary data to
refine the predictions. More formally, predictions are based on posterior
predictive draws that incorporate the uncertainty on all unknown quantities
and condition on all data observed so far.

The performance (utility) of each considered experimental setup is eval-
uated with default criteria related to estimation error (single sample stud-
ies) or operating characteristics (multiple sample studies). An advantage of
the proposed simulation-based approach is that the experimenter may easily
change or modify these default criteria. The best design can then be chosen
either informally or by maximizing posterior expected utility (Savage, 1954).
Simulated data are returned as ExpressionSet objects or .bam files, so that
alternative analysis strategies within Bioconductor (Gentleman et al., 2004)

1

or third-party software can be easily integrated.

1 One sample experiments

1.1 Quick mean absolute error calculation with sim-
MAE

The goal is to assess which sequencing settings are expected to better char-
acterize isoform expression in a single sample. That is, we need to decide the
number of paired-end reads (N), read length (r) and average insert size (f).
casper provides functions to simulate RNA-seq data (based on the model
introduced in Rossell et al. (2014)) and to evaluate the accuracy in isoform
expression estimation for different combinations of (N, r, f). We note that
the desired number of reads N differs from the actual number of reads Ñ in
a random fashion that depends on read mappability and deviations from the
target read yield in the sequencing facility. casper accounts for this uncer-
tainty by generating a different Ñ in each simulation (see help for simMAE or
simMultSamples for details). Our examples here assume that the goal is to
estimate isoform expression at a sufficiently high precision, but one can easily
consider alternative goals (e.g. determining the dominant isoform for each
gene, the probability of detecting previously unknown isoforms) by running
any desired software on our generated .bam files.

As illustration we now design a one sample study to estimate isoform ex-
pression in LCL transformed cells. Although casper works best when based
on RNA-seq pilot data related to the experiment that is being designed, Sec-
tion 1.3 describes default RNA-seq human and mouse data and Section 1.4
how to use any expression data formatted as an ExpressionSet (e.g. mi-
croarray data from GEO). We downloaded a bam file from the 1000 Genomes
project (http://www.1000genomes.org/data) corresponding to an RNA-seq
experiment on LCL cells, and processed it with function wrapKnown (see the
main casper manual for details). We also formatted the human genome hg19
in the format required by casper by running

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> hg19DB <- procGenome(TxDb.Hsapiens.UCSC.hg19.knownGene,

genome='hg19')

To consider another organism simply use the corresponding Bioconductor
package, usually replacing hg19 for the corresponding genome e.g. mm10 for
mouse, dm3 for drosophila melanogaster, etc. Transcriptomes arising from
de novo isoform predictions are also supported, see help(procGenome) for

details on how to import .gtf files. For convenience here we load directly
a pre-computed hg19DB and the pilot data after running wrapKnown (which
contains estimated read start and insert size distributions, expression levels,
and path counts). The pilot data are available at https://sites.google.

com/site/rosselldavid/home/myfiles, file oneT.casper.RData (see Sec-
tion 1.3 for details).

> options(width=60,digits=3,continue=" ")

> library(casper)

> load("hg19DB.RData")

> load("oneT.casper.RData")

Suppose we wish to compare the following 12 experimental setups, which
arise from considering total sequenced bp=4,10,16 billions, read lengths r =
76, 101 and mean insert sizes f = 200, 300.

> bp=rep(c(4,10,16) *1e9, 4)

> r=c(76, 101, 750)[gl(2, length(bp)/4, length=length(bp))]

> n <- round(bp/(r*2))

> f=c(rep(200, length(bp)/2),rep(300, length(bp)/2))

> f=rep(c(200,300), each=length(bp))

> cbind(n,r,f)

n r f

[1,] 2.63e+07 76 200

[2,] 6.58e+07 76 200

[3,] 1.05e+08 76 200

[4,] 1.98e+07 101 200

[5,] 4.95e+07 101 200

[6,] 7.92e+07 101 200

[7,] 2.63e+07 76 200

[8,] 6.58e+07 76 200

[9,] 1.05e+08 76 200

[10,] 1.98e+07 101 200

[11,] 4.95e+07 101 200

[12,] 7.92e+07 101 200

[13,] 2.63e+07 76 300

[14,] 6.58e+07 76 300

[15,] 1.05e+08 76 300

[16,] 1.98e+07 101 300

[17,] 4.95e+07 101 300

[18,] 7.92e+07 101 300

[19,] 2.63e+07 76 300

[20,] 6.58e+07 76 300

[21,] 1.05e+08 76 300

[22,] 1.98e+07 101 300

https://sites.google.com/site/rosselldavid/home/myfiles
https://sites.google.com/site/rosselldavid/home/myfiles

[23,] 4.95e+07 101 300

[24,] 7.92e+07 101 300

Throughout we assume that paired-end sequencing is used. However,
single-end experiments can also be considered in casper by setting f = 2r,
so that the two ends overlap and we effectively have a single-end experiment.
For instance, 1,500bp single-end reads can be emulated by setting r = 750
and f = 1500.

The wrapper function simMAE simulates nsim RNA-seq experiments for
each experimental setting, obtains relative isoform expression estimates for
each of them and evaluates the mean absolute error (MAE) of these estimates.
Alternatively, each of these steps can be performed separately, in particular
.sam files can be generated with function simReads (see Section 1.2). The
simMAE call to obtain nsim=5 simulations is below.

> sims <- simMAE(nsim=5, nreads=n, readLength=r,

fragLength=f, pc=oneT$pc, distr=oneT$distr, readLength.pilot=101,

retTxsError=FALSE, genomeDB=hg19DB, mc.cores.int=4,

mc.cores=5, verbose=TRUE)

Before proceeding, we make some remarks regarding the simMAE argu-
ments (for further details see the help).

• By default simMAE considers all isoforms in the given genome, but one
can also selected a subset of genes with argument islandid.

• If retTxsError is TRUE, the function returns posterior expected MAE
for each individual isoform. Else the output is a data.frame with
(overall) MAE across all isoforms.

• pc contains path counts in the pilot data, alternatively one may provide
an ExpressionSet via argument eset.pilot.

• The pilot data is assumed to be from a related experiment rather than
the current tissue of interest (usePilot=FALSE). Hence, the pilot data is
used to simulate new RNA-seq data but not to estimate its expression.
However, in some cases we may be interested in re-sequencing the pilot
sample at deeper depth, in which case one would want to combine the
pilot data with the new data to obtain more precise estimates. This
can be achieved by setting usePilot=TRUE.

• mc.cores and mc.cores.int indicate the number of cores to be used
in the simulations. Setting them to values greater than 1 can speed up
computations, but also be quite memory hungry.

