An overview of the copynumber package

Gro Nilsen

April 24, 2017

Contents

1 Introduction 1
2 Overview 2
 2.1 Data input .. 2
 2.2 Preprocessing .. 2
 2.2.1 Outlier handling ... 2
 2.2.2 Imputation of missing data 3
 2.3 Segmentation ... 3
 2.3.1 Segmentation tools ... 3
 2.3.2 Choose model parameters 3
 2.4 Visualization .. 3

3 Data sets 3

4 Examples 4
 4.1 Single-sample segmentation 4
 4.2 Multi-sample segmentation 6
 4.3 Allele-specific segmentation 6
 4.4 Other graphical tools .. 9
 4.4.1 Frequency plot ... 9
 4.4.2 Circle plot ... 9
 4.4.3 Heatmap ... 11
 4.4.4 Aberration plot ... 11
 4.4.5 Diagnostic plot for penalty selection 12

5 Tips 12

1 Introduction

This document gives an overview and demonstration of the copynumber package, which provides tools for the segmentation and visualization of copy number data. In the analysis of such data a goal is to detect and locate areas of the genome with copy number aberrations. This may help identify genes that are critical to the development and progression of cancer. To locate areas or segments of equal copy numbers, our methods make Piecewise Constant Fits to the data through penalized least squares minimization [1]. That is, piecewise constant curves are fitted to the data by minimizing the distance between the curve and the observed data, while imposing a penalty for each discontinuity in the curve. Segmentation may be done on a single sample, simultaneously on several samples or simultaneously on different data tracks.
2 Overview

Figure 1 gives an overview of the `copynumber` package and illustrates the natural workflow. Each part of this workflow is described below.

Figure 1:

<table>
<thead>
<tr>
<th>Data</th>
<th>Preprocessing</th>
<th>Segmentation</th>
<th>Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy number data (+ allele frequencies)</td>
<td>Outlier handling</td>
<td>Individual segmentation of one or more samples</td>
<td>Whole-genome plots</td>
</tr>
<tr>
<td></td>
<td>winsorize(...)</td>
<td>pcff(...)</td>
<td>plotHeatmap(...)</td>
</tr>
<tr>
<td></td>
<td>Missing value imputation</td>
<td>Joint segmentation of multiple samples</td>
<td>plotGenome(...)</td>
</tr>
<tr>
<td></td>
<td>imputeMissing(...)</td>
<td>multipcf(...)</td>
<td>plotCircle(...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Segmentation of SNP-array data</td>
<td>plotFreq(...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aspcf(...)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chromosome plots of data and segments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>plotSample (...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>plotChrom (...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>plotAllele(...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diagnostic plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>plotGamma (...)</td>
</tr>
</tbody>
</table>

Figure 1: An overview of the copynumber package.

2.1 Data input

The data input in the `copynumber` package is normalized and log-transformed copy number measurements, for one or several samples. Allele-frequencies may also be specified for the segmentation of SNP-array data.

The data should be organized as a data matrix where each row represents a probe, and the first two columns give the chromosomes and genomic positions (locally in the chromosome) corresponding to each probe. Subsequent columns should hold the copy number measurements for each sample, and the header of these sample columns should be a sample identifier. For SNP-array data two such data matrices are required; one holding the LogR copy numbers and the other holding the B-allele frequencies (BAF).

2.2 Preprocessing

2.2.1 Outlier handling

Outliers are common in copy number data, and may have a substantial negative effect on the segmentation results. It is therefore strongly recommended to detect and modify extreme observations prior to segmentation. In the package we do this by Winsorization, and the method `winsorize` is available for this purpose.
2.2.2 Imputation of missing data
The method `imputeMissing` may be used for the imputation of missing copy number measurements. The user may decide on imputation by a constant or by an estimate based on the pcf-value (see below) of the nearest non-missing probes.

