1 Introduction

There is a nice vignette in snpStats concerning linkage disequilibrium (LD) analysis as supported by software in that package. The purpose of this package is to simplify handling of existing population-level data on LD for the purpose of flexibly defining LD blocks.

2 Import of HapMap LD data


```r
suppressPackageStartupMessages(library(ldblock))
path = dir(system.file("hapmap", package="ldblock"), full=TRUE)
ceu17 = hmld(path, poptag="CEU", chrom="chr17")
## importing /tmp/Rtmp4ptrvg/Rinst2a26269bffa8/ldblock/hapmap/ld_chr17_CEU.txt.gz
## done.
ceu17
```

3 A view of the block structure

For some reason knitr/render will not display this image nicely.

```r
library(Matrix)
image(ciu17@ldmat[1:400,1:400],
col.reg=heat.colors(120), colorkey=TRUE, useRaster=TRUE)
```
This ignores physical distance and MAF. The bright stripes are probably due to SNP with low MAF.

4 Collecting SNPs exhibiting linkage to selected SNP

We’ll use ceu17 and the gwascat package to enumerate SNP that are in LD with GWAS hits.

```r
library(gwascat)
## Loading required package: Homo.sapiens
## Loading required package: AnnotationDbi
## Loading required package: stats4
```
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following object is masked from 'package:Matrix':
## which
## The following objects are masked from 'package:stats':
## IQR, mad, xtabs
## The following objects are masked from 'package:base':
## Filter, Find, Map, Position, Reduce, anyDuplicated, append,
## as.data.frame, cbind, colnames, do.call, duplicated, eval,
## evalq, get, grep, grepl, intersect, is.unsorted, lapply,
## lengths, mapply, match, mget, order, paste, pmax, pmax.int,
## pmin, pmin.int, rank, rbind, rnames, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which, which.max,
## which.min
## Loading required package: Biobase
## Welcome to Bioconductor
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:Matrix':
## colMeans, colSums, expand.grid, rowMeans, rowSums
## The following objects are masked from 'package:base':
## colMeans, colSums, expand.grid, rowMeans, rowSums
## Loading required package: OrganismDbi
## Loading required package: GenomicFeatures
## Loading required package: GenomeInfoDb
## Loading required package: GenomicRanges
## Loading required package: GO.db
## Loading required package: org.Hs.eg.db
## Loading required package: TxDb.Hsapiens.UCSC.hg19.knownGene
## gwascat loaded. Use data(ebicat38) for hg38 coordinates;
## data(ebicat37) for hg19 coordinates.
## data(ebicat37)
## seqlevelsStyle(ebicat37) = "NCBI"
e17 = ebicat37[which(seqnames(ebicat37) == "17") ]
Some dbSNP names for GWAS hits on chr17 are

```r
rsh17 = unique(e17$SNPS)
head(rsh17)
## [1] "rs11078895"  "rs11891"  "rs7501939"  "rs9905704"  "rs4796793"
## [6] "rs78378222"
```

We will use `expandSnpSet` to obtain names for SNP that were found in HapMap CEU to have which $D' > .9$ with any of these hits. These names are added to the input set.

```r
length(rsh17)
## [1] 530
exset = expandSnpSet( rsh17, ldstruct= ceu17, lb=.9 )
## Warning in expandSnpSet(rsh17, ldstruct = ceu17, lb = 0.9): dropping 149
## rsn not matched in ld matrix
length(exset)
## [1] 13209
all(rsh17 %in% exset)
## [1] TRUE
```

Not all GWAS SNP are in the HapMap LD resource. You can use your own LD data as long as the format agrees with that of the HapMap distribution.