IlluminaHumanMethylation450kprobe

February 28, 2017

IlluminaHumanMethylation450kprobe

Probe sequences for microarrays of type IlluminaHumanMethylation450

Description

Reannotation resource for Illumina HumanMethylation450 chips

Usage

data(IlluminaHumanMethylation450kprobe)

Format

A data frame with 485577 rows and 10 columns, as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe_ID</td>
<td>character</td>
<td>Illumina probe ID</td>
</tr>
<tr>
<td>chr</td>
<td>factor</td>
<td>Chromosome of probe target in hg19</td>
</tr>
<tr>
<td>strand</td>
<td>factor</td>
<td>Best strand match to hg19/GRCh37</td>
</tr>
<tr>
<td>start</td>
<td>integer</td>
<td>Start coordinate of target in hg19</td>
</tr>
<tr>
<td>end</td>
<td>integer</td>
<td>End coordinate of target in hg19</td>
</tr>
<tr>
<td>site</td>
<td>character</td>
<td>Interrogated cytosine in hg19</td>
</tr>
<tr>
<td>probe.sequence</td>
<td>character</td>
<td>Probe (allele A) sequence</td>
</tr>
<tr>
<td>source.sequence</td>
<td>character</td>
<td>Designed target sequence</td>
</tr>
<tr>
<td>forward.genomic.sequence</td>
<td>character</td>
<td>Closest match in hg19</td>
</tr>
<tr>
<td>CpGs</td>
<td>integer</td>
<td>CpG sites (CpH/rs probes have 0)</td>
</tr>
</tbody>
</table>

Interrogated di/trinucleotides span (site, site+(SNP=0,CpG=1,CpH=2)). CpH probe coordinates were liftOver()ed from hg18 to hg19 then aligned.

Source

The probe sequence data was obtained from ftp://ftp.illumina.com. Data was extracted from HumanMethylation450_15017482_v1.2.csv.
Examples

```r
library(IlluminaHumanMethylation450kprobe)
data(IlluminaHumanMethylation450kprobe)
head(IlluminaHumanMethylation450kprobe, 3)
summary(IlluminaHumanMethylation450kprobe)

# Let's use this data...
library(GenomicRanges)
chs = levels(IlluminaHumanMethylation450kprobe$chr)
names(chs) = paste('chr', chs, sep = '')
CpGs.450k = with(IlluminaHumanMethylation450kprobe,
   GRanges(paste('chr', chs, sep = ''),
           IRanges(start = site, width = 2, names = Probe_ID),
           strand = strand))

# verify the number of CpG sites in each probe:
library(Biostrings)
hm450 = with(IlluminaHumanMethylation450kprobe,
   DNAStringSet(forward.genomic.sequence))
head(dinucleotideFrequency(hm450)[,'CG'])
# [1] 3 2 1 1 3 1
tail(dinucleotideFrequency(hm450)[,'CG'])
# [1] 0 0 0 0 0 ...

# find all the SNPs at CpG sites using GenomicRanges
library(parallel)
library(SNPlocs.Hsapiens.dbSNP.20110815)
CpG.snps.by.chr = mclapply(chs, function(ch) {
   snps = getSNPlocs(paste('chr', ch, sep = ''), as.GRanges=TRUE)
   seqlevels(snps) <- gsub('chr', 'chr', seqlevels(snps))
   names(snps) = paste('rs', elementMetadata(snps)$RefSNP_id, sep = '')
   message(paste('Scanning for CpG SNPs in probes on chromosome', ch))
   overlapping = findOverlaps(CpGs.450k, snps)$matchMatrix
   results = data.frame(
      Probe_ID = as.character(names(CpGs.450k)[overlapping[,1]]),
      rsID = as.character(names(snps)[overlapping[,2]])
   )
   return(results)
})
SNPs = do.call(rbind, CpG.snps.by.chr)

# Obnoxious side effect of do.call(rbind)
SNPs$rsID = levels(SNPs$rsID)[SNPs$rsID]
SNPs$Probe_ID = levels(SNPs$Probe_ID)[SNPs$Probe_ID]

# For 27k array comparisons you could do...
# SNPs$hm27 = unlist(mget(SNPs$Probe_ID, IlluminaHumanMethylation450kMETHYL27))

# how many probes have SNPs?
# message(nrow(SNPs))
# IlluminaHumanMethylation450kprobe$CpG.SNP = FALSE
# probe.SNPs = which(is.element(IlluminaHumanMethylation450kprobe$Probe_ID,
#  SNPs$Probe_ID))
# IlluminaHumanMethylation450kprobe$CpG.SNP[probe.SNPs] = TRUE
#
# find repeats crossing CpG sites using IRanges
```
IlluminaHumanMethylation450kprobe

library(BSgenome.Hsapiens.UCSC.hg19)
CpG.rpts.by.chr = mclapply(chs, function(ch) { # {{ uses IRanges
chr = Hsapiens[[paste('chr',ch,sep='')]])
rpts = union(masks(chr)$RM, masks(chr)$TRF)
probes = which(seqnames(CpGs.450k)==paste('chr',ch,sep=''))
note how we have to use RangedData instead!!
CpGs.chr = ranges(CpGs.450k[probes])
overlapping = findOverlaps(CpGs.chr, rpts)$matchMatrix
results = data.frame(
Probe_ID=as.character(names(CpGs.chr)[overlapping$matchMatrix[,1]]),
repeatID='RM/TRF'
)
return(results)
}) } })
RPTs = do.call(rbind, CpG.rpts.by.chr)

how many probes have repeats at CpGs?
message(nrow(RPTs))
IlluminaHumanMethylation450kprobe$CpG.repeat = FALSE
IlluminaHumanMethylation450kprobe$CpG.repeat[RPTs$Probe_ID] = TRUE

how many have both?
with(IlluminaHumanMethylation450kprobe,
sum(CpG.repeat & CpG.SNP))

how many have either?
with(IlluminaHumanMethylation450kprobe,
sum(CpG.repeat | CpG.SNP))