• distr are the read length and fragment length (insert size) distributions
in the pilot data, as returned by wrapKnown or getDistrs

• readLength.pilot is the read length in the pilot data.

Because we set retTxsError=FALSE, the output of simMAE is a table with
estimated mean absolute error (MAE) for each simulation. Since nsim was
set to 5, there are 5 replicates for each of the experimental setups we are
interested in. Standard errors can be obtained as SD over sqrt(nsim), as
usual. There is little variability in the MAE for each experimental setting,
hence nsim=5 already provides very low SE in this example.

> head(sims)

MAE Nreads ReadLength frLength

1 0.0387 26315789 76 200

2 0.0385 26315789 76 200

3 0.0383 26315789 76 200

4 0.0386 26315789 76 200

5 0.0390 26315789 76 200

6 0.0311 65789474 76 200

> e <- paste('N=',sims[,2],'_r=',sims[,3],'_f=',sims[,4],sep='')
> tapply(sims$MAE, e, mean)

N=105263158_r=76_f=200 N=105263158_r=76_f=300

0.0274 0.0264

N=19801980_r=101_f=200 N=19801980_r=101_f=300

0.0411 0.0394

N=26315789_r=76_f=200 N=26315789_r=76_f=300

0.0386 0.0374

N=49504950_r=101_f=200 N=49504950_r=101_f=300

0.0329 0.0314

N=65789474_r=76_f=200 N=65789474_r=76_f=300

0.0309 0.0298

N=79207921_r=101_f=200 N=79207921_r=101_f=300

0.0291 0.0276

> se <- tapply(sims$MAE, e, sd)/sqrt(5)

> se

N=105263158_r=76_f=200 N=105263158_r=76_f=300

9.59e-05 3.31e-05

N=19801980_r=101_f=200 N=19801980_r=101_f=300

9.65e-05 1.51e-04

N=26315789_r=76_f=200 N=26315789_r=76_f=300

1.06e-04 1.94e-04

N=49504950_r=101_f=200 N=49504950_r=101_f=300

1.97e-04 6.81e-05

N=65789474_r=76_f=200 N=65789474_r=76_f=300

7.68e-05 1.23e-04

N=79207921_r=101_f=200 N=79207921_r=101_f=300

1.56e-04 5.22e-05

These results can be easily summarized with a plot (Figure 1). For any
given coverage, the configuration with the best performance is read length
r = 76 and fragment length f = 300. We expect that increasing the coverage
from 30X to 80X will improve the accuracy of the estimation noticeably, but
the expected increase in precision from 80X to 125X is not as substantial.

> totl <- sum(hg19DB@txLength)

> resall <- as.data.frame(sims)

> resall$bp <- resall$Nreads*resall$ReadLength*2

> resall$cov <- resall$bp/totl

> library(ggplot2)

> resall$exp.setup = factor(paste(resall$ReadLength,resall$frLength))

> resall$cov = as.factor(round(resall$cov))

> p = ggplot(aes(x=cov, y=MAE, fill=exp.setup), data=resall)

> print(p+geom_boxplot()+xlab("Coverage"))

●

●

●

●
●

0.030

0.035

0.040

32 79 127
Coverage

M
A

E

exp.setup

101 200

101 300

76 200

76 300

Figure 1: Estimated Mean Absolute Error (MAE) for 3 different choices of
coverage (approx. 30X, 80X, 125X), 2 of read length (76bp and 101bp), and
2 of fragment length (200bp and 300bp).

Lastly, one can check the goodness-of-fit of the model using simMAEcheck.

This function compares the vector that contains the number of reads that
have been aligned to each gene (in the pilot data) with posterior predictive
simulations. The output of simMAEcheck is a list with 2 entries

• U: contains MAE estimates based on synthetic replications of the ex-
perimental data.

• mod_check: shows the expected number of islands for which the ob-
served data lie in the range of the simulations (assuming they have
the same distribution), and the actual results in the posterior predic-
tive simulations. If the model fits the data, the expected value and
observed value should be similar.

In our example, setting the number of posterior predictive simulations to
5:

checks <- simMAEcheck(nsim=5, pc=oneT$pc, distr=oneT$distr, readLength.pilot=101,

retTxsError=FALSE, genomeDB=hg19DB, mc.cores.int=2, mc.cores=1, verbose=TRUE)

Note that the arguments of simMAEcheck are a subset of those used for
simMAE. The output of the function is:
> checks

$U

MAE Nreads ReadLength frLength

1 0.0449 16770752 101 290

2 0.0448 16770752 101 290

3 0.0457 16770752 101 290

4 0.0452 16770752 101 290

5 0.0487 16770752 101 290

$mod_check

Expected Observed

1 14387 10252

1.2 Generate a sam file with simulated reads

In order to facilitate integration with other software, function simReads pro-
vides the option to write simulated (aligned) reads to a sam file. The following
code writes a simulation run to the file ’sims.sam’:

First we need to get number of reads in each gene island in the pilot data.
Rather than simulating reads for all genes, for computational speed here we
select only the first 10 non-empty gene islands.

> load('oneT.casper.RData')
> nReads <- getNreads(oneT$pc)

> head(nReads)

1 2 3 4 5 6

0 0 1762 4 0 1894

> nSimReads <- nReads[nReads>10][1:10]

> nSimReads

3 6 7 8 9 10 11 12 13 14

1762 1894 68 695 995 161 379 232 703 493

> isls <- names(nSimReads)

Next we estimate expression on the pilot data. Notice that by setting
rpkm=FALSE, calcExp will return relative rather than absolute isoform ex-
pression (i.e. adding up to 1 for each gene island).

> readLength=101

> tmp <- calcExp(distrs=oneT$distr, genomeDB=hg19DB,

pc=oneT$pc, islandid=isls, rpkm=FALSE, readLength=readLength)

> pis <- exprs(tmp)[,1]

> names(pis) <- rownames(tmp)

> head(pis)

NM_001145277 NM_001145278 NM_018090 NM_013943

0.0273 0.0109 0.9618 1.0000

NM_001195683 NM_003243

0.2268 0.2275

Finally, we call simReads to simulate reads and write to file ’sims.sam’.

