Global-Sigma

December 14, 2016

Contents

1 Gaussian kernel width \(\sigma \) \hspace{1cm} 1

Using find_sigmas .. 1

1 Gaussian kernel width \(\sigma \)

The other important parameter for DiffusionMap is the Gaussian kernel width \(\sigma \) that determines the transition probability between data points. The default call of \texttt{destiny} – DiffusionMap(data) aka DiffusionMap(data, 'local') – uses a local \(\sigma \) per cell, derived from a local density estimate around each cell.

Using the \texttt{diffusion} default, \texttt{sigma = 'global'}, estimates \(\sigma \) using a heuristic. It is also possible to specify this parameter manually to tweak the result. The eigenvector plot explained above will show a continuous decline instead of sharp drops if either the dataset is too big or the \(\sigma \) is chosen too small.

The \(\sigma \) estimation algorithm is explained in detail in Haghverdi et al. (2015). In brief, it works by finding a maximum in the slope of the log-log plot of local density versus \(\sigma \).

\textbf{In [2]:} \texttt{library(destiny)}

\texttt{data(guo_norm)}

\textbf{Using find_sigmas}

An efficient variant of that procedure is provided by \texttt{find_sigmas}. This function determines the optimal \(\sigma \) for a subset of the given data and provides the default \(\sigma \) for a DiffusionMap call. Due to a different starting point, the resulting \(\sigma \) is different from above:

\textbf{In [3]:} \texttt{sigmas \leftarrow find_sigmas(guo_norm, verbose = FALSE)}

\texttt{optimal_sigma(sigmas)}

10.8945955274194

The resulting diffusion map’s approximation depends on the chosen \(\sigma \). Note that the \(\sigma \) estimation heuristic only finds local optima and even the global optimum of the heuristic might not be ideal for your data.
In [4]: par(pch = 20, mfrow = c(2, 2), mar = c(3,2,2,2))
 palette(cube_helix(6))

 for (sigma in list('local', 5, round(optimal_sigma(sigmas), 2), 100))
 plot(DiffusionMap(guo_norm, sigma), 1:2,
 main = substitute(sigma == s, list(s = sigma)),
 col_by = 'num_cells', draw_legend = FALSE)

References

Haghverdi, L., F. Buettner, and F. J. Theis