2.3 Segmentation
2.3.1 Segmentation tools
The `copynumber` package provides three segmentation tools. The method `pcf` handles the single-sample case, where segmentation is done independently for each sample in the data set, and the break points thus differ from sample to sample. The method `multipcf` runs on multiple samples simultaneously, and fits segmentation curves with common break points for all samples. The segment values will for each sample be equal to its average measurement on the segment. The third method, `aspcf`, is intended for SNP array data and performs allele-specific segmentation. This results in segmentation curves where break points are common for LogR and BAF data in the individual samples.

2.3.2 Choose model parameters
The most important parameter to set in the segmentation routines is `gamma`, which determines the penalty to be applied for each discontinuity or break point in the segmentation curve. Note that the default value will not be appropriate for all data sets; it may depend on the purpose of the study and artifacts may arise from the experimental procedure. Hence it is typically necessary to test a number of `gamma` values to find the optimal one. A valuable tool in this context is the diagnostic tool `plotGamma`, where segmentation is run for 10 different values of `gamma` and results are then displayed in a multigrid plot. This allows the user to explore the appropriateness of each segmentation result. Another parameter that influences the segmentation result is `kmin`, which imposes a minimum length (number of probes) for each segment.

2.4 Visualization
Several tools are available in the package for the plotting of data and segmentation results. These include `plotGenome`, `plotSample`, and `plotChrom` where data and/or segments are plotted over the entire genome, for a given sample across different chromosomes and for a given chromosome across different samples, respectively. Other graphical tools include `plotHeatmap`, which plots copy numbers heatmaps, and `plotFreq`, which plots the frequency of samples with an aberration at a genomic position. In addition, `plotCircle` enables the plotting of the genome as a circle with aberration frequencies and connections between genomic loci added to the middle of the circle.

3 Data sets
The package includes three data sets that are used in the examples below:

- **lymphoma**: 3K aCGH data for a subset of 21 samples [2].
- **micma**: A subset of a 244K aCGH data set. Contains data on chromosome 17 for 6 samples [3].
- **logR and BAF**: Artificial 10K SNP array data for 2 samples.
4 Examples

The following examples illustrate some applications of the `copynumber` package. First, load the package in R:

```r
> library(copynumber)
```

4.1 Single-sample segmentation

In this example we will use the `lymphoma` data:

```r
> data(lymphoma)
```

The data set has chromosomes and probe positions in the two first columns, and the copy number measurements for 21 samples in the subsequent columns. In this example we will only use a subset containing the first 3 samples, which corresponds to three biopsies from one patient taken at different time points. We can use the function `subsetData` to retrieve the desired data subset:

```r
> sub.lymphoma <- subsetData(data=lymphoma,sample=1:3)
> sub.lymphoma[1:10,]
```

<table>
<thead>
<tr>
<th>Chrom</th>
<th>Median.bp</th>
<th>X01.B1</th>
<th>X01.B2</th>
<th>X01.B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1082138</td>
<td>0.0906</td>
<td>-0.0144</td>
<td>0.0255</td>
</tr>
<tr>
<td>2</td>
<td>3318085</td>
<td>-0.0992</td>
<td>-0.1693</td>
<td>-0.0908</td>
</tr>
<tr>
<td>3</td>
<td>4552927</td>
<td>-0.0884</td>
<td>-0.0807</td>
<td>0.0401</td>
</tr>
<tr>
<td>4</td>
<td>5966170</td>
<td>-0.0503</td>
<td>-0.0231</td>
<td>-0.1081</td>
</tr>
<tr>
<td>5</td>
<td>7134999</td>
<td>-0.0970</td>
<td>-0.0145</td>
<td>-0.1877</td>
</tr>
<tr>
<td>6</td>
<td>7754220</td>
<td>-0.0671</td>
<td>-0.0291</td>
<td>-0.0506</td>
</tr>
<tr>
<td>7</td>
<td>9211391</td>
<td>-0.0386</td>
<td>-0.1290</td>
<td>-0.0058</td>
</tr>
<tr>
<td>8</td>
<td>10134471</td>
<td>-0.0281</td>
<td>-0.0507</td>
<td>-0.6507</td>
</tr>
<tr>
<td>9</td>
<td>11054335</td>
<td>-0.0231</td>
<td>-0.0520</td>
<td>-0.5539</td>
</tr>
<tr>
<td>10</td>
<td>11562778</td>
<td>-0.0780</td>
<td>-0.0742</td>
<td>-0.0531</td>
</tr>
</tbody>
</table>

