getSNPlocs

Accessing the SNPs stored in SNPlocs.Hsapiens.dbSNP.20090506

Description

Functions for accessing the SNPs stored in the SNPlocs.Hsapiens.dbSNP.20090506 package.

Usage

Count and load all the SNPs for a given chromosome:
getSNPcount()
getSNPlocs(seqname, as.GRanges=FALSE, caching=TRUE)

Extract SNP information for a set of rs ids:
rsid2loc(rsids, caching=TRUE)
rsid2alleles(rsids, caching=TRUE)
rsidsToGRanges(rsids, caching=TRUE)

Arguments

- **seqname**: The name of the sequence for which to get the SNP locations and alleles.
 - If `as.GRanges` is `FALSE`, only one sequence can be specified (i.e. `seqname` must be a single string). If `as.GRanges` is `TRUE`, an arbitrary number of sequences can be specified (i.e. `seqname` can be a character vector of arbitrary length).

- **as.GRanges**: `TRUE` or `FALSE`. If `TRUE`, then the SNP locations and alleles are returned in a `GRanges` object. Otherwise (the default), they are returned in a data frame (see below).

- **caching**: Should the loaded SNPs be cached in memory for faster further retrieval but at the cost of increased memory usage?

- **rsids**: A vector of rs ids. Can be integer or character vector, with or without the “rs” prefix. NAs are not allowed.
Details

See SNPlocs.Hsapiens.dbSNP.20090506 for general information about this package.

The SNP data are split by chromosome (1-22, X, Y) i.e. the package contains one data set per chromosome, each of them being a serialized data frame with 1 row per SNP and the 2 following columns:

- loc: The 1-based location of the SNP relative to the first base at the 5’ end of the plus strand of the reference sequence.
- alleles: A raw vector with no NAs which can be converted into a character vector containing the alleles for each SNP represented by an IUPAC nucleotide ambiguity code (see ?IUPAC_CODE_MAP in the Biostrings package for more information).

Note that those data sets are not intended to be used directly but the user should instead use the getSNPcount and getSNPlocs convenience wrappers for loading the SNP data. When used with as.GRanges=FALSE (the default), getSNPlocs returns a data frame with 1 row per SNP and the 3 following columns:

- RefSNP_id: RefSNP ID (aka "rs id") with "rs" prefix removed. Character vector with no NAs and no duplicates.
- alleles_as_ambig: A character vector with no NAs containing the alleles for each SNP represented by an IUPAC nucleotide ambiguity code.
- loc: Same as for the 2-col serialized data frame described previously.

Value

getSNPcount returns a named integer vector containing the number of SNPs for each sequence in the reference genome.

By default (as.GRanges=FALSE), getSNPlocs returns the 3-col data frame described above containing the SNP data for the specified chromosome. Otherwise (as.GRanges=TRUE), it returns a GRanges object with extra columns "RefSNP_id" and "alleles_as_ambig". Note that all the elements (genomic ranges) in this GRanges object have their strand set to "+" and that all the sequence lengths are set to NA.

rsid2loc and rsid2alleles both return a named vector (integer vector for the former, character vector for the latter) where each (name, value) pair corresponds to a supplied rs id. For both functions the name in (name, value) is the chromosome of the rs id. The value in (name, value) is the position of the rs id on the chromosome for rsid2loc, and a single IUPAC code representing the associated alleles for rsid2alleles.

rsidsToGRanges returns a GRanges object similar to the one returned by getSNPlocs (when used with as.GRanges=TRUE) and where each element corresponds to a supplied rs id.

Author(s)

H. Pages

See Also

- SNPlocs.Hsapiens.dbSNP.20090506
- IUPAC_CODE_MAP
- GRanges-class
- BSgenome-class
- injectSNPs
- findOverlaps
getSNPlocs

Examples

```r
## ---------------------------------------------------------------------
## A. BASIC USAGE
## ---------------------------------------------------------------------
getSNPcount()

## Get the locations and alleles of all SNPs on chromosome 22:
chr22snps <- getSNPlocs("chr22")
dim(chr22snps)
colnames(chr22snps)
head(chr22snps)

## Get the locations and alleles of all SNPs on chromosomes 22 and X
## as a GRanges object:
getSNPlocs(c("chr22", "chrX"), as.GRanges=TRUE)

## ---------------------------------------------------------------------
## B. EXTRACT SNP INFORMATION FOR A SET OF RS IDS...
## ---------------------------------------------------------------------

## ... and return it in a GRanges object:
myrsids <- c("rs2639606", "rs73396229", "rs55871206", "rs10932221",
"rs56219727", "rs73709730", "rs55838886", "rs1516535")
rsidsToGRanges(myrsids)

## ---------------------------------------------------------------------
## C. INJECTION IN THE REFERENCE GENOME
## ---------------------------------------------------------------------

library(BSgenome.Hsapiens.UCSC.hg18)
BSgenome.Hsapiens.UCSC.hg18

## Inject the SNPs in hg18:
genome <- BSgenome.Hsapiens.UCSC.hg18
genome2 <- injectSNPs(genome, "SNPlocs.Hsapiens.dbSNP.20090506")
genome2
alphabetFrequency(unmasked(genome2$chr22))
alphabetFrequency(unmasked(genome$chr22))

## Get the number of nucleotides that were modified by this injection:
neditAt(unmasked(genome2$chr22), unmasked(genome$chr22))

## ---------------------------------------------------------------------
## D. SOME BASIC QUALITY CONTROL (WITH SURPRISING RESULTS!)
## ---------------------------------------------------------------------

## Note that dbSNP can assign distinct ids to SNPs located at the same
## position:
any(duplicated(chr22snps$RefSNP_id)) # rs ids are all distinct...
any(duplicated(chr22snps$loc)) # but some locations are repeated!
chr22snps <- chr22snps[order(chr22snps$loc), ] # sort by location
which(duplicated(chr22snps$loc))[[1]] # 2
chr22snps[1:3, ] # rs67522692 and rs71218724 have same locations
# and alleles

## Also note that not all SNP alleles are consistent with the hg18 genome
```
SNPlocs.Hsapiens.dbSNP.20090506

