epigenomix — Epigenetic and gene transcription data normalization and integration with mixture models

Hans-Ulrich Klein, Martin Schäfer

November 28, 2013

Contents

1 Introduction 2

2 Data preprocessing and normalization 3
 2.1 Microarray gene expression data 3
 2.2 RNA-seq data 3
 2.3 Histone ChIP-seq data 4
 2.4 Data matching 5
 2.4.1 Microarray gene expression data 5
 2.4.2 RNA-seq data 7

3 ChIP-seq data normalization 8

4 Data integration 9

5 Classification by mixture models 10
 5.1 Maximum likelihood approach 10
 5.2 Bayesian approach 11
1 Introduction

This package provides methods for an integrative analysis of gene transcription and epigenetic data, especially histone ChIP-seq data [1]. Histone modifications are an epigenetic key mechanism to activate or repress the transcription of genes. Several data sets consisting of matched transcription data and histone modification data localized by ChIP-seq have been published. However, both data types are often analysed separately and results are compared afterwards. The methods implemented here are designed to detect transcripts that are differentially transcribed between two conditions due to an altered histone modification and are suitable for very small sample sizes. Transcription data may be obtained by microarrays or RNA-seq.

Briefly, the following workflow is described in this document:

1. Matching of both data types by assigning the number of ChIP-seq reads aligning within the promoter region to the respective transcription value

2. Normalization of ChIP-seq values

3. Calculation of a correlation score for each gene by multiplying the standardized difference of ChIP-seq values by the standardized difference of transcription values

4. Fitting a (Bayesian) mixture model to this score: The implicit assignment of transcripts to mixture components is used to classify transcripts into one of the following groups: (i) Transcripts with equally directed differences in both data sets, (ii) transcripts with reversely directed differences in both data sets and (iii) transcripts with no differences in at least one of the two data sets. Group (iii) is represented by centred normal components whereas an exponential component is used for group (i) and a mirrored exponential component for group (ii).
2 Data preprocessing and normalization

2.1 Microarray gene expression data

First, we load an example microarray gene expression data set. The data set consists of four samples. Two wild type replicates and two CEBPA knock-out replicates. The differences between CEBPA knock-down and wild type samples are of interest. The data set is stored as an ExpressionSet object and was reduced to a few probesets on chromosome 1.

```r
> library(epigenomix)
> data(eSet)
> pData(eSet)

CEBPA
CEBPA_WT_a wt
CEBPA_WT_b wt
CEBPA_KO_a ko
CEBPA_KO_b ko
```

Data was measured using Affymetrix Mouse Gene 1.0 ST arrays and RMA normalization was applied. See packages affy and Biobase how to process affymetrix gene expression data.

2.2 RNA-seq data

Using RNA-seq instead of microarrays has the advantage that the abundance of individual transcript can be estimated. For this task, software like Cufflinks \(^2\) can be employed. Moreover, the Cuffdiff method (part of the Cufflinks software package) allows to summarize the estimated transcript abundances over all transcripts that share the same transcriptional start site (TSS) and offers several normalization methods, e.g. scaling based on the observed quartiles \(^3\). Grouping all transcripts sharing the same TSS is favourable for the later matching task. Importing the Cuffdiff output as data frame gives us the FPKM (fragments per kilobase of transcript per million fragments mapped) values.

```r
> data(fpkm)
> head(fpkm[,-2,-8], 9)

tracking_id gene_id gene_short_name
4  TSS1000 XLOC_000367 SH3BGRL3
38 TSS10003 XLOC_003811 TMCO1
49 TSS10004 XLOC_003812 RP11-525G13.2
82 TSS10007 XLOC_003814 FAM78B
149 TSS10013 XLOC_003815 RP11-9L18.2
160 TSS10014 XLOC_003816 RP11-479J7.1

locus CEBPA_WT CEBPA_KO tss_id
4 1:26605666-26647014 9.01200000 6.54111e+01 TSS1000
```
The last six columns were not included in the Cuffdiff output, but were extracted from the annotation file given as input to Cuffdiff. Next, we construct an ExpressionSet object so that we can handle RNA-seq data in the same way as microarray data:

```r
> mat <- log2(as.matrix(fpkm[, c("CEBPA_WT", "CEBPA_KO")]))
> rownames(mat) <- fpkm$tss_id
> eSet.seq <- ExpressionSet(mat)
> pData(eSet.seq)$CEBPA <- factor(c("wt", "ko"))
> fData(eSet.seq)$chr <- fpkm$chr
> fData(eSet.seq)$tss <- fpkm$tss
```