Next we identify and modify outliers by the function `winsorize`:

```r
> lymph.wins <- winsorize(data=sub.lymphoma,verbose=FALSE)
```

The parameter `verbose=FALSE` just keeps the function from printing a progress message each time the analysis is finished for a new chromosome arm. The primary output from `winsorize` is then a new data frame (`lymph.wins`) on the same format as the input data where the sample columns now contain the Winsorized data values:

```r
> lymph.wins[1:10,]
```

<table>
<thead>
<tr>
<th>chrom</th>
<th>pos</th>
<th>X01.B1</th>
<th>X01.B2</th>
<th>X01.B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1082138</td>
<td>0.0284</td>
<td>-0.0144</td>
<td>0.0255</td>
</tr>
<tr>
<td>2</td>
<td>3318085</td>
<td>-0.0992</td>
<td>-0.1693</td>
<td>-0.0908</td>
</tr>
<tr>
<td>3</td>
<td>4552927</td>
<td>-0.0884</td>
<td>-0.0807</td>
<td>0.0401</td>
</tr>
<tr>
<td>4</td>
<td>5966170</td>
<td>-0.0503</td>
<td>-0.0231</td>
<td>-0.1081</td>
</tr>
<tr>
<td>5</td>
<td>7134999</td>
<td>-0.0970</td>
<td>-0.0145</td>
<td>-0.1877</td>
</tr>
<tr>
<td>6</td>
<td>7754220</td>
<td>-0.0671</td>
<td>-0.0291</td>
<td>-0.0506</td>
</tr>
<tr>
<td>7</td>
<td>9211391</td>
<td>-0.0386</td>
<td>-0.1290</td>
<td>-0.0058</td>
</tr>
<tr>
<td>8</td>
<td>10134471</td>
<td>-0.0281</td>
<td>-0.0507</td>
<td>-0.2938</td>
</tr>
<tr>
<td>9</td>
<td>11054335</td>
<td>-0.0231</td>
<td>-0.0520</td>
<td>-0.3034</td>
</tr>
<tr>
<td>10</td>
<td>11562778</td>
<td>-0.0780</td>
<td>-0.0742</td>
<td>-0.0531</td>
</tr>
</tbody>
</table>
In addition, if the parameter `return.outliers` is set to `TRUE`, the method also returns a data frame which shows which observations have been classified as outliers:

```r
> wins.res <- winsorize(data=sub.lymphoma,return.outliers=TRUE,verbose=FALSE)
> wins.res$wins.outliers[1:10,]
chrom pos X01.B1 X01.B2 X01.B3
1 1 1082138 1 0 0
2 1 3318085 0 0 0
3 1 4552927 0 0 0
4 1 5966170 0 0 0
5 1 7134999 0 0 0
6 1 7754220 0 0 0
7 1 9211391 0 0 0
8 1 10134471 0 0 -1
9 1 11054335 0 0 -1
10 1 11562778 0 0 0
```

The values 1 and -1 indicate outliers, reflecting that the original observation has been truncated to a smaller and higher value, respectively. The value 0 indicates that the observation is not an outlier and that the Winsorized value is identical to the original value. Note that one may obtain the winsorized data values in this setting by `wins.res$wins.data`.

Next we want to fit segmentation curves to each of the samples in our data using the function `pcf`. When Winsorization has been done, the Winsorized data should be the input (if one wants the segment values to equal the means of the observed data instead of the Winsorized data, one may in addition give the original data as input via the parameter `Y=sub.lymphoma`). The penalty parameter `gamma` is in this case set to 12 to achieve high sensitivity on these low-resolution data.

```r
> single.seg <- pcf(data=lymph.wins,gamma=12,verbose=FALSE)
```