> sims <- simReads(islandid=isls, nSimReads=nSimReads, pis=pis,

rl=readLength, writeBam=TRUE, distrs=oneT$distr,

genomeDB=hg19DB, bamFile='sims', seed=1)

Formatting input

Simulating fragments

10 % of fragments simulated

20 % of fragments simulated

30 % of fragments simulated

40 % of fragments simulated

50 % of fragments simulated

60 % of fragments simulated

70 % of fragments simulated

80 % of fragments simulated

90 % of fragments simulated

100 % of fragments simulated

Splitting counts

To convert the sam file to the binary bam format, sort and index the
file we can use the software samtools (Li et al. (2009)) with the following
command:

> system("samtools view -Sb sims.sam > sims.bam &&

samtools sort sims.bam sims.sorted && samtools index sims.sorted.bam")

1.3 Default human and mouse datasets

We provide two example datasets that can be used as default pilot data,
one for human and one for mouse, which can be downloaded from https://

sites.google.com/site/rosselldavid/home/myfiles (files oneT.casper.RData
micebladder.rep1.RData). These files can be used to generate simulations
with parameter combinations different to those considered in our paper.

As default pilot human data we downloaded fasta files for sample ERS185276
from the 1000 Genomes project (http://www.1000genomes.org/data). Af-
ter aligning with Tophat (Trapnell et al., 2009) and default parameters, we
used function wrapKnown to generate the object oneT. The read length for
this experiment is 101bp. This named list contains all necessary information
to simulate reads with simMAE or simReads (Sections 1.1-1.2).

• exp: An ExpressionSet with estimated log-RPKM expression

• distr: An object of class readDistrs

• pc: An object of class pathCounts

> load("oneT.casper.RData")

> names(oneT)

[1] "pc" "distr" "exp"

Note that these objects provide transcript expressions in RPKM, but
currently simMAE only supports relative isoform, hence we need to com-
pute relative expressions from the pilot data. This is easy since we have
the pathCounts and readDistr objects, so we can simply set the argument
rpkm=FALSE in calcExp.

> readLength=101

> pilot <- calcExp(distrs=oneT$distr, genomeDB=hg19DB,

pc=oneT$pc, islandid=isls, rpkm=FALSE, readLength=readLength)

> pis <- exprs(pilot)[,1]

> names(pis) <- rownames(pilot)

We now describe the default RNA-seq mouse data. We downloaded bam
files for mouse bladder sample wgEncodeEM003062 of the Encode project

https://sites.google.com/site/rosselldavid/home/myfiles
https://sites.google.com/site/rosselldavid/home/myfiles

(http://www.noncode.org). We used function wrapKnown to generete the
object rep1. The read length for this sample is 101bp.

> load("micebladder.rep1.RData")

> names(rep1)

[1] "pc" "distr" "exp"

1.4 ExpressionSet as pilot data

The earlier sections used RNA-seq data formatted as .bam files for pilot data
(processed with wrapKnown), which ideally come from a related study (same
organism, related tissue or experimental conditions). Although we strongly
recommend that such pilot data be used whenever available, simMAE also
allows using any ExpressionSet object as pilot data by leaving argument
pc missing and specifying argument eset.pilot instead. For instance, pilot
data can be easily obtained from Gene Expression Omnibus (Edgar et al.,
2002) using function getGEO from package GEOquery, and could even come
from microarray or other technologies. Importantly, simMAE assumes that
eset.pilot contains normalized log2 expression, i.e. gene expression is as-
sumed proportional to 2^exprs(eset.pilot). Isoform expression within
a gene is then generated from a symmetric Dirichlet distribution with pa-
rameter 1/Ig, where Ig is the number of isoforms in gene g (see details in
help(simMAE)). Within the package casper we also provide default read
start and insert size distributions in data ’distrsGSE37704’ (see Section 2).

As illustration we use an example where the pilot data contains 10 samples
and measures expression for 100 genes. For computational speed here we
create eset.pilot with random expression levels, but of course in practice
it would contain actual experimental data. We observe that, as expected,
MAE decreases with sequencing depth.

> exprsx <- matrix(rnorm(1000),nrow=100,ncol=10)

> eset.pilot <- new("ExpressionSet", exprs=exprsx)

> data("distrsGSE37704")

> distr <- distrsGSE37704[[1]]

> n <- c(10^6,2*10^6)

> r <- rep(101,length(n))

> f <- rep(300,length(n))

> sims <- simMAE(nsim=2, nreads=n, readLength=r,

fragLength=f, distr=distr, eset.pilot=eset.pilot,

genomeDB=hg19DB, verbose=TRUE)

Simulating pilot data...

Generating posterior samples j = 1

Obtaining expression estimates...

Average MH acceptance rate 0.827451

Formatting output...

Running simulations for j = 1

Formatting input

Simulating fragments

10 % of fragments simulated

20 % of fragments simulated

30 % of fragments simulated

40 % of fragments simulated

50 % of fragments simulated

60 % of fragments simulated

70 % of fragments simulated

80 % of fragments simulated

90 % of fragments simulated

100 % of fragments simulated

Splitting counts

Finished simulations

Formatting input

Simulating fragments

10 % of fragments simulated

20 % of fragments simulated

30 % of fragments simulated

40 % of fragments simulated

50 % of fragments simulated

60 % of fragments simulated

70 % of fragments simulated

80 % of fragments simulated

90 % of fragments simulated

100 % of fragments simulated

Splitting counts

Finished simulations

Generating posterior samples j = 2

Obtaining expression estimates...

Average MH acceptance rate 0.827402

Formatting output...

Running simulations for j = 2

Formatting input

Simulating fragments

10 % of fragments simulated

20 % of fragments simulated

30 % of fragments simulated

40 % of fragments simulated

50 % of fragments simulated

60 % of fragments simulated

70 % of fragments simulated

80 % of fragments simulated

90 % of fragments simulated

100 % of fragments simulated

Splitting counts

Finished simulations

Formatting input

Simulating fragments

10 % of fragments simulated

20 % of fragments simulated

30 % of fragments simulated

40 % of fragments simulated

50 % of fragments simulated

60 % of fragments simulated

70 % of fragments simulated

80 % of fragments simulated

90 % of fragments simulated

100 % of fragments simulated

Splitting counts

Finished simulations

> sims

MAE Nreads ReadLength frLength

1 0.0711 1e+06 101 300

2 0.0698 1e+06 101 300

3 0.0562 2e+06 101 300

4 0.0559 2e+06 101 300

2 Multiple sample problem

Multiple sample problems are more challenging in that, additional to the se-
quencing setup (depth, read length and fragment size) one must also decide
on the sample size. For a given monetary cost, one may choose to either
sequence a few samples at high depth or more samples at lower depth. While
adding samples increases the statistical power as usual, a higher sequencing
depth increases the estimation precision within each sample and the prob-
ability of observing reads from low expression isoforms. As the adequate
strategy depends on the specifics of the study (e.g. amount of differential ex-
pression, number of low expression isoforms), casper implements a sequential

strategy. It uses pilot data to learn these characteristics and simulates fu-
ture data taking into account the inherent uncertainty (e.g. the pilot data
provides imperfect expression and fold change estimates).