2.3 Histone ChIP-seq data

The example histone ChIP-seq data is stored as GRangesList object:

```r
> data(mappedReads)
> names(mappedReads)
```

```
[1] "CEBPA_WT_1" "CEBPA_KO_1"
```

There are two elements within the list. One CEBPA wild type and one knockout sample. Most of the originally obtained reads were removed to reduce storage space. Further, the reads were extended towards the 3 prime end to the mean DNA fragment size of 200bps and duplicated reads were removed. See R packages Rsamtools and GenomicAlignments how to read in and process sequence reads
2.4 Data matching

The presented ChIP-seq data localized H3K4me3 histone modifications. This modification primarily occurs at promoter regions. Hence, we assign ChIP-seq values to transcription values by counting the number of reads lying within the promoter of the measured transcript.

2.4.1 Microarray gene expression data

Depending on the array design, probes often measure more than one transcripts simultaneously. These transcripts may have different TSS/promoters. This makes data matching in case of arrays somewhat tricky. We first create a list with one element for each probe that stores the Ensemble transcript IDs of all transcripts measured by that probeset:

```r
> probeToTrans <- fData(eSet)$transcript
> probeToTrans <- strsplit(probeToTrans, ",")
> names(probeToTrans) <- featureNames(eSet)
```

Next, we need the transcriptional start sites for each transcript.

```r
> data(transToTSS)
> head(transToTSS)
```

```
   ensembl_transcript_id chromosome_name  transcript_start   strand
1 159  ENSMUST00000001172        1              36547201     -1
2 441  ENSMUST00000003219        1              39535802       1
3 631  ENSMUST00000004829        1             171559193       1
4 766  ENSMUST00000006037        1              13374083     -1
5 1202 ENSMUST000000013842       1             172206804     -1
6 1306 ENSMUST000000015460       1             171767127       1
```

Such a data frame can be obtained e.g. using biomaRt:

```r
> library("biomaRt")
> transcripts <- unique(unlist(probeToTrans))
> mart <- useMart("ensembl", dataset="mmusculus_gene_ensembl")
> transToTSS <- getBM(attributes=c("ensembl_transcript_id", "chromosome_name", "transcript_start", "transcript_end", "strand"), filters="ensembl_transcript_id",
```

5
values=transcripts, mart=mart)
> indNeg <- transToTSS$strand == -1
> transToTSS$transcript_start[indNeg] <- transToTSS$transcript_end[indNeg]
> transToTSS$transcript_end <- NULL

Having these information, the promoter region for each probe can be calculated using matchProbeToPromoter. Argument mode defines how probes with multiple transcripts should be handled.

> promoters <- matchProbeToPromoter(probeToTrans,
 transToTSS, promWidth=6000, mode="union")
> promoters[["10345616"]]

GRanges object with 2 ranges and 1 metadata column:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>probe</th>
</tr>
</thead>
<tbody>
<tr>
<td><Rle></td>
<td><IRanges></td>
<td><Rle></td>
<td><character></td>
</tr>
<tr>
<td>[1]</td>
<td>[37869206, 37875205]</td>
<td>+</td>
<td>10345616</td>
</tr>
<tr>
<td>[2]</td>
<td>[37887407, 37893406]</td>
<td>-</td>
<td>10345616</td>
</tr>
</tbody>
</table>

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Note that some promoter regions, like for probeset "10345616", may consist of more than one interval.

