BSgenome.Mmulatta.UCSC.rheMac3.masked

November 18, 2016

BSgenome.Mmulatta.UCSC.rheMac3.masked

Full masked genome sequences for Macaca mulatta (UCSC version rheMac3)

Description

Full genome sequences for Macaca mulatta (Rhesus) as provided by UCSC (rheMac3, Oct. 2010) and stored in Biostrings objects. The sequences are the same as in BSgenome.Mmulatta.UCSC.rheMac3, except that each of them has the 4 following masks on top: (1) the mask of assembly gaps (AGAPS mask), (2) the mask of intra-contig ambiguities (AMB mask), (3) the mask of repeats from RepeatMasker (RM mask), and (4) the mask of repeats from Tandem Repeats Finder (TRF mask). Only the AGAPS and AMB masks are "active" by default.

Note

The masks in this BSgenome data package were made from the following source data files:

RM and TRF masks: rheMac3.fa.out.gz and rheMac3.trf.bed.gz
from http://hgdownload.soe.ucsc.edu/goldenPath/rheMac3/bigZips/

See ?BSgenome.Mmulatta.UCSC.rheMac3 in the BSgenome.Mmulatta.UCSC.rheMac3 package for information about how the sequences were obtained.

See ?BSgenomeForge and the BSgenomeForge vignette (vignette("BSgenomeForge")) in the BSgenome software package for how to make a BSgenome data package.

Author(s)

The Bioconductor Dev Team
See Also

- `BSgenome.Mmulatta.UCSC.rheMac3` in the `BSgenome.Mmulatta.UCSC.rheMac3` package for information about how the sequences were obtained.
- `BSgenome` objects and the `available.genomes` function in the `BSgenome` software package.
- `MaskedDNAString` objects in the `Biostatics` package.
- The `BSgenomeForge` vignette (vignette("BSgenomeForge")) in the `BSgenome` software package for how to make a `BSgenome` data package.

Examples

```r
BSgenome.Mmulatta.UCSC.rheMac3.masked

genome <- BSgenome.Mmulatta.UCSC.rheMac3.masked
seqlengths(genome)

genome$chr1  # a MaskedDNAString object!
## To get rid of the masks altogether:
unmasked(genome$chr1)  # same as BSgenome.Mmulatta.UCSC.rheMac3$chr1

if (!"AGAPS" %in% masknames(genome)) {
  ## Check that the assembly gaps contain only Ns:
  checkOnlyNsInGaps <- function(seq) {
    ## Replace all masks by the inverted AGAPS mask
    masks(seq) <- gaps(masks(seq)["AGAPS"])
    unique_letters <- uniqueLetters(seq)
    if (any(unique_letters != "N"))
      stop("assembly gaps contain more than just Ns")
  }

  ## A message will be printed each time a sequence is removed
  ## from the cache:
  options(verbose=TRUE)

  for (seqname in seqnames(genome)) {
    cat("Checking sequence", seqname, "...
    seq <- genome[[seqname]]
    checkOnlyNsInGaps(seq)
    cat("OK\n")
  }
}

## See the GenomeSearching vignette in the BSgenome software
## package for some examples of genome-wide motif searching using
## Biostats and the BSgenome data packages:
if (interactive())
  vignette("GenomeSearching", package="BSgenome")
```

Index

*Topic data
 BSgenome.Mmulatta.UCSC.rheMac3.masked, 1

*Topic package
 BSgenome.Mmulatta.UCSC.rheMac3.masked, 1

available.genomes, 2

BSgenome, 2
BSgenome.Mmulatta.UCSC.rheMac3, 1, 2
BSgenome.Mmulatta.UCSC.rheMac3.masked, 1

BSgenome.Mmulatta.UCSC.rheMac3.masked-package
 (BSgenome.Mmulatta.UCSC.rheMac3.masked), 1

BSgenomeForge, 1

MaskedDNAString, 2