As an illustration, we consider the Homo sapiens RNA-seq study de-
scribed in Trapnell et al. (2013). The data are available at Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession GSE37704.
Shortly, the study aims to compare expression between a knock-down (KO)
and a scramble group. Three samples per group were sequenced using MiSeq
technology, and three further independent samples using HiSeq. As MiSeq is
a cheaper desktop sequencing technology yielding a relatively low number of
sequences, we use the MiSeq data as our pilot data to assess the potential ad-
vantages of performing a follow-up HiSeq study. Because actual HiSeq data
is available, we can then evaluate the quality of the predictions provided by
casper.

The first step was to download the MiSeq and HiSeq fasta files, align the
reads and obtain expression estimates with wrapKnown. The processed data
are available at https://sites.google.com/site/rosselldavid/home/myfiles,
files gse37704_miseq.RData and gse37704.RData. Before proceeding to the
analysis we indicate the commands needed to obtain the processed data. We
aligned the reads with TopHat (Trapnell et al., 2009) using default param-
eters to the human genome version hg19. The code to import the resulting
BAM files into Bioconductor and obtain expression estimates with function
wrapKnown is below (see vignette("casper") for details). The example is
for a single sample (SRR493372), and also shows how to format the tran-
scriptome as needed by casper with function procGenome.

> library(GenomicFeatures)

> genDB <- makeTranscriptDbFromUCSC("hg19",tablename="refGene")

> hg19DB <- procGenome(genDB, "hg19")

> bamFile <- 'SRR493372/sorted_hits.bam'
> SRR493372 <- wrapKnown(bamFile, genomeDB=hg19DB, readLength=101,

keep.multihits=FALSE)

We used wrapKnown on the remaining MiSeq samples (SRR493373 to
SRR493376). The slot "exp" in the output of wrapKnown contains an ExpressionSet

with the estimated isoform expressions, and the slot "distrs" the estimated
insert size and read start distributions. We used function mergeExp to com-
bine the expressions in a single ExpressionSet. The keep option indicates to
save transcript and gene ids, as well as the number of aligned reads per gene
in the featureData. We stored the insert sizes and read start distributions
in a list.

http://www.ncbi.nlm.nih.gov/geo
https://sites.google.com/site/rosselldavid/home/myfiles

> sampleNames <- paste("SRR4933",72:76,sep="")

> gse37704.miseq <- mergeExp(SRR493372$exp,SRR493373$exp,SRR493374$exp,

SRR493375$exp,SRR493376$exp,SRR493376$exp, sampleNames=sampleNames,

keep=c('transcript','gene','explCnts'))
> gse37704.miseq$group <- factor(rep(c('Scramble','HOXA1KD'),each=3))
> gse37704.miseq <- quantileNorm(gse37704.miseq)

> distrsGSE37704 <- list(SRR493372$distr,SRR493373$distr,SRR493374$distr,

SRR493375$distr,SRR493376$distr,SRR493377$distr)

Finally, we applied quantile normalization to gse37704.miseq using quantileNorm.
We repeated the same process for the HiSeq data (samples SRR493367 to
SRR493371).

We now proceed to the analysis. We first load the MiSeq data and anno-
tated genome (available at https://sites.google.com/site/rosselldavid/
home/myfiles).

> load('hg19DB.RData')
> load('gse37704_miseq.RData')
> gse37704.miseq

ExpressionSet (storageMode: lockedEnvironment)

assayData: 40892 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: SRR493372 SRR493373 ... SRR493377 (6

total)

varLabels: group

varMetadata: labelDescription

featureData

featureNames: NM_032291 NM_001145277 ... NM_012312

(40892 total)

fvarLabels: transcript island_id ... readCount (16

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

> pData(gse37704.miseq)

group

SRR493372 Scramble

SRR493373 Scramble

SRR493374 Scramble

SRR493375 HOXA1KD

https://sites.google.com/site/rosselldavid/home/myfiles
https://sites.google.com/site/rosselldavid/home/myfiles

SRR493376 HOXA1KD

SRR493377 HOXA1KD

The main step is to simulate future HiSeq data via posterior predictive
simulation, i.e. conditional on the MiSeq data, which is implemented in
simMultSamples. By default simMultSamples uses the log-normal normal
with modified variance model (LNNMV, Yuan and Kendziorski (2006)) to
simulate the true expression levels in each sample (argument model=’LNNMV’),
which is a hierarchical Normal-Normal model. As an alternative setting
model=’GaGa’ generates data from the GaGa model (Rossell, 2009), a sim-
ilar hierarchical model where expression levels and underlying parameters
are assumed to be Gamma distributed. Essentially the GaGa model is
preferrable when observed expression levels are positively skewed, although
typically both models give fairly similar results when the pilot sample has
≥ 2 samples per group. We indicate to use the MiSeq pilot data with
x=gse37704.miseq, and that there’s a variable ’group’ in pData(x) con-
taining group labels with groups=’group’. We simulate 3 HiSeq samples
per group (nsamples=c(3,3)) with a target of 12 million (nreads) 101bp
(readLength=101) read pairs in each sample, with an average insert size of
fragLength=200. We set the simulation in this manner to resemble the ac-
tual HiSeq data in GSE37704, which had 12-16 million 101bp aligned read
pairs with an average insert size close to 200bp.

simMultSamples generates reads and insert sizes to reflect experimen-
tal biases (e.g. 3’ end bias). Ideally these are estimated from pilot data
with wrapKnown or getDistrs (casper does not impose any parametric as-
sumptions to be as realistic as possible). For convenience, we also provide
default distributions estimated from the GSE37704 MiSeq data in the dataset
distrsGSE37704, which we observed is not too different from what estimates
we obtained in various HiSeq datasets. distrs may be a list with estimates
from several samples, and in this case simMultSamples randomly chooses
one of them for each simulation, i.e. incorporates the uncertainty regard-
ing the actual insert size and read distribution for future samples. To save
computation time here we only obtain nsim=5 simulations, but in practice
we recommend more to better assess uncertainty (nsim=20 seemed to suffice
in most examples we considered). The argument mc.cores can be used for
parallel processing.

> data(distrsGSE37704)

> nreads <- 12*10^6

> gse37704.new <- simMultSamples(5, nsamples=c(3,3), nreads=nreads,

+ readLength=101, fragLength=200, x=gse37704.miseq, groups='group',
+ distrs=distrsGSE37704, genomeDB=hg19DB, mc.cores=6)

Fitting NNGV model...