The default output of `pcf` is a data frame with 7 columns giving information about each segment found in the data. SampleIDs are given in the first column. Below we see the first six segments found in the subset of lymphoma samples:

```r
> head(single.seg)
sampleID chrom arm start.pos end.pos n.probes mean
1 X01.B1 1 p 1082138 64194749 70 -0.0455
2 X01.B1 1 p 65355304 119515493 58 0.0450
3 X01.B2 1 p 1082138 50340843 56 -0.0442
4 X01.B2 1 p 50638118 119515493 72 0.0219
5 X01.B3 1 p 1082138 119515493 128 -0.0329
6 X01.B1 1 q 142174575 146617392 8 0.0120
```

After the segmentation one may plot the data along with the segmentation results to see how well the segmentation fits the data. To plot the copy number data and the segmentation results over the entire genome we apply the function `plotGenome`, as illustrated in Figure 2 for one of the samples.

```r
> plotGenome(data=sub.lymphoma,segments=single.seg,sample=1,cex=3)
```

Another plotting option is `plotSample`, where the data and segmentation results are shown for one sample with chromosomes in different panels. This is shown for the first sample in Figure 3. Chromosome ideograms are by default added to the bottom of the plots.

```r
> plotSample(data=sub.lymphoma,segments=single.seg,layout=c(5,5),sample=1,cex=3)
```
4.2 Multi-sample segmentation

In the second example we illustrate multi-sample segmentation using the function `multipcf` on the three successive biopsies for sample X01. Input parameters and the output is similar to that of `pcf`, but the data frame holding the segmentation results now have common rows for all samples since they all have common segment boundaries:

```r
multi.seg <- multipcf(data=lymph.wins,verbose=FALSE)
> head(multi.seg)
   chrom arm start.pos end.pos n.probes X01.B1  X01.B2  X01.B3
1     1   p     1082138 64194749     70 -0.0455 -0.0336 -0.0376
2     1   p    65355304 119515493     58   0.0450  0.0251 -0.0272
3     1   q  142174575 146617392      8   0.0120  0.0495 -0.0317
4     1   q  146756663 245340016    129   0.4038  0.0263 -0.0091
5     2   p   314759987 898306000     107   0.0026  0.0004  0.0175
6     2   q  94941109  242568229    159   0.0063  0.0111  0.0061
```

To compare the segmentation results between samples we may use the function `plotChrom`. Here data and segments are plotted for one chromosome with samples in different panels, as illustrated in Figure 4.

```r
plotChrom(data=lymph.wins,segments=multi.seg,layout=c(3,1),chrom=1)
```

4.3 Allele-specific segmentation

To illustrate allele-specific segmentation, we apply the artificial SNP-array data set containing both LogR data and BAF data:
Figure 3: Sample X01.B1 plotted across the 23 chromosomes. Segmentation done by pcf.

```r
> data(logR)
> data(BAF)

We start by Winsorizing the LogR data:

```r
> logR.wins <- winsorize(logR,verbose=FALSE)
```

The function `aspcf` will perform the allele-specific segmentation, taking both (Winsorized) LogR data and BAF data as input:

```r
> allele.seg <- aspcf(logR.wins,BAF,verbose=FALSE)
> head(allele.seg)
```

<table>
<thead>
<tr>
<th>sampleID</th>
<th>chrom</th>
<th>arm</th>
<th>start.pos</th>
<th>end.pos</th>
<th>n.probes</th>
<th>logR.mean</th>
<th>BAF.mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td>p</td>
<td>1696590</td>
<td>31067347</td>
<td>139</td>
<td>-0.2323</td>
<td>0.6916</td>
</tr>
<tr>
<td>2</td>
<td>S1</td>
<td>p</td>
<td>31101268</td>
<td>39640990</td>
<td>37</td>
<td>0.4000</td>
<td>0.7182</td>
</tr>
<tr>
<td>3</td>
<td>S1</td>
<td>p</td>
<td>39831894</td>
<td>46296225</td>
<td>34</td>
<td>0.1785</td>
<td>0.6207</td>
</tr>
<tr>
<td>4</td>
<td>S1</td>
<td>p</td>
<td>46437972</td>
<td>57577691</td>
<td>46</td>
<td>0.0289</td>
<td>0.5000</td>
</tr>
<tr>
<td>5</td>
<td>S1</td>
<td>p</td>
<td>57905199</td>
<td>60306875</td>
<td>9</td>
<td>-0.1552</td>
<td>0.6856</td>
</tr>
<tr>
<td>6</td>
<td>S1</td>
<td>p</td>
<td>60607571</td>
<td>100552011</td>
<td>128</td>
<td>0.0797</td>
<td>0.5000</td>
</tr>
</tbody>
</table>
```
Figure 4: Chromosome 1 plotted for the 3 biopsies taken at different time points for sample X01. Segmentation done by multipcf.

