hgu95av2

February 28, 2017

hgu95av2
Bioconductor annotation data package

Description

The annotation package was built using a downloadable R package - AnnBuilder (download and build your own) from www.bioconductor.org using the following public data sources:

- Entrez Gene:

- Gene Ontology:

- Golden Path:

- KEGG:

hgu95av2

The function `hgu95av2()` provides information about the binary data files

hgu95av2ACCNUM
Map Manufacturer identifiers to GenBank Accession Numbers

Description

hgu95av2ACCNUM is an R environment that contains mappings between a manufacturer’s identifiers and GenBank accession numbers.

Details

Each manufacturer identifier maps to a vector containing a GenBank accession number.

Examples

```r
# Convert to a list
xx <- as.list(hgu95av2ACCNUM)
# Remove probe identifiers that do not map to any ACCNUM
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
  # Get the ACCNUM for the first five probes
  xx[1:5]
  # Get the first one
  xx[[1]]
}
```

hgu95av2CHR
Map Manufacturer IDs to Chromosomes

Description

hgu95av2CHR is an R environment that provides mappings between a manufacturer identifier and the chromosome that contains the gene of interest.

Details

Each manufacturer identifier maps to a vector of chromosomes. Due to inconsistencies that may exist at the time the environment was built, the vector may contain more than one chromosome (e.g., the identifier may map to more than one chromosome). If the chromosomal location is unknown, the vector will contain an NA.

Mappings were based on data provided by:

Examples

```r
# Convert to a list
xx <- as.list(hgu95av2CHR)
# Remove probe identifiers that do not map to any CHRLOC
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
  # Get the chromosome number for the first five probes
  xx[1:5]
  # Get the first one
  xx[[1]]
}
```
hgu95av2CHRLENGTHS

A named vector for the length of each of the chromosomes

Description

hgu95av2CHRLENGTHS provides the length measured in base pairs for each of the chromosomes.

Details

This is a named vector with chromosome numbers as the names and the corresponding lengths for chromosomes as the values.

Total lengths of chromosomes were derived by calculating the number of base pairs on the sequence string for each chromosome.

Annotations were derived based on data provided by:

Examples

```r
tt <- hgu95av2CHRLENGTHS  
# Length of chromosome 1
tt["1"]
```

hgu95av2CHRLOC

Map Manufacturer IDs to Chromosomal Location

Description

hgu95av2CHRLOC is an R environment that maps manufacturer identifiers to the starting position of the gene. The position of a gene is measured as the number of base pairs.

Details

Each manufacturer identifier maps to a named vector of chromosomal locations, where the name indicates the chromosome. Due to inconsistencies that may exist at the time the environment was built, these vectors may contain more than one chromosome and/or location. If the chromosomal location is unknown, the vector will contain an NA.

Chromosomal locations on both the sense and antisense strands are measured as the number of base pairs from the p (5’ end of the sense strand) to q (3’ end of the sense strand) arms. Chromosomal locations on the antisense strand have a leading “-” sign (e.g., -1234567).

Mappings were based on data provided by:

hgu95av2ENTREZID

Description

hgu95av2ENTREZID is an R environment that provides mappings between manufacturer identifiers and Entrez Gene identifiers.

Details

Each manufacturer identifier is mapped to a vector of Entrez Gene identifiers. An NA is assigned to those manufacturer identifiers that can not be mapped to an Entrez Gene identifier at this time.

If a given manufacturer identifier can be mapped to different Entrez Gene identifiers from various sources, we attempt to select the common identifiers. If a consensus cannot be determined, we select the smallest identifier.

Mappings were based on data provided by:

References

Examples

Convert the environment to a list
xx <- as.list(hgu95av2ENTREZID)
Remove probe identifiers that do not map to any ENTREZID
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
 # The ENTREZIDs for the first two elements of XX
 xx[1:2]
 # Get the first one
 xx[[1]]
}
Map Between Manufacturer IDs and Enzyme Commission (EC) Numbers

Description

hgu95av2ENZYME is an R environment that provides mappings between manufacturer identifiers and EC numbers.