Obtaining 5 simulations (6 samples with 11833598 reads each -- some will be non-mappable depending on readLength)

......

......

......

......

......

simMultSamples returns an object of class "simulatedSamples " with
nsim simulated datasets and nsamples each. We can select subsets as usual,
e.g. gse37704.new[1:3] returns the first three simulations and gse37704.new[,c(1,4)]

returns samples 1 and 4 (the first sample in each group) from all nsim simu-
lations. We can also recover the simulation truth for the differences between
group means in each simulation with coef. Estimated isoform expressions
(casper log-rpkm estimate) in each simulated data are returned in Expres-
sionSets, on which one may use any desired analysis strategy. Here we use
mergeBatches to combine the simulated HiSeq with the observed MiSeq
data, which performs quantile normalization, a linear-model batch effect ad-
justment, and returns a list of ExpressionSet objects ready for analysis.

> gse37704.new

simulatedSamples object with 5 simulated datasets (6 samples each)

- 'coef' gets true differences between group means (returns matrix)

- 'exprs' gets estimated expressions (returns list of ExpressionSets)

- 'mergeBatches' combines exprs with a given ExpressionSet (returns list of ExpressionSets)

> #Select 2 simulations

> gse37704.new[1:2]

simulatedSamples object with 2 simulated datasets (6 samples each)

- 'coef' gets true differences between group means (returns matrix)

- 'exprs' gets estimated expressions (returns list of ExpressionSets)

- 'mergeBatches' combines exprs with a given ExpressionSet (returns list of ExpressionSets)

> #Select 2 samples from each sim

> gse37704.new[,c(1,2,4,5)]

simulatedSamples object with 5 simulated datasets (4 samples each)

- 'coef' gets true differences between group means (returns matrix)

- 'exprs' gets estimated expressions (returns list of ExpressionSets)

- 'mergeBatches' combines exprs with a given ExpressionSet (returns list of ExpressionSets)

> #Simulation truth

> logfc.true <- coef(gse37704.new)

> head(logfc.true)

sim1 sim2 sim3 sim4 sim5

NM_032291 -0.854 -1.094 -0.7904 -0.9190 -0.9334

NM_001145277 -0.157 -0.251 -0.2433 0.1392 -0.0115

NM_001145278 1.113 0.282 0.6674 0.6239 0.5010

NM_018090 0.268 0.302 0.5607 0.2463 0.1211

NM_052998 -0.380 -0.310 -0.4127 -0.4313 -0.2583

NM_001080397 -0.301 -0.275 -0.0944 -0.0193 -0.2560

> #Simulated expressions

> #(casper log-rpkm estimates)

> gse37704.new[[1]]$simExpr

ExpressionSet (storageMode: lockedEnvironment)

assayData: 40892 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: Sample 1 Sample 2 ... Sample 6 (6

total)

varLabels: group

varMetadata: labelDescription

featureData

featureNames: NM_032291 NM_001145277 ... NM_012312

(40892 total)

fvarLabels: explCnts.1 explCnts.2 ... readCount (7

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

> #Merge with pilot data

> xnewadj <- mergeBatches(gse37704.miseq,gse37704.new,mc.cores=2)

> length(xnewadj)

[1] 5

> class(xnewadj[[1]])

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

Before proceeding to the analysis, we show that this preprocessing is in-
deed necessary with the actual GSE37704 HiSeq data. (file gse37704.RData

at https://sites.google.com/site/rosselldavid/home/myfiles). We
combine the data using mergeBatches as before, and also combine the data
with no adjustment.

https://sites.google.com/site/rosselldavid/home/myfiles

SRR493372 SRR493375 SRR493366 SRR493369

−
5

0
5

SRR493372 SRR493375 SRR493366 SRR493369

−
6

−
4

−
2

0
2

4
6

Figure 2: Boxplot with estimated isoform expressions with no adjustment
(left) and the adjustment in mergeBatches (right)

> load('gse37704.RData')
> xadj <- mergeBatches(gse37704.miseq,gse37704)

.

> n <- featureNames(gse37704)

> xnoadj <- cbind(exprs(gse37704.miseq)[n,], exprs(gse37704))

When no adjustment is applied the range of estimated expressions in
MiSeq data is substantially shorter than in HiSeq (Figure 2 left). That is,
the higher HiSeq sequencing depth results in a broader dynamic range. As
usual with expression studies, a suitable normalization must be applied to
avoid systematic biases. The simple quantile normalization in mergeBatches

seems to perform satisfactorily (Figure 2 right).

> boxplot(xnoadj,outline=FALSE)

> boxplot(exprs(xadj),outline=FALSE)

The boxplots discussed above inform about biases at the genome-wide
level, but they cannot reveal biases at the transcript level. For this purpose
we obtain PCA plots. In the unadjusted data (Figure 3, left) we observe that,
while KO and Scramble samples are well separated within each batch, there
are strong differences between batches. It should be noted that these differ-
ences remain even after applying quantile normalization to the unadjusted
data (data not shown). The adjustment implemented in mergeBatches ef-
fectively removes batch effects (Figure 3, right). Here HiSeq samples exhibit
lower variability than MiSeq, which would be consistent with a lower estima-
tion error afforded by their higher sequencing depth.

● ●●

●
●
●

−100 −50 0 50 100

−
10

0
−

50
0

50
10

0

PC1

P
C

2

●

●

KO MiSeq
Scr MiSeq
KO HiSeq
Scr HiSeq

●

●

●

●

●
●

−40 −20 0 20 40

−
40

−
20

0
20

40

PC1

P
C

2

●

●

KO MiSeq
Scr MiSeq
KO HiSeq
Scr HiSeq

Figure 3: PCA plot for unadjusted data (left) and data adjusted with
mergeBatches (right)

> pca <- prcomp(t(xnoadj))

> col <- c(gse37704.miseq$group,gse37704$group)

> pch <- rep(1:2,each=6)

> ylim <- range(pca$x[,1:2])

> plot(pca$x[,1:2], col=col, pch=pch, ylim=ylim)

> txt <- c('KO MiSeq','Scr MiSeq','KO HiSeq','Scr HiSeq')
> legend('topleft',txt,col=c(1,2,1,2),pch=c(1,1,2,2))
> pca <- prcomp(t(exprs(xadj)))

> col <- ifelse(xadj$group=='HOXA1KD',1,2)
> pch <- ifelse(xadj$batch=='batch1',1,2)
> ylim <- range(pca$x[,1:2])

> plot(pca$x[,1:2], col=col, pch=pch, ylim=ylim)