Finally, summarizeReads is used to count the number of reads within the promoter regions:

> chipSetRaw <- summarizeReads(mappedReads, promoters, summarize="add")
> chipSetRaw

class: ChIPseqSet
dim: 180 2
metadata(0):
assays(1): chipVals
rownames(180): 10344803 10344813 ... 10361191 10361215
rowRanges metadata column names(0):
colnames(2): CEBPA_WT_1 CEBPA_KO_1
colData names(1): totalCount

> head(chipVals(chipSetRaw))

<table>
<thead>
<tr>
<th>CEBPA_WT_1</th>
<th>CEBPA_KO_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10344803</td>
<td>145 401</td>
</tr>
<tr>
<td>10344813</td>
<td>145 401</td>
</tr>
<tr>
<td>10344897</td>
<td>2 8</td>
</tr>
<tr>
<td>10345007</td>
<td>8 6</td>
</tr>
<tr>
<td>10345037</td>
<td>69 122</td>
</tr>
<tr>
<td>10345099</td>
<td>38 90</td>
</tr>
</tbody>
</table>

The method returns an object of class ChIPseqSet, which is derived from class RangedSummarizedExperiment.
2.4.2 RNA-seq data

In case of RNA-seq data, we have one transcription value for each group of transcripts sharing the same TSS. Hence, a promoter region can be simply assigned to each transcription value:

```r
> promoters.seq <- GRanges(seqnames=fData(eSet.seq)$chr,
  ranges=IRanges(start=fData(eSet.seq)$tss, width=1),
  probe=featureNames(eSet.seq))
> promoters.seq <- resize(promoters.seq, width=3000, fix="center")
> promoters.seq <- split(promoters.seq, elementMetadata(promoters.seq)$probe)
```

Next, we can count the number of reads falling into our promoters:

```r
> chipSetRaw.seq <- summarizeReads(mappedReads, promoters.seq, summarize="add")
> chipSetRaw.seq
```

```r
class: ChIPseqSet
dim: 3502 2
metadata(0):
  assays(1): chipVals
  rownames(3502): TSS1000 TSS10001 ... TSS9998 TSS9999
  rowRanges metadata column names(0):
  colnames(2): CEBPA_WT_1 CEBPA_KO_1
  colData names(1): totalCount

> head(chipVals(chipSetRaw.seq))

```

<table>
<thead>
<tr>
<th></th>
<th>CEBPA_WT_1</th>
<th>CEBPA_KO_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSS10001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSS10003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSS10004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSS10007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSS10013</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From now on, we do not distinguish between microarray and RNA-seq any more. eSet can be substituted by eSet.ser and chipSetRaw by chipSetRaw.seq. In the following, the microarray data is used, since the RNA-seq data was not obtained from the same samples as the ChIP-seq data (actually, not even the same organism).
3 ChIP-seq data normalization

It may be necessary to normalize ChIP-seq data due to different experimental conditions during ChIP.

```r
> chipSet <- normalizeChIP(chipSetRaw, method="quantile")
```

In addition to quantile normalization, other methods like the method presented by [4] are available.

```r
> par(mfrow=c(1,2))
> plot(chipVals(chipSetRaw)[,1], chipVals(chipSetRaw)[,2],
          xlim=c(1,600), ylim=c(1,600), main="Raw")
> plot(chipVals(chipSet)[,1], chipVals(chipSet)[,2],
          xlim=c(1,600), ylim=c(1,600), main="Quantile")
```

Figure 1: Raw and quantile normalized ChIP-seq data.
4 Data integration

In order to integrate both data types, a correlation score Z (motivated by the work of [5]) can be calculated by multiplying the standardized difference of gene expression values with the standardized difference of ChIP-seq values. Prior to this, phenotype information must be added to the `chipSet` object.

```r
> eSet$CEBPA
[1] wt wt ko ko
Levels: ko wt

> colnames(chipSet)
[1] "CEBPA_WT_1" "CEBPA_KO_1"

> chipSet$CEBPA <- factor(c("wt", "ko"))
> colData(chipSet)

DataFrame with 2 rows and 2 columns
  totalCount  CEBPA
  CEBPA_WT_1     8687  wt
  CEBPA_KO_1     17122  ko

> intData <- integrateData(eSet, chipSet, factor="CEBPA", reference="wt")
> head(intData)

                  expr_ko expr_wt chipseq_ko chipseq_wt    z
  10354832  8.864536  8.392561     193.0       202.5 -0.8048761
  10359770  7.161367  7.305733     213.0       224.5  0.2980229
  10355974  7.956849  7.850496     214.5       271.0 -1.0786664
  10348378  5.384252  5.339577      49.0        85.5 -0.2927146
  10353775  4.780612  4.700385      15.0        13.5  0.0216021
  10352827  6.175612  5.873558       8.5         8.5  0.0000000
```
5 Classification by mixture models

