maSigPro User’s Guide

Ana Conesa and Maria J. Nueda

21 June 2016

1. Centro de Investigacion Principe Felipe, Valencia, Spain.
aconesa@cipf.es
2. Departamento de Estadistica e I.O. Universidad de Alicante, Spain.
mj.nueda@ua.es

Contents

1 Introduction 1

2 Getting started 2

3 Multiple Series Time Course Experiment 2

3.1 Defining the regression model ... 5
3.2 Finding significant genes .. 5
3.3 Finding significant differences .. 5
3.4 Obtaining lists of significant genes 6

4 Graphical display 6

4.1 Venn Diagrams .. 7
4.2 see.genes ... 7
4.3 PlotGroups ... 8
4.4 PlotProfiles ... 11

5 Other designs 11

5.1 Single Series Time Course ... 11
5.2 Common Starting Time .. 12

6 Next Generation-Sequencing series 12

1 Introduction

maSigPro is a R package that initially was developed for the analysis of single and multiseries time course microarray experiments (Conesa et al., 2006). maSigPro has been adapted to deal also with Next Generation-Sequencing (NGS) series of data in a proper way (Nueda et al., 2014). The usage of this opcion is explained in 6 section.
maSigPro follows a two steps regression strategy to find genes with significant temporal expression changes and significant differences between experimental groups. The method defines a general regression model for the data where the experimental groups are identified by dummy variables. The procedure first adjusts this global model by the least-squared technique to identify differentially expressed genes and selects significant genes applying false discovery rate control procedures. Secondly, stepwise regression is applied as a variable selection strategy to study differences between experimental groups and to find statistically significant different profiles. The coefficients obtained in this second regression model will be useful to cluster together significant genes with similar expression patterns and to visualize the results. This document is an example-based guide for the use of **maSigPro**. We recommend to open a R session and go through this tutorial running the code given at the different sections. The guide does not provide a detailed description of the functions of the package or demonstrates the statistical basis of the methodology. The later is described in the work by (Conesa et al., 2006) and (Nueda et al., 2014).

2 Getting started

The **maSigPro** package can be obtained from the Bioconductor repository or downloaded from http://www.ua.es/personal/mj.nueda and http://bioinfo.cipf.es/downloads. Load **maSigPro** by typing at the R prompt:

```r
> library(maSigPro) # load maSigPro library
```

The on-line help of **maSigPro** can be started by typing at the R prompt:

```r
> help(package="maSigPro") # for package help
> ?p.vector # for function help
```

The analysis approach implemented in **maSigPro** is executed in 5 major steps (Figure 1) which are run by the package core functions **make.design.matrix()**, **p.vector()**, **T.fit()**, **get.siggenes()** and **see.genes()**. Additionally, the package provides the wrapping function **maSigPro()** which executes the entire analysis in one go.

In the following section we will explain the usage of each of these functions using as example a data set from a multiple series time course experiment. At the end of this document we will also explain how to apply **maSigPro** to other experimental designs.

3 Multiple Series Time Course Experiment

For this section we will use a public data set from a plant abiotic stress study performed at the TIGR Institute by (Rensink et al., 2005). In this study, potato plants were subjected to three different types of abiotic stresses and gene expression was monitored at three time points after the start of the treatments. RNA was also collected from non-stressed plants at the same time points and all samples where hybridased against a common control on a 11K cDNA potato chip. There are three biological replicates for each experimental condition. For speed in this example we will use a random 1000 genes data subset of this study. This data set is part of the data supplied by the **maSigPro** package. The original data can be found at http://www.tigr.org/tdb/tdb/potato/index.shtml.
Before proceeding with this tutorial we will define some of the terms that will be used along this document. We denote experimental groups as the experimental factor for which temporal profiles are defined, like "Treatment A", "Tissue1", etc; conditions are each experimental group vs. time combination like "Treatment A at Time 0" conditions can have or not replicates. Variables are the regression variables defined by the maSigPro approach for the experiment regression model. maSigPro defines dummy variables to model differences between experimental groups. Dummy variables, Time and their interactions are the variables of the regression model. Load the data in your workspace:

```r
> data(data.abiotic)
> data(edesign.abiotic)
```