> legend('topright',txt,col=c(1,2,1,2),pch=c(1,1,2,2))
We now proceed to differential expression analysis. The basic idea is to

apply any desired data analysis technique to the simulated data, the corre-
sponding results giving an idea of what is expected in actual data. As an
illustration, here we focus on finding isoforms where expression changes at
least 3 fold between groups. More precisely, the null hypothesis for isoform i
is H0 : |µi1 − µi2| < log(3) and the alternative H1 : |µi1 − µi2| > log(3). This
is a test for equivalence rather than strict equality between groups, which
aims to detect isoforms differentially expressed by a biologically meaningful
margin, e.g. as discussed by McCarthy and Smyth (2009). We note that
casper outputs continuous isoform expression estimates rather than gene-

level counts, hence data analysis methods targetting continuous response
variables are more appropriate that analyses for categorical data.

casper implements an empirical Bayes framework to test equivalence in
expression across groups in function probNonEquiv. Briefly, probNonEquiv
computes the posterior probability P (|µi1 − µi2| | y), where y is all the
available data. The probability is based on the LNNMV model implemented
in package EBarrays (Yuan et al., 2007; Yuan and Kendziorski, 2006), which
has a similar formulation as limma (Smyth, 2004) except that information is
shared for group means as well as the residual variance. We first proceed to
the analysis, and subsequently perform some model checks.

We apply probNonEquiv to the MiSeq data alone, the combined MiSeq
+ observed HiSeq and the combined Miseq + simulated HiSeq data. In all
analyses we restrict attention to genes with ≥10 reads.

> ppt0 <- probNonEquiv(gse37704.miseq, groups='group',
logfc=log(3), minCount=10)

> head(ppt0)

NM_032291 NM_001145277 NM_001145278 NM_018090

1.52e-01 2.19e-10 9.71e-02 1.08e-04

NM_052998 NM_001080397

6.97e-04 2.96e-06

> ppt1 <- probNonEquiv(xadj, groups='group',
logfc=log(3), minCount=10)

> head(ppt1)

NM_032291 NM_001145277 NM_001145278 NM_018090

9.17e-03 8.20e-05 8.61e-04 1.27e-10

NM_052998 NM_001080397

3.26e-07 1.37e-13

> pp <- probNonEquiv(xnewadj, groups='group',
logfc=log(3),minCount=10, mc.cores=2)

> head(pp)

sim1 sim2 sim3 sim4 sim5

NM_032291 5.17e-02 5.59e-02 5.01e-02 5.85e-03 1.08e-02

NM_001145277 1.16e-20 2.05e-21 2.71e-17 4.54e-17 3.18e-15

NM_001145278 4.25e-02 1.01e-02 3.86e-01 3.83e-03 2.25e-02

NM_018090 3.36e-05 3.31e-07 4.82e-08 2.10e-04 5.03e-07

NM_052998 6.86e-10 9.55e-05 3.59e-05 3.51e-05 4.19e-10

NM_001080397 3.77e-03 4.73e-06 4.20e-15 2.54e-07 3.85e-11

Suppose we declare as differentially expressed all genes with posterior
probability >0.95, which guarantees that the posterior expected False Discov-
ery Proportion (the Bayesian counterpart of the FDR) is below 0.05 (Müller

et al., 2004). The function getRoc computes operating characteristics for
each simulation.

> n0obs <- sum(ppt0>.95,na.rm=TRUE)

> n1obs <- sum(ppt1>.95,na.rm=TRUE)

> n1sim <- colSums(pp>.95,na.rm=TRUE)

> n0obs

[1] 640

> n1obs

[1] 870

> mean(n1sim)

[1] 855

> n1sim

sim1 sim2 sim3 sim4 sim5

859 857 862 855 842

> oc <- getRoc(abs(logfc.true)>log(3),pp>0.95)

> oc

tp fp tn fn p fdr pow

sim1 842 17 38687 1261 859 0.0198 0.400

sim2 836 21 38724 1241 857 0.0245 0.403

sim3 845 17 38711 1231 862 0.0197 0.407

sim4 836 19 38723 1239 855 0.0222 0.403

sim5 822 20 38709 1281 842 0.0238 0.391

> colMeans(oc)

tp fp tn fn p fdr

8.36e+02 1.88e+01 3.87e+04 1.25e+03 8.55e+02 2.20e-02

pow

4.01e-01

There are 640 differential expression calls using the MiSeq data and 870
using the combined MiSeq and observed HiSeq data. The predicted number
of calls based on the simulations is 855, in good agreement the observed data.
The mean false discovery proportion in the posterior predictive simulations is
0.022, and the mean power 0.401. Additionally to the point estimates given
by colMeans(oc), we may portray the uncertainty with credibility intervals
or straightforward plots. The following code produces Figure 4, which com-
pares observed with posterior predictive number of DE calls (3 samples per
group indicates MiSeq data alone was used, 6 samples per group corresponds
to 3 Miseq + 3 HiSeq). The observed DE calls with 6 samples (black) falls
within the range of corresponding posterior predictive draws (grey), suggest-
ing that uncertainty was adequately portrayed in the simulation.

●

●

3.0 3.5 4.0 4.5 5.0 5.5 6.0

65
0

70
0

75
0

80
0

85
0

Samples per group

D
E

 c
al

ls

● Observed
Predicted

Figure 4: Number of isoforms with P (|µi1 − µi2| > log(2) | y) > 0.95 for
observed data (black) and posterior predictive simulations (grey).

> ylim <- range(c(n0obs,n1obs,n1sim))

> plot(c(3,6),c(n0obs,n1obs),ylim=ylim,pch=16,ylab='DE calls',
xlab='Samples per group',cex.lab=1.25)

> points(rep(6,length(n1sim)),n1sim,col='gray',pch=8)
> legend('topleft',c('Observed','Predicted'),pch=c(16,8),

col=c('black','gray'),cex=1.25)
Here we used probNonEquiv, but the posterior predictive simulations can

help assess the results one would get with any other suitable analysis strategy.
As an illustration, we now perform equivalence tests using limma one-side
P-values. This test is implemented in function treat in package limma Mc-
Carthy and Smyth (2009). Given that xadj contains a list of ExpressionSet
objects, one need only apply the desired analysis method to each element in
xadj. For convenience, we included a wrapper pvalTreat in casper that
calls treat and adjusts the resulting P-values using any method available in
p.adjust.