5.1 Maximum likelihood approach

We now fit a mixture model to the correlation score \(Z \). The model consists of two normal components with fixed \(\mu = 0 \). These two components should capture \(Z \) values close to zero, i.e. genes that show no differences between wild type and knock-out in at least one of the two data sets. The positive (negative) \(Z \) scores are represented by a (mirrored) exponential component. Parameters are estimated using the EM-algorithm as implemented in the method \texttt{mlMixModel}.

\[
\texttt{mlmm} = \texttt{mlMixModel}(\texttt{intData[,"z"]},\\\text{normNull=c(2, 3), expNeg=1, expPos=4,}}\\\text{sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,}}\\\text{pi=rep(1/4, 4))}
\]

\[
\texttt{mlmm}
\]

MixModel object

- Number of data points: 180
- Number of components: 4
 1: ExpNeg
 - rate = 1.532987
 - weight pi = 0.2219707
 - classified data points: 30
 2: NormNull
 - mean = 0
 - sd = 0.01644812
 - weight pi = 0.2154126
 - classified data points: 48
 3: NormNull
 - mean = 0
 - sd = 0.1213587
 - weight pi = 0.3526906
 - classified data points: 70
 4: ExpPos
 - rate = 0.6931467
 - weight pi = 0.2099261
 - classified data points: 32

The method returns an object of class \texttt{MixModelML}, a subclass of \texttt{MixModel}.

We now plot the model fit and the classification results:
Figure 2: Model fit and classification results of the maximum likelihood approach.

5.2 Bayesian approach

Alternatively, an Bayesian approach can be used.

```r
> set.seed(1515)
> bayesmm = bayesMixModel(intData[, "z"],
   normNull=c(2, 3), expNeg=1, expPos=4,
   sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,
   shapeNorm0=c(10, 10), scaleNorm0=c(10, 10), shapeExpNeg0=0.01,
   scaleExpNeg0=0.01, shapeExpPos0=0.01, scaleExpPos0=0.01,
   pi=rep(1/4, 4), itb=2000, nmc=8000, thin=5)
```

bayesMixModel returns an object of class `MixModelBayes`, which is also a subclass of `MixModel`.

```r
> bayesmm

MixModel object
Number of data points: 180
Number of components: 4
1: ExpNeg
   rate = 0
   weight pi = 0.005949889
   classified data points: 0
2: NormNull
   mean = 0
   sd = 0.0712299
```
weight pi = 0.2435747
classified data points: 96
3: NormNull
 mean = 0
 sd = 0.6347255
 weight pi = 0.4605196
 classified data points: 71
4: ExpPos
 rate = 0.1145572
 weight pi = 0.2899559
 classified data points: 13

The same methods for plotting the model fit and classification can be applied.

> par(mfrow=c(1,2))
> plotComponents(bayesmm, xlim=c(-2, 2), ylim=c(0, 3))
> plotClassification(bayesmm, method="mode")

Figure 3: Model fit and classification results of the Bayesian approach.

Note, that the parameters 'burn in' (itb) and 'number of iterations' (nmc)
have to be chosen carefully. The method plotChains should be used to assess
the convergence of the markov chains for each parameter. The settings here
lead to a short runtime, but are unsuitable for real applications.

Both models tend to classify more genes to the positive component (component 4)
than to the negative one (component 1):

> table(classification(mlmm, method="maxDens"),
 classification(bayesmm, method="mode"))

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
This is in line with the fact, that H3K4me3 occurs in the promoters of active genes. Since each \(z \) corresponds to a probeset (and so to at least one transcript), the corresponding microarray annotation packages can be used to obtain e.g. the gene symbols of all positively classified \(z \) scores.

```r
> posProbes <- rownames(intData)[classification(bayesmm, method="mode") == 4]
> library("mogene10sttranscriptcluster.db")
> unlist(mget(posProbes, mogene10sttranscriptclusterSYMBOL))
```
References