Details

Each manufacturer identifier maps to a named vector containing the EC number that corresponds to the enzyme produced by that gene. The name corresponds to the manufacturer identifier. If this information is unknown, the vector will contain an NA.

Enzyme Commission numbers are assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology http://www.chem.qmw.ac.uk/iubmb/enzyme/ to allow enzymes to be identified.

An Enzyme Commission number is of the format EC x.y.z.w, where x, y, z, and w are numeric numbers. In hgu95av2ENZYME2PROBE, EC is dropped from the Enzyme Commission numbers.

Enzyme Commission numbers have corresponding names that describe the functions of enzymes in such a way that EC x is a more general description than EC x.y that in turn is a more general description than EC x.y.z. The top level EC numbers and names are listed below:

- EC 1 oxidoreductases
- EC 2 transferases
- EC 3 hydrolases
- EC 4 lyases
- EC 5 isomerases
- EC 6 ligases

The EC name for a given EC number can be viewed at http://www.chem.qmul.ac.uk/iupac/jcbn/index.html#6

Mappings between probe identifiers and enzyme identifiers were obtained using files provided by:

References

Examples

Convert to a list
xx <- as.list(hgu95av2ENZYME)
Remove probe identifiers that do not map to any enzyme EC number
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
 # Gets the enzyme commission numbers for the first five probes
 xx[1:5]
 # Get the first one
 xx[[1]]
}

hgu95av2ENZYME2PROBE Map Between Enzyme Commission Numbers and Manufacturer Identifiers

Description

hgu95av2ENZYME2PROBE is an R environment that maps Enzyme Commission (EC) numbers to manufacturer identifiers.

Details

Each EC number maps to a named vector containing all of the manufacturer identifiers that correspond to the gene that produces that enzyme. The name of the vector corresponds to the EC number.

Enzyme Commission numbers are assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology http://www.chem.qmw.ac.uk/iubmb/enzyme/ to allow enzymes to be identified.

An Enzyme Commission number is of the format EC x.y.z.w, where x, y, z, and w are numeric numbers. In hgu95av2ENZYME2PROBE, EC is dropped from the Enzyme Commission numbers.

Enzyme Commission numbers have corresponding names that describe the functions of enzymes in such a way that EC x is a more general description than EC x.y that in turn is a more general description than EC x.y.z. The top level EC numbers and names are listed below:

EC 1 oxidoreductases
EC 2 transferases
EC 3 hydrolases
EC 4 lyases
EC 5 isomerases
EC 6 ligases

The EC name for a given EC number can be viewed at http://www.chem.qmul.ac.uk/iupac/jcbn/index.html#6

Mappings were based on data provided by:

References

Examples

Convert to a list
xx <- as.list(hgu95av2ENZYME2PROBE)
if(length(xx) > 0){
 # Gets the probe identifiers for the first five enzyme
 # commission numbers
 xx[1:5]
 # Get the first one
 xx[[1]]
}

hgu95av2GENENAME Map Between Manufacturer IDs and Genes

Description

hgu95av2GENENAME is an R environment that maps manufacturer identifiers to the corresponding gene name.

Details

Each manufacturer identifier maps to a named vector containing the gene name. The vector name corresponds to the manufacturer identifier. If the gene name is unknown, the vector will contain an NA.

Gene names currently include both the official (validated by a nomenclature committee) and preferred names (interim selected for display) for genes. Efforts are being made to differentiate the two by adding a name to the vector.

Mappings were based on data provided by:

Examples

Convert to a list
xx <- as.list(hgu95av2GENENAME)
Remove probes that do not map to any GENENAME
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
 # Gets the gene names for the first five probe identifiers
 xx[1:5]
 # Get the first one
 xx[[1]]
}
hgu95av2GO Map between Manufacturer IDs and Gene Ontology (GO)

Description

hgu95av2GO is an R environment that provides mappings between manufacturer identifiers and the GO identifiers that they are directly associated with.