> pvalt0 <- pvalTreat(gse37704.miseq, groups='group',
logfc=log(3), minCount=10, p.adjust.method='BH')

> pvalt1 <- pvalTreat(xadj, groups='group', logfc=log(3),

minCount=10, p.adjust.method='BH')
> pvals <- pvalTreat(xnewadj, groups='group', logfc=log(3),

minCount=10, p.adjust.method='BH', mc.cores=2)

The limma two-one test procedure followed by Benjamini-Hochberg P-
value adjustment gives only 52 calls on the MiSeq data. On the experi-

mental MiSeq + HiSeq data the calls increase drastically to 366, again in
good agreement with the posterior predictive simulations. The posterior pre-
dictive operating characteristics suggest that the procedure is indeed quite
conservative, with an almost 0 proportion of false discoveries.

> n0obs <- sum(pvalt0<.05,na.rm=TRUE)

> n1obs <- sum(pvalt1<.05,na.rm=TRUE)

> n1sim <- colSums(pvals<.05,na.rm=TRUE)

> n0obs

[1] 52

> n1obs

[1] 366

> mean(n1sim)

[1] 335

> n1sim

sim1 sim2 sim3 sim4 sim5

335 329 334 341 335

> getRoc(abs(logfc.true)>log(3),pvals<.05)

tp fp tn fn p fdr pow

sim1 335 0 38704 1768 335 0 0.159

sim2 329 0 38745 1748 329 0 0.158

sim3 334 0 38728 1742 334 0 0.161

sim4 341 0 38742 1734 341 0 0.164

sim5 335 0 38729 1768 335 0 0.159

Both the LNNMV and limma models assume that individual expres-
sion estimates are normally distributed, plus some further (and less critical)
hierarchical assumptions on the group means and residual standard devia-
tion. Although such modelling assumptions are not expected to hold exactly,
strong deviations would make the inference suspect. To address this issue,
we perform several informal model checks. Function qqnormGenomeWide pro-
duces qq-normal plots for 1000 isoforms and overlays them on a single graph.

> qqnormGenomeWide(gse37704.miseq,ngenes=500)

> qqnormGenomeWide(xadj,ngenes=500)

Figure 5 shows the results for MiSeq data alone (left) and combined with
HiSeq (right). No strong departures from a straight line are observed, there-
fore suggesting the normality assumption is reasonable. We note that some
deviations are expected, e.g. isoforms with strong differential expression typ-
ically exhibit bimodality. A qq-normal plot on the residuals (i.e. deviations
from group means) exhibits a similar pattern (data not shown).

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Theoretical quantile

O
bs

er
ve

d
qu

an
til

e

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
3

−
2

−
1

0
1

2
3

Theoretical quantile

O
bs

er
ve

d
qu

an
til

e

●

●

●
●

●
●

●
●

●
●

●

●

Figure 5: qq-normal plot for 500 isoforms. Left: MiSeq data; Right: com-
bined MiSeq + HiSeq data

As a further assessment, we measure the degree of asymmetry in the data.
The mean, median and inter-quartile range of the skewness coefficients are
all centered around 0, suggesting that no strong asymmetries are present.
Function asymmetryCheck produces a boxplot comparing observed asymme-
try coefficients with those observed in data simulated under the Normality
assumption (population means and variances are set equal to sample means
and variances). Figure 6 shows the result.

> library(psych)

> sel <- fData(xadj)$readCount >= 10

> sk <- skew(t(exprs(xadj)))

> summary(sk)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.180 -0.305 -0.014 0.033 0.265 2.220

> asymmetryCheck(xadj)

casper also implements qq-gamma plots, which can help decide whether
to use the LNNMV or the GaGa model wnen calling simMultSamples. Note
that the Gamma distribution implies that values must be positive, a simple
way to achieve that is to add an offset as shown below. Another option would
be to take exponents, but we found that this option tends to produce outliers
and that hence the offset option tends to produce more robust results.

> offset <- min(exprs(gse37704.miseq))

> exprs(gse37704.miseq) <- exprs(gse37704.miseq) - offset + 1

> qqgammaGenomeWide(gse37704.miseq,ngenes=500)

Observed Simulated

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

A
sy

m
m

et
ry

 c
oe

ffi
ci

en
t

Figure 6: Output from asymmetryCheck

> offset <- min(exprs(xadj))

> exprs(xadj) <- exprs(xadj) - offset + 1

> qqgammaGenomeWide(xadj,ngenes=500)

Figure 7 shows the results for MiSeq data alone (left) and combined with
HiSeq (right). The gamma distribution also seems reasonable as no strong
departures from a straight line are observed. Although not shown here, we
run simMultSamples setting model=’GaGa’ and obtained very similar results
to those shown above with model=’LNNMV’.

3 Session information and checksums

For reproducibility purposes, the session information is provided below. The
md5 checksums for the files hosted at https://sites.google.com/site/

rosselldavid/home/myfiles are

• gse37704.RData: 5043bc05bc76d0fdc8792b4a7b05604b

• gse37704 miseq.RData: 657880573413a08767ae6206d3db38a0

• hg19DB.RData: 8c45c52af4436db4a40a5b3109cbfcfe

• micebladder.rep1.RData: 724d3367a99901026d6f4e5e66dafcc1

• oneT.casper.RData: a55dbb7e0a15e39da1137de74a91f4fb

https://sites.google.com/site/rosselldavid/home/myfiles
https://sites.google.com/site/rosselldavid/home/myfiles

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Theoretical quantile

O
bs

er
ve

d
qu

an
til

e

4 6 8 10 12 14 16

4
6

8
10

12
14

16

Theoretical quantile

O
bs

er
ve

d
qu

an
til

e

Figure 7: qq-gamma plot for 500 isoforms. Left: MiSeq data; Right: com-
bined MiSeq + HiSeq data

> library(devtools)

> options(width = 120)

> session_info()

setting value

version R version 3.2.0 (2015-04-16)

system x86_64, darwin13.4.0

ui X11

language (EN)

collate en_US.UTF-8

tz Europe/London

package * version date source

AnnotationDbi 1.30.1 2015-04-26 Bioconductor

Biobase * 2.28.0 2015-04-17 Bioconductor

BiocGenerics * 0.14.0 2015-04-17 Bioconductor

BiocParallel 1.2.2 2015-05-24 Bioconductor

biomaRt 2.24.0 2015-04-17 Bioconductor

Biostrings 2.36.1 2015-05-07 Bioconductor

bitops 1.0-6 2013-08-17 CRAN (R 3.2.0)

casper * 2.3.1 2015-06-15 Bioconductor

chron 2.3-45 2014-02-11 CRAN (R 3.2.0)

cluster * 2.0.1 2015-01-31 CRAN (R 3.2.0)

coda 0.17-1 2015-03-03 CRAN (R 3.2.0)

colorspace 1.2-6 2015-03-11 CRAN (R 3.2.0)

curl 0.8 2015-06-06 CRAN (R 3.2.0)

