Rendering pathways to convey quantitative genomic relationships

VJ Carey et al

April 24, 2017

1 Introduction

Given an R graph representing a biological pathway and a vector of numbers (e.g., estimated levels of gene expression, or quantile of gene expression value in a distribution over samples) linked to the nodes of the pathway (e.g., genes), we wish to display the graph with nodes colored to convey the relationships among the numbers.

Our primary tool for rendering graphs is \textit{Rgraphviz}. This package uses AT&T graphviz to compute layouts, and various aspects of R graphics to create renderings.

Our primary tools for creating pathway graphs are the \textit{graph} and \textit{pathRender} packages.

In this vignette and associated code, we aim to simplify the use of software in these components to allow the intended renderings to be created in a flexible way.

2 An example

2.1 A pathway graph

The \textit{graph} package contains a custom-made graph representing the pancreatic cancer initiation pathway. First we render it in isolation from data:

```r
> library(graph)
> library(pathRender)
> library(Rgraphviz)
> data(pancrCaIni)
> plot(pancrCaIni, nodeAttrs=pwayRendAttrs(pancrCaIni))
```
2.2 An ExpressionSet and its reduction

We will work with ALL.

> library(ALL)
> if (!exists("ALL")) data(ALL)

A basic problem is to reduce the information obtained using the whole-genome microarray to a set of numbers relevant to the pathway we wish to render. The reduceES function helps with this. Given a vector of annotation tokens (e.g., HUGO gene symbols) and a map from symbols to associated microarray probes, reduceES restricts the assay data to relevant probes. The map parameter can be either an AtomicAnnDbBimap as created in the *.db annotation packages, or a list with annotation tokens as element names and vectors probe identifiers as elements. Here we illustrate the use of the Bimap:
> if ("package:hgu95av2" %in% search()) detach("package:hgu95av2")
> library(hgu95av2.db)
> red1 = reduceES(ALL, nodes(pancrCaIni), revmap(hgu95av2SYMBOL), "symbol")
> red1

ExpressionSet (storageMode: lockedEnvironment)
assayData: 30 features, 128 samples
 element names: exprs
protocolData: none
phenoData
 sampleNames: 01005 01010 ... LAL4 (128 total)
 varLabels: cod diagnosis ... date last seen (21 total)
 varMetadata: labelDescription
featureData
 featureNames: 1940_at 32159_at ... 34006_s_at (30 total)
 fvarLabels: symbol
 fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
 pubMedIds: 14684422 16243790
Annotation: hgu95av2

> pData(featureData(red1))

symbol
1940_at KRAS
32159_at KRAS
37901_at PIK3R4
34254_at RALGDS
37543_at ARHGEF6
40781_at AKT3
1706_at ARAF
1707_g_at ARAF
1876_at RALA
1877_g_at RALA
39253_s_at RALA
2050_s_at RAC1
40864_at RAC1
33770_at CHUK
1861_at BAD
486_at CASP9
487_g_at CASP9
1130_at MAP2K1
1844_s_at MAP2K1
36628_at RALBP1
177_at PLD1
1377_at NFKB1
1378_g_at NFKB1
38438_at NFKB1
1615_at BCL2L1
34742_at BCL2L1
976_s_at MAPK1
2070_i_at MAPK8
2071_s_at MAPK8
34006_s_at MAPK8

Note that the reduceES creates a featureData variable and that there are repetitions of values of this variable. We can specify that we want to collapse repetitions by specifying a function for the collapseFun parameter. We will use mean.

```r
> collap1 = reduceES( ALL, nodes(pancrCaIni), revmap(hgu95av2SYMBOL), "symbol", mean )
```

ExpressionSet (storageMode: lockedEnvironment)
assayData: 18 features, 128 samples
 element names: exprs
protocolData: none
phenoData
 sampleNames: 01005 01010 ... LAL4 (128 total)
 varLabels: cod diagnosis ... date last seen (21 total)
 varMetadata: labelDescription
featureData
 featureNames: AKT3 ARAF ... RALGDS (18 total)
 fvarLabels: symbol
 fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

2.3 A rendering

Now we will render information on one sample from the reduced data.

```r
> library(RColorBrewer)
> plotExGraph(pancrCaIni, collap1, 1)
```