Note that the output is similar to that of *pcf*, except for an extra 8’th column giving the segment BAF-values.

The function `plotAllele` may be used to plot the data and the segmentation results. For a given sample the results are shown for both the LogR- and BAF-track with chromosomes in different panels, as illustrated in Figure 5 for the first sample on chromosomes 1-4.

```r
> plotAllele(logR, BAF, allele.seg, sample=1, chrom=c(1:4), layout=c(2,2))
```
4.4 Other graphical tools

4.4.1 Frequency plot

A useful graphical tool is `plotFreq`, where we plot the frequency of samples in the data set with a gain or a loss at a genomic position. In this example we use `pcf` to obtain copy number estimates for the entire lymphoma data set:

```r
> lymphoma.res <- pcf(data=lymphoma,gamma=12,verbose=FALSE)
```

Gains and losses will be regions where the copy number estimate is above or below some defined thresholds specified by the parameters `thres.gain` and `thres.loss`, respectively.

```r
> plotFreq(segments=lymphoma.res,thres.gain=0.2,thres.loss=-0.1)
```

Figure 6 shows the percentage of samples with estimated log₂ copy number ratios above the threshold 0.2 (gain) in red and below the threshold −0.1 (loss) in green. Frequencies may also be plotted per chromosome by specifying chromosomes in the parameter ` chrom.`

4.4.2 Circle plot

A similar plotting routine is `plotCircle` which also shows the aberration frequencies, but unlike `plotFreq` the genome is here represented as a circle. The input is again copy number estimates, and aberrations are defined as described above. In addition to plotting aberration frequencies one may show associations between certain genomic regions by specifying the parameter `arcs` as input. This should be a matrix giving the chromosomes and positions for regions that are connected, as well as...
a column specifying whether there are different types of associations. One example of use is to plot strong interchromosomal correlations between pairs of segments found by \texttt{multipcf}.

Below, we assume that \texttt{multipcf} has been run on the \texttt{lymphoma} data, and we have calculated the interchromosomal correlations between all segment pairs (see the help file for \texttt{plotCircle} for details). Say strong positive correlations were found between a segment with middle position 168754669 on chromosome 2 and a segment with middle position 61475398 on chromosome 14, as well as between a segment with middle position 847879349 on chromosome 12 and a segment with middle position 30195556 on chromosome 21. In addition, a strong negative correlation was found between a segment with middle position 121809306 on chromosome 4 and a segment with middle position 12364465 on chromosome 17. Having found the location of the associations we want to visualize we can then define the matrix \texttt{arcs} holding the chromosome number and position of a segment in the first two columns, and the chromosome number and position of the associated segment in the next two columns. The fifth column identifies positive correlations and negative correlations as class 1 and 2, respectively:

```r
> chr.from <- c(2,12,4)
> pos.from <- c(168754669,847879349,121809306)
> chr.to <- c(14,21,17)
> pos.to <- c(6147539,301955563,12364465)
> cl <- c(1,1,2)
> arcs <- cbind(chr.from,pos.from,chr.to,pos.to,cl)
```

Figure 7 shows a circle plot. The gain frequencies are shown in red, while loss frequencies are shown in green. In addition, the orange and blue arcs connect the segments which were found to have high positive and negative correlations, respectively.

```r
> plotCircle(segments=lymphoma.res,thres.gain=0.15,arcs=arcs)
```
4.4.3 Heatmap