The edesign.abiotic object describes the experimental design of this experiment in maSigPro format.

```r
> edesign.abiotic

<table>
<thead>
<tr>
<th>Time</th>
<th>Replicate</th>
<th>Control</th>
<th>Cold</th>
<th>Heat</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Array</td>
<td>Time</td>
<td>Replicates</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Cold_3H_2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_3H_3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_9H_1</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_9H_2</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_9H_3</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_27H_1</td>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_27H_2</td>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cold_27H_3</td>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Heat_3H_1</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_3H_2</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_3H_3</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_9H_1</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_9H_2</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_9H_3</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_27H_1</td>
<td>27</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_27H_2</td>
<td>27</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heat_27H_3</td>
<td>27</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salt_3H_1</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_3H_2</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_3H_3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_9H_1</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_9H_2</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_9H_3</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_27H_1</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_27H_2</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salt_27H_3</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that arrays are given in rows and experiment descriptors are provided in columns. The first column shows the value that variable Time takes in each array. Replicates column is an index column that indicates the replicated arrays: all arrays belonging to the same experimental condition must be given the same number. The remaining columns are binary columns that give the assignment of arrays to experimental groups. There are as many binary columns as experimental groups and arrays take the value 1 or 0 whether they belong or not to that experimental group.

The **data.abiotic** object is a matrix with normalized gene expression data. Genes must be in rows and arrays in columns. **maSigPro** uses row and column names of the data and edesign objects throughout the package. Array names are the labels of the rows of the edesign object and columns of the data object that must be in the same order. GeneIDs are the labels of the rows in the data object. And experiment descriptors are put in the column names of the edesign object.

```r
colnames(data.abiotic)
rownames(edesign.abiotic)
colnames(edesign.abiotic)
rownames(data.abiotic)
```
3.1 Defining the regression model

Create a regression matrix for the full regression model:

```r
> design <- make.design.matrix(edesign.abiotic, degree = 2)
```

This example has three time points, so we can consider up to a quadratic regression model (`degree = 2`). Larger number of time points would potentially allow a higher polynomial degree. `design` is a list. Its element `dis` is the actual regression design matrix. `groups.vector` contains the assignment of regression variables to experimental groups.

```r
> design$groups.vector
[1] "ColdvsControl" "HeatvsControl" "SaltvsControl" "Control" "ColdvsControl"
[6] "HeatvsControl" "SaltvsControl" "Control" "ColdvsControl" "HeatvsControl"
```

3.2 Finding significant genes

The next step is to compute a regression fit for each gene. This is done by the function `p.vector()`. This function also computes the p-value associated to the F-Statistic of the model, which is used to select significant genes. By default `maSigPro` corrects this p-value for multiple comparisons by applying the linear step-up (B-H) false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). This procedure can be modified by choosing another option of the `p.adjust` function that is controlled by the function parameter `MT.adjust` of `p.vector`. The level of FDR control is given by the function parameter `Q`.

```r
> fit <- p.vector(data.abiotic, design, Q = 0.05, MT.adjust = "BH", min.obs = 20)
```

`p.vector()` returns a list of values:

```r
> fit$i # returns the number of significant genes
> fit$alfa # gives p-value at the Q false discovery control level
> fit$SELEC # is a matrix with the significant genes and their expression values
```

3.3 Finding significant differences

Once significant genes have been found, `maSigPro` applies a variable selection procedure to find significant variables for each gene. This will ultimately be used to find which are the profile differences between experimental groups. This step is done by the `T.fit()` function.

```r
> tstep <- T.fit(fit, step.method = "backward", alfa = 0.05)
```

`T.fit()` executes stepwise regression. The step.method can be "backward" or "forward" indicating whether the step procedure starts from the model with all or none variables. Use method "two.ways.backward" and "two.ways.forward" to allow variables to both get in and out. At each regression step the p-value of each variable is computed and variables get in/out the model when this p-value is lower or higher than the given cut-off value alfa. `tstep` is also a list. Its element `sol` is a matrix of statistical results obtained by the stepwise regression. For each selected gene the following values are given:
3.4 Obtaining lists of significant genes

The following step is to generate lists of significant genes according to the way we want to see results. This is done by the function `get.siggenes()`. This function has two major arguments, `rsq` and `vars`.

- **rsq**: is a cut-off value for the R-squared of the regression model.
- **vars**: is used to indicate how to group variables to show results. There are 3 possible values:
  - **groups**: This will generate a list of significant genes for each experimental group. The list corresponding to the reference group will contain genes whose expression profile is significantly different from a 0 profile. The lists corresponding to the remaining experimental groups will contain genes whose profiles are different from the reference group.
  - **all**: One unique list of significant genes for any model variable will be produced.
  - **each**: There will be as many lists as variables in the regression model. This can be used to analyze specific differences, for example genes that have linear or saturation kinetics.