Details

Each Entrez Gene identifier is mapped to a list of lists. The names on the outer list are GO identifiers. Each inner list consists of three named elements: GOID, Ontology, and Evidence.

The GOID element matches the GO identifier named in the outer list and is included for convenience when processing the data using `lapply`.

The Ontology element indicates which of the three Gene Ontology categories this identifier belongs to. The categories are biological process (BP), cellular component (CC), and molecular function (MF).

The Evidence element contains a code indicating what kind of evidence supports the association of the GO identifier to the Entrez Gene id. The evidence codes in use include:

- IMP: inferred from mutant phenotype
- IGI: inferred from genetic interaction
- IPI: inferred from physical interaction
- ISS: inferred from sequence similarity
- IDA: inferred from direct assay
- IEP: inferred from expression pattern
- IEA: inferred from electronic annotation
- TAS: traceable author statement
- NAS: non-traceable author statement
- ND: no biological data available
- IC: inferred by curator

Mappings between probe identifiers and GO information were obtained through their mappings to Entrez Gene identifiers. NAs are assigned to probe identifiers that can not be mapped to any Gene Ontology information. Mappings between Gene Ontology identifiers and Gene Ontology terms and other information are available in a separate data package named GO.

Mappings were based on data provided by:

Examples

```r
# Convert to a list
xx <- as.list(hgu95av2GO)
# Remove all the NAs
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
  # Try the first one
  got <- xx[[1]]
  got[[1]]["GOID"]
  got[[1]]["Ontology"]
  got[[1]]["Evidence"]
}
```

Description

hgu95av2GO2ALLPROBES is an R environment that provides mappings between a given GO identifier and all manufacturer identifiers annotated at that GO term or one of its children in the GO ontology.

Details

GO consists of three ontologies—molecular function (MF), biological process (BP), and cellular component (CC). All ontologies are structured as directed acyclic graphs (DAGs). Each node in each DAG (tree) is a GO term (id) associated with a named vector of manufacturer identifiers. The name associated with each manufacturer id corresponds to the evidence code for that GO identifier. This environment hgu95av2GO2ALLPROBES maps between a given GO identifier and all manufacturer identifiers annotated at that GO term or one of its children in the GO ontology.

The evidence code indicates what kind of evidence supports the association between the GO and Entrez Gene identifiers. Evidence codes currently in use include:

- IMP - inferred from mutant phenotype
- IGI - inferred from genetic interaction
- IPI - inferred from physical interaction
- ISS - inferred from sequence similarity
- IDA - inferred from direct assay
- IEP - inferred from expression pattern
- IEA - inferred from electronic annotation
- TAS - traceable author statement
- NAS - non-traceable author statement
- ND - no biological data available
- IC - inferred by curator

A GO identifier may be mapped to the same manufacturer identifier more than once but the evidence code can be different. Mappings between Gene Ontology identifiers and Gene Ontology terms and other information are available in a separate data package named GO.
Mappings were based on data provided by:

References

Examples

```r
# Convert to a list
xx <- as.list(hgu95av2GO2ALLPROBES)
if(length(xx) > 0){
    # Gets the probe identifiers for the top 2nd and 3rd GO identifiers
goids <- xx[2:3]
    # Gets all the probe identifiers for the first element of goids
goids[[1]]
    # Evidence code for the mappings
    names(goids[[1]])
}
```

hgu95av2GO2PROBE
Map Between Gene Ontology (GO) and Manufacturer Identifiers

Description

hgu95av2GO2PROBE is an R environment that provides mappings between GO identifiers and manufacturer identifiers.

Details

Each GO term maps to a named vector of manufacturer identifiers. The name associated with each manufacturer identifier corresponds to the evidence code for that GO identifier. The evidence code indicates what kind of evidence supports the association between the GO and Entrez Gene identifiers. Evidence codes currently in use include:

- IMP - inferred from mutant phenotype
- IGI - inferred from genetic interaction
- IPI - inferred from physical interaction
- ISS - inferred from sequence similarity
- IDA - inferred from direct assay
- IEP - inferred from expression pattern
- IEA - inferred from electronic annotation
- TAS - traceable author statement
- NAS - non-traceable author statement
- ND - no biological data available
- IC - inferred by curator
A GO identifier may be mapped to the same probe identifier more than once but the evidence code can be different. Mappings between Gene Ontology identifiers and Gene Ontology terms and other information are available in a separate data package named GO.