DBI 0.3.1 2014-09-24 CRAN (R 3.2.0)

devtools * 1.8.0 2015-05-09 CRAN (R 3.2.0)

digest 0.6.8 2014-12-31 CRAN (R 3.2.0)

EBarrays 2.32.0 2015-04-17 Bioconductor

futile.logger 1.4.1 2015-04-20 CRAN (R 3.2.0)

futile.options 1.0.0 2010-04-06 CRAN (R 3.2.0)

gaga 2.15.1 2015-06-14 Bioconductor

GenomeInfoDb * 1.4.0 2015-04-17 Bioconductor

GenomicAlignments 1.4.1 2015-04-24 Bioconductor

GenomicFeatures 1.20.1 2015-05-06 Bioconductor

GenomicRanges * 1.20.4 2015-05-30 Bioconductor

ggplot2 * 1.0.1 2015-03-17 CRAN (R 3.2.0)

git2r 0.10.1 2015-05-07 CRAN (R 3.2.0)

gsubfn 0.6-6 2014-08-27 CRAN (R 3.2.0)

gtable 0.1.2 2012-12-05 CRAN (R 3.2.0)

gtools 3.5.0 2015-05-29 CRAN (R 3.2.0)

IRanges * 2.2.3 2015-06-02 Bioconductor

labeling 0.3 2014-08-23 CRAN (R 3.2.0)

lambda.r 1.1.7 2015-03-20 CRAN (R 3.2.0)

lattice 0.20-31 2015-03-30 CRAN (R 3.2.0)

limma 3.24.7 2015-06-07 Bioconductor

magrittr 1.5 2014-11-22 CRAN (R 3.2.0)

MASS 7.3-40 2015-03-21 CRAN (R 3.2.0)

Matrix 1.2-1 2015-06-01 CRAN (R 3.2.0)

memoise 0.2.1 2014-04-22 CRAN (R 3.2.0)

mgcv 1.8-6 2015-03-31 CRAN (R 3.2.0)

mnormt 1.5-3 2015-05-25 CRAN (R 3.2.0)

munsell 0.4.2 2013-07-11 CRAN (R 3.2.0)

nlme 3.1-120 2015-02-20 CRAN (R 3.2.0)

plyr 1.8.2 2015-04-21 CRAN (R 3.2.0)

proto 0.3-10 2012-12-22 CRAN (R 3.2.0)

psych * 1.5.4 2015-04-27 CRAN (R 3.2.0)

Rcpp 0.11.6 2015-05-01 CRAN (R 3.2.0)

RCurl 1.95-4.6 2015-04-24 CRAN (R 3.2.0)

reshape2 1.4.1 2014-12-06 CRAN (R 3.2.0)

Rsamtools 1.20.4 2015-06-01 Bioconductor

RSQLite 1.0.0 2014-10-25 CRAN (R 3.2.0)

rtracklayer 1.28.4 2015-05-28 Bioconductor

rversions 1.0.1 2015-06-06 CRAN (R 3.2.0)

S4Vectors * 0.6.0 2015-04-17 Bioconductor

scales 0.2.4 2014-04-22 CRAN (R 3.2.0)

sqldf 0.4-10 2014-11-07 CRAN (R 3.2.0)

stringi 0.4-1 2014-12-14 CRAN (R 3.2.0)

stringr 1.0.0 2015-04-30 CRAN (R 3.2.0)

survival 2.38-1 2015-02-24 CRAN (R 3.2.0)

VGAM 0.9-8 2015-05-11 CRAN (R 3.2.0)

XML 3.98-1.2 2015-05-31 CRAN (R 3.2.0)

xml2 0.1.1 2015-06-02 CRAN (R 3.2.0)

XVector 0.8.0 2015-04-17 Bioconductor

zlibbioc 1.14.0 2015-04-17 Bioconductor

References

R. Edgar, V. Domrachev, and A.E. Lash. Gene expression omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids
Research, 30:207–210, 2002.

R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Du-
doit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn,
W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A.J.
Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J.Y.H. Yang,
and J. Zhang. Bioconductor: Open software development for computa-
tional biology and bioinformatics. Genome Biology, 5:R80, 2004. URL
http://genomebiology.com/2004/5/10/R80.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Sub-
group. The sequence alignment/map (SAM) format and SAMtools. Bioin-
formatics, 25(16):2078–9, 2009.

D.J. McCarthy and G.K. Smyth. Testing significance relative to a fold-change
is a TREAT. Bioinformatics, 25(6):765–771, 2009.

P. Müller, G. Parmigiani, C. Robert, and J. Rousseau. Optimal sample size
for multiple testing: the case of gene expression microarrays. Journal of
the American Statistical Association, 99:990–1001, 2004.

D. Rossell. GaGa: a simple and flexible hierarchical model for differential
expression analysis. Annals of Applied Statistics, 3:1035–1051, 2009.

http://genomebiology.com/2004/5/10/R80

D. Rossell, C. Stephan-Otto Attolini, M. Kroiss, and A. Stöcker. Quantify-
ing alternative splicing from paired-end rna-seq data. Annals of Applied
Statistics, 8(1):309–330, 2014.

L. J. Savage. The Foundations of Statistics. Dover Publications (1972 ed), 2
revised edition, 1954. ISBN 0486623491.

G.K. Smyth. Linear models and empirical Bayes methods for assessing dif-
ferential expression in microarray experiments. Statistical Applications in
Genetics and Molecular Biology, 3:Number 1, Article 3, 2004.

C. Trapnell, L. Pachter, and S.L. Salzberg. TopHat: discovering splice junc-
tions with RNA-seq. Bioinformatics, 25(9):1105–1111, 2009.

C. Trapnell, D.G. Hendrickson, M. Sauvageau, L. Goff, J.L. Rinn, and
L. Pachter. Differential analysis of gene regulation at transcript reso-
lution with RNA-seq. Nature Biotechnology, 31(1):46–53, 2013. doi:
10.1038/nbt.2450.

M. Yuan and C. Kendziorski. A unified approach for simultaneous gene
clustering and differential expression identification. Biometrics, 62:1089–
1098, 2006.

Ming Yuan, Michael Newton, Deepayan Sarkar, and Christina Kendziorski.
EBarrays: Unified Approach for Simultaneous Gene Clustering and Dif-
ferential Expression Identification, 2007. R package version 2.24.0.

	One sample experiments
	Quick mean absolute error calculation with simMAE
	Generate a sam file with simulated reads
	Default human and mouse datasets
	ExpressionSet as pilot data

	Multiple sample problem
	Session information and checksums