```r
> sigs <- get.siggenes(tstep, rsq = 0.6, vars = "groups")
> names(sigs)
[1] "sig.genes" "summary"
```

The element `summary` is a data frame containing the significant genes for the selected `vars`. The element `sig.genes` is a list with all the information needed for the graphical display explained in the following section.

You can further explore your results by:

```r
> names(sigs$sig.genes)
[1] "Control" "ColdvsControl" "HeatvsControl" "SaltvsControl"
> names(sigs$sig.genes$ColdvsControl)
[1] "sig.profiles" "coefficients" "group.coefs" "sig.pvalues" "g"
[6] "edesign" "groups.vector"
```

4 Graphical display

`maSigPro` has several functions for the visual exploration of the results: Venn diagrams, profiles of specific genes and profiles of groups of genes from different perspectives. The main principal function is `see.genes` that makes a clustering analysis and call `PlotProfiles` and `PlotGroups` functions to visualize the clusters.
4.1 Venn Diagrams

`suma2Venn()` function displays the summary result, obtained with `get.siggenes()` function, as a Venn diagram. This can be a first view of the obtained results. Figure 2 shows 2 Venn diagrams made with the following commands. The first one is a Venn diagram of the significant genes for the three stress experimental groups and the second one includes also the control group.

```r
> suma2Venn(sigs$summary[, c(2:4)])
> suma2Venn(sigs$summary[, c(1:4)])
```

4.2 see.genes

Use `see.genes()` to visualize the result of a group of genes, for example, to visualize the significant genes obtained as significant in the previous step in Control vs Salt, that are genes with significant differences between Salt and Control gene expression.

```r
> sigs$sig.genes$SaltvsControl$g
[1] 191
```

```r
see.genes(sigs$sig.genes$ColdvsControl, show.fit = T, dis = design$dis, cluster.method="hclust",cluster.data = 1, k = 9)
```
Figure 3: Heatmap of statistically significant genes of ColdvsControl group.

Firstly, function `see.genes()` shows a heatmap graph (Figure 3). Secondly, `see.genes()` performs a cluster analysis to group genes by similar profiles. Main arguments for cluster analysis are:

- **k**: number of clusters for data partitioning. By default it is 9. Mclust cluster method can compute an optimal k, choosing `k.mclust=TRUE`.
- **cluster.method**: clustering method for data partitioning. hclust, kmeans and Mclust are supported.
- **distance**: distance measurement function when cluster.method is hclust. By default it is 'cor' to compute a distance based on the correlation because we are interested in similar trends or changes.
- **agglo.method**: aggregation method used when cluster.method is hclust. By default `ward.D`.

The resulting clusters are then plotted in two fashions: as experiment-wide expression profiles and as by-groups profiles. The first plot (Figure 4) will help to evaluate the consistency of the clusters while the second plot shows clearly the differences between groups (Figure 5).

### 4.3 PlotGroups

As it is already explained, function `PlotGroups` is used for `see.genes`. Here we are going to show the performance of this secondary function because they can also be useful out of the clustering display. `PlotGroups()` creates a plot of gene expression profiles where time-factor is in the x-axis, gene expression in the y-axis, gene expression of the same experimental group is represented with the same colour and it is drawn a line that join the averages of each time-group to see
Figure 4: Cluster Analysis Cold vs Control significant genes
Figure 5: Expression Profiles Cold vs Control significant genes
the trend of each experimental group through time. This plot can be made for specific genes or for groups of genes where the median will be computed. For example, STMDE66 is a gene which shows significant profile differences between the control and the cold and salt stress experimental groups, but not significant differences between control and heat experimental groups (Figure 6).

\[ \text{STMDE66} \leftarrow \text{data.abiotic[rownames(data.abiotic)="STMDE66", ]} \]

\[ \text{PlotGroups (STMDE66, edesign = edesign.abiotic)} \]

We can also add to the plot the regression curve computed for this gene.

\[ \text{PlotGroups (STMDE66, edesign = edesign.abiotic, show.fit = T, \}
+ \text{dis = design$dis, groups.vector = design$groups.vector)} \]

4.4 PlotProfiles

This secondary function creates a plot of gene expression profiles where x-axis represents the order of the columns of the data matrix and the y-axis represents the gene expression. When a group of genes is plotted they will be represented with different colours. The main goal of this graph is to check the homogeneity of the clusters.

5 Other designs

5.1 Single Series Time Course

The use of maSigPro in Single Series Time Course experiment is straightforward. Make a edesign object with just one group column containing all 1s and proceed as described
above. Note that when using the get.siggenes() function the options "all" and "groups" of the argument vars will return the same result. You can use option "each" to analyze the type of responses present in the significant genes: significant genes at the "intercept" term will have a significant expression value at the starting time; genes associated to the variable "Time" will have a significant linear component, which can be induction or repression depending on the sign of their coefficient; genes associated to the variable "Time2" will show a change in the linear response that might be indicating transitory or saturation responses, etc...

Here follows an example of a Single Series analysis.