We could change the above to find all SNPs and RPTs within probe targets:
probes.450k = with(IlluminaHumanMethylation450kprobe,
GRanges(paste('chr',chr,sep=''),
IRanges(start=start, width=50, names=Probe_ID),
strand=strand))
Swap 'probes.450k' for 'CpGs.450k' in the previous lapply() loops to run.
nb. If we want to look e.g. 10bp from the CpG site, then stranding matters.

find the nearest TSS and its corresponding EntrezGene ID
library(GenomicFeatures)
CpGs.unstranded = CpGs.450k
strand(CpGs.unstranded) = '*'
refgene.TxDb = makeTranscriptDbFromUCSC('refGene', genome='hg19')

nearest forward TSS
TSS.forward = transcripts(refgene.TxDb,
vals=list(tx_strand='+'),
columns='gene_id')

nearest.fwd = precede(CpGs.unstranded, TSS.forward)

nearest.fwd.eg = nearest.fwd # to keep dimensions right
notfound = which(is.na(nearest.fwd)) # to keep dimensions right

nearest.fwd.eg[notfound] = as.character(elementMetadata(TSS.forward)$gene_id[nearest.fwd[notfound]])

TSSs.fwd = start(TSS.forward[nearest.fwd[-notfound]])
distToTSS.fwd = nearest.fwd # to keep dimensions right

distToTSS.fwd[notfound] = start(CpGs.unstranded[notfound]) - TSSs.fwd

note that these are NEGATIVE -- which is correct!
nearest reverse TSS
TSS.reverse = transcripts(refgene.TxDb,
 vals=list(tx_strand='-'),
 columns='gene_id')

nearest.rev = precede(CpGs.unstranded, TSS.reverse)
nearest.rev.eg = nearest.rev # to keep dimensions right
notfound = which(is.na(nearest.rev)) # track for later
nearest.rev.eg[-notfound] = as.character(elementMetadata(TSS.reverse)$gene_id[nearest.rev[-notfound]])
TSSs.rev = start(TSS.reverse[nearest.rev[-notfound]])
distToTSS.rev = nearest.rev # to keep dimensions right
distToTSS.rev[-notfound] = start(CpGs.unstranded)[-notfound] - TSSs.rev
now these are POSITIVE: we are walking up the opposite strand.

tabulate and link these together for the annotation package:
IlluminaHumanMethylation450kprobe$fwd.dist <- distToTSS.fwd
IlluminaHumanMethylation450kprobe$fwd.gene_id <- nearest.fwd.eg
IlluminaHumanMethylation450kprobe$rev.dist <- distToTSS.rev
IlluminaHumanMethylation450kprobe$rev.gene_id <- nearest.rev.eg

FWD.CLOSER = with(IlluminaHumanMethylation450kprobe,
 union(which(abs(fwd.dist) < abs(rev.dist)),
 which(is.na(rev.dist))))
REV.CLOSER = with(IlluminaHumanMethylation450kprobe,
 union(which(abs(fwd.dist) > abs(rev.dist)),
 which(is.na(fwd.dist))))

IlluminaHumanMethylation450kprobe$DISTTOTSS = pmin(abs(IlluminaHumanMethylation450kprobe$fwd.dist), abs(IlluminaHumanMethylation450kprobe$rev.dist), na.rm=TRUE)
IlluminaHumanMethylation450kprobe$ENTREZ = NA
IlluminaHumanMethylation450kprobe$ENTREZ[FWD.CLOSER] = IlluminaHumanMethylation450kprobe$fwd.gene_id
IlluminaHumanMethylation450kprobe$ENTREZ[REV.CLOSER] = IlluminaHumanMethylation450kprobe$rev.gene_id

find the observed/expected CpG density around each site:
#
library(BSgenome.Hsapiens.UCSC.hg19)
window.width = 500 # could use larger or smaller
ocg.by.chr = mclapply(chs, function(ch) {
 probes = which(IlluminaHumanMethylation450kprobe$chr == ch)
 probecpgs = with(IlluminaHumanMethylation450kprobe[probes,],
 IRanges(start=site, width=2, names=Probe_ID))
 cpgwindows = resize(probecpgs, fix="center", width=window.width)
 chr = Hsapiens[[paste('chr',ch,sep='')]]
 active(masks(chr)) = FALSE
 chr.seqs = Views(chr, cpgwindows)
 ocg = dinucleotideFrequency(chr.seqs, as.prob=T)[,'CG']
 c.g = alphabetFrequency(chr.seqs, as.prob=T,baseOnly=T)
 e.g = c.g[,,'C'] * c.g[,,'G']
 return(ocg/e.g)
})
Index

*Topic datasets
 IlluminaHumanMethylation450kprobe, 1

IlluminaHumanMethylation450kprobe, 1