Another graphical function is `plotHeatmap`, which may be used to examine differences between samples. Here a heatmap is plotted for each sample according to the magnitude of the estimated copy number value relative to some pre-defined limits. Figure 8 shows a heatplot for the lymphoma samples. Each sample is represented by a row. The color red indicates that the estimate is above the upper limit of 0.3, while the color blue indicates that it is below the lower limit of −0.3. Darker nuances of red and blue indicate that the value is below and above the upper and lower limit, respectively, and the darker the nuance, the closer the value is to zero.

\[
\text{plotHeatmap(segments=lymphoma.res, upper.lim=0.3)}
\]

4.4.4 Aberration plot

Similarly the function `plotAberration` is useful for locating recurrent aberrations. An example is given in Figure 9 where each row represents a sample and the colors red and blue indicate gains and losses, respectively.

\[
\text{plotAberration(segments=lymphoma.res, thres.gain=0.2)}
\]
4.4.5 Diagnostic plot for penalty selection.

As mentioned earlier we may apply the function `plotGamma` to decide on a reasonable choice for the penalty parameter in the segmentation routines. This function will run `pcf` for a single sample and chromosome using 10 values for `gamma` in the range indicated by the parameter `gammaRange`. Each segmentation result is then plotted along with the data in a multigrid plot, and the number of segments found for each value of `gamma` is shown in the last panel. Figure 10 gives an example using the first sample in the `micma` data.

```r
> data(micma)
> plotGamma(micma, chrom=17, cex=3)
```

An additional option is to specify the parameter `cv=TRUE`, which means that a 5-fold cross-validation is run for each value of `gamma`. A graph showing the average residual error from the cross-validation is then added in the last panel of the plot, and the value of `gamma` which minimizes this error is marked by an asterix. This value may provide a starting point for selecting `gamma`, but should not be used uncritically because the cross-validation tends to favor too low values and could favor detection of low-amplitude "aberrations" which may be caused by artifacts related to the technology (e.g. due to GC-content).

5 Tips

When the data set is very large an alternative to specifying the data frame as input in `winsorize`, `pcf`, `multipcf` and `aspcf` is to supply a txt-file as input in the `data` parameter. The data txt-file should then be organized in the same way as described for the data earlier, namely with chromosomes and genomic positions in the two first columns, and sample copy number data in all subsequent columns. The data will then be read in and processed chromosome arm by chromosome arm, thus taking up less memory. Similarly, results can be stored in txt-files by setting `save.res=TRUE` and optionally specifying filenames.
Another way to handle large data sets is by applying the function `subsetData` to break the data set into a smaller subset only containing certain chromosomes and/or samples. Again, the input may be a data frame or a data txt-file. This function is also useful when plotting the data, and similarly `subsetSegments` may be used to get a subset of segments for particular chromosomes and/or samples.

If it is not desirable to perform independent segmentations on each chromosome arm, or if the assembly does not match one of hg16-hg19 (e.g. if the data comes from another species), the function `pcfPlain` can be applied for single-sample segmentation.

In the data/segmentation plots (`plotGenome`, `plotSample`, `plotChrom`, `plotAllele`) different segmentation results may be visualized together by specifying the input parameter `segments` as a list. This enables simultaneous examination and comparison of different segmentation results e.g. obtained from `pcf` and `multipcf`, or by using different values of `gamma`. See the help-files for these functions for examples.

Aberration calling for the segments found by `pcf` or `multipcf` is done by the function `callAberrations`. Given user-specified thresholds, this function classifies each segment as normal, gain or loss.

The function `selectSegments` can be used to retrieve potentially interesting segments found by `multipcf`. Using this function one may select segments based on a number of characteristics; segments with the largest or smallest variance among the samples, the longest or shortest segments, or the segments that have the largest aberration frequencies.

For the user familiar with the `GRanges` format from the `GenomicRanges` package, it is possible to convert the segments data frame via the function `getGRangesFormat`.

References

Figure 10: Diagnostic gamma plot for the first sample in the micma data. 10 different gamma-values are evaluated.