```r
make a single series edesign
> Time <- rep(c(1,5,10,24), each = 3)
> Replicates <- rep(c(1:4), each = 3)
> Group <- rep(1,12)
> ss.edesign <- cbind(Time, Replicates, Group)
> rownames(ss.edesign) <- paste("Array", c(1:12), sep = "")
Create data set
> ss.GENE <- function(n, r, var11 = 0.01, var12 = 0.02, var13 = 0.02,
 var14 = 0.02, a1 = 0, a2 = 0, a3 = 0, a4 = 0) {
 tc.dat <- NULL
 for (i in 1:n) {
 gene <- c(rnorm(r, a1, var11), rnorm(r, a1, var12),
 rnorm(r, a3, var13), rnorm(r, a4, var14))
 tc.dat <- rbind(tc.dat, gene)
 }
 tc.dat }
> flat <- ss.GENE(n = 85, r = 3) # flat
> induc <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 0.2, a3 = 0.6, a4 = 1) # induction
> sat <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 1, a3 = 1.1, a4 = 1.2) # saturation
> ord <- ss.GENE(n = 5, r = 3, a1 = -0.8, a2 = -1, a3 = -1.3, a4 = -0.9) # intercept
> ss.DATA <- rbind(flat, induc, sat, ord)
> rownames(ss.DATA) <- paste("feature", c(1:100), sep = "")
> colnames(ss.DATA) <- paste("Array", c(1:12), sep = "")
run maSigPro
> ss.example <- maSigPro(ss.DATA, ss.edesign, vars="each")
```

5.2 Common Starting Time

The following example illustrates how to build the edesign matrix when a common 0 time is applicable to the different experimental groups.

```r
> data(edesignCT)
```

In this example Array1 and Array2 do not belong to any treatment. They are a common reference for all groups, values without any treatment at time 0.

6 Next Generation-Sequencing series

maSigPro uses lm() function to fit a linear model where statistics for inference use normal distribution. This is the right treatment when dealing with normal distributed data or big
samples. However, for non-normal small samples, results can not be correct.
The statistical distribution for tag counts data as RNA-Seq data may be Poisson or Binomial. However, the overdispersion of the data suggest the Negative Binomial (NB) can model these distributions in a better way. This distribution depends on a $\theta$ parameter to model the overdispersion that is related to the mean($\mu$) in the following way:

$$Y \sim NB(\theta), \text{Var}(Y) = \mu + \frac{\mu^2}{\theta}$$

**maSigPro** has been adapted to take into account non-normal distribution of the data ([Nueda et al., 2014](#)). New arguments have been added in `p.vector` function to deal with this type of data in a proper way:

- **counts**: a logical indicating whether your data are counts. By default is FALSE for microarray treatment.
- **theta**: $\theta$ parameter for negative.binomial family. By default $\theta = 10$.
- **family**: the distribution function to be used in the GLM. It must be specified as a function: gaussian(), poisson(), negative.binomial(theta)… If NULL family will be negative.binomial(theta) when counts=TRUE or gaussian() when counts=FALSE.

The recommended analysis to deal with RNA-Seq data is the GLM with negative.binomial family. $\theta$ must be specified and it can be computed by using available methods as edgeR ([Robinson et al., 2010](#)). The application of maSigPro with several values of $\theta$ to the same datasets did not reveal significant differences in gene selection. Taking this into consideration we have put by default $\theta = 10$ for being an average value. Moreover we give to the user the option of applying whatever exponential family to explore other possibilities.

Data must be normalized before the application of maSigPro as it is not integrated any normalized method.

**NBdata** is a subset of a bigger normalized dataset with 2 experimental groups, 6 time-points and 3 replicates. Simulation has been done by using a negative binomial distribution with $\theta = 5$ to illustrate this section. The first 20 genes are simulated with changes among time. **NBdesign** is the design matrix.

```r
> data(NBdata)
> data(NBdesign)
> d <- make.design.matrix(NBdesign)
```

If we can use maSigPro with $theta = 10$:

```r
> library(MASS)
> NBp <- p.vector(NBdata, d, counts=TRUE)
> NBt <- T.fit(NBp)
> get<-get.siggenes(NBt, vars="all")
> get$summary
```

These genes can be grouped in 4 clusters [7]
Figure 7: Cluster Analysis significant genes
see.genes(get$sig.genes, k = 4)

If we can use maSigPro with a specific \( \theta \), in this case, \( \theta = 5 \):

\[
> \text{NBp} \leftarrow \text{p.vector(NBdata, d, counts=TRUE, theta=5)}
\]

Also, a specific family, for instance, poisson can be specified. In such case counts and \( \theta \) parameters are omitted.

\[
> \text{NBp} \leftarrow \text{p.vector(NBdata, d, family=poisson())}
\]

Changing this arguments in \text{p.vector} is enough. Further functions will take these arguments from a \text{p.vector} object.

References