i.e. the alleles reported for a given SNP are not always compatible with the nucleotide found at the SNP location in hg18.

For example, to get the number of inconsistent SNPs in chr1:

```r
chr1snps <- getSNPlocs("chr1")
all_alleles <- paste(chr1snps$alleles_as_ambig, collapse="")
nchar(all_alleles) # 920233 SNPs on chr1
neditAt(all_alleles, unmasked(genome$chr1)[chr1snps$loc], fixed=FALSE)
## == 1322 SNPs (0.14%) are inconsistent with hg18 chr1!
```

Finally, let's check that no SNP falls in an assembly gap:

```r
agaps <- masks(genome$chr1)$AGAPS
agaps # the assembly gaps
## Looping over the assembly gaps:
sapply(1:length(agaps),
    function(i)
    any(chr1snps$loc >= start(agaps)[i] & chr1snps$loc <= end(agaps)[i])
## Or, in a more efficient way:
stopifnot(length(findOverlaps(chr1snps$loc, agaps)) == 0)
```

SNPlocs.Hsapiens.dbSNP.20090506

The SNPlocs.Hsapiens.dbSNP.20090506 package

Description

This package contains SNP locations and alleles for Homo sapiens extracted from dbSNP Build 130.

Details

SNPs from dbSNP were filtered to keep only those satisfying the 3 following criteria:

- The SNP is a single-base substitution i.e. its type is "snp". Other types used by dbSNP are: "in-del", "mixed", "microsatellite", "named-locus", "multinucleotide-polymorphism", etc... All those SNPs were dropped.
- The SNP is marked as not withdrawn.
- A single location on the reference genome (NCBI36) is reported for the SNP, and this location is on chromosomes 1-22, X, Y.

SNPlocs packages always store the alleles corresponding to the plus strand, whatever the strand reported by dbSNP is (which is achieved by storing the complement of the alleles reported by dbSNP for SNPs located on the minus strand). In other words, in a SNPlocs package, all the SNPs are considered to be on the plus strand and everything is reported with respect to that strand.

Note

The source data files used for this package were created by the dbSNP Development Team at NCBI on 5-6 May, 2009, and contain SNPs mapped to reference genome NCBI36, which is identical to the hg18 genome from UCSC. Therefore, the SNPs in this package can be "injected" in BSgenome.Hsapiens.UCSC.hg18 and they will land at the correct location.

See \texttt{?injectSNPs} in the BSgenome software package for more information about the SNP injection mechanism.

See \url{http://genome.ucsc.edu/cgi-bin/hgGateway?clade=mammal&org=Human&db=hg18} for more information about the Human Mar. 2006 (NCBI36/hg18) assembly used by the UCSC Genome Browser.

Author(s)

H. Pages

References

- NCBI notes about Human genome Build 36.1: \url{http://www.ncbi.nlm.nih.govgenomeguide/human/release_notes.html}
- SNP Home at NCBI: \url{http://www.ncbi.nlm.nih.gov/snp}
- About the Human Mar. 2006 (NCBI36/hg18) assembly used by the UCSC Genome Browser: \url{http://genome.ucsc.edu/cgi-bin/hgGateway?clade=mammal&org=Human&db=hg18}

See Also

- \texttt{getSNPlocs} for how to access the data stored in this package.
- \texttt{injectSNPs} in the BSgenome package for more information about SNP injection.
- The VariantAnnotation software package to annotate variants with respect to location and amino acid coding.
Index

*Topic data
 getSNPlocs, 1

*Topic package
 SNPlocs.Hsapiens.dbSNP.20090506, 4
 .loadAlleles (getSNPlocs), 1
 .loadLoc (getSNPlocs), 1

BSgenome-class, 2

COMPATIBLE_BSGENOMES
 (SNPlocs.Hsapiens.dbSNP.20090506), 4

findOverlaps, 2

getSNPcount (getSNPlocs), 1
getSNPlocs, 1, 5
GRanges, 1, 2
GRanges-class, 2

injectSNPs, 2, 5
IUPAC_CODE_MAP, 2

rsid2alleles (getSNPlocs), 1
rsid2loc (getSNPlocs), 1
rsidsToGRanges (getSNPlocs), 1

SNPlocs.Hsapiens.dbSNP.20090506, 2, 4
SNPlocs.Hsapiens.dbSNP.20090506-package
 (SNPlocs.Hsapiens.dbSNP.20090506), 4