Mappings were based on data provided by:

References

Examples
Convert to a list
xx <- as.list(hgu95av2GO2PROBE)
if(length(xx) > 0){
 # Gets the probe identifiers for the top 2nd and 3rd GO identifiers
 goids <- xx[2:3]
 # Gets the probe identifiers for the first element of goids
 goids[[1]]
 # Evidence code for the mappings
 names(goids[[1]])
}

hgu95av2MAP
Map between Manufacturer Identifiers and cytogenetic maps/bands

Description
hgu95av2MAP is an R environment that provides mappings between manufacturer identifiers and cytoband locations.

Details
Each manufacturer identifier is mapped to a vector of cytoband locations. The vector length may be one or longer, if there are multiple reported chromosomal locations for a given gene. An NA is reported for any manufacturer identifiers that cannot be mapped to a cytoband at this time.

Cytogenetic bands for most higher organisms are labeled p1, p2, p3, q1, q2, q3 (p and q are the p and q arms), etc., counting from the centromere out toward the telomeres. At higher resolutions, sub-bands can be seen within the bands. The sub-bands are also numbered from the centromere out toward the telomere. Thus, a label of 7q31.2 indicates that the band is on chromosome 7, q arm, band 3, sub-band 1, and sub-sub-band 2.

The physical location of each band on a chromosome can be obtained from another environment named "organism"CYTOLOC in a separate data package for human(humanCHRLOC), mouse(mouseCHRLOC), and rat(ratCHRLOC).

Mappings were based on data provided by:
References

Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2MAP)
# Remove probe identifiers that do not map to any cytoband
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
  # The cytobands for the first two elements of XX
  xx[1:2]
  # Get the first one
  xx[[1]]
}
```

Description

hgu95av2OMIM is an R environment that provides mappings between manufacturer identifiers and OMIM identifiers.

Details

Each manufacturer identifier is mapped to a vector of OMIM identifiers. The vector length may be one or longer, depending on how many OMIM identifiers the manufacturer identifier maps to. An NA is reported for any manufacturer identifier that cannot be mapped to an OMIM identifier at this time.

OMIM is based upon the book Mendelian Inheritance in Man (V. A. McKusick) and focuses primarily on inherited or heritable genetic diseases. It contains textual information, pictures, and reference information that can be searched using various terms, among which the MIM number is one.

Mappings were based on data provided by:

References

Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2OMIM)
# Remove probe identifiers that do not map to any MIM number
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
```
The MIM numbers for the first two elements of XX
xx[1:2]
Get the first one
xx[[1]]

hgu95av2ORGANISM

Description

hgu95av2ORGANISM is an R environment that contains a single item: a character string that names the organism for which hgu95av2 was built.

Details

Although the package name is suggestive of the organism for which it was built, hgu95av2ORGANISM provides a simple way to programmatically extract the organism name.

Examples

hgu95av2ORGANISM

hgu95av2PATH

Mappings between probe identifiers and KEGG pathway identifiers

Description

KEGG (Kyoto Encyclopedia of Genes and Genomes) maintains pathway data for various organisms. hgu95av2PATH maps probe identifiers to the identifiers used by KEGG for pathways in which the genes represented by the probe identifiers are involved.

Details

Each KEGG pathway has a name and identifier. Pathway name for a given pathway identifier can be obtained using the KEGG data package that can either be built using AnnBuilder or downloaded from Bioconductor http://www.bioconductor.org.

Graphic presentations of pathways are searchable at url http://www.genome.ad.jp/kegg/pathway.html by using pathway identifiers as keys.

Mappings were based on data provided by:

References

http://www.genome.ad.jp/kegg/

Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2PATH)
# Remove probe identifiers that do not map to any pathway id
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
    # The pathway identifiers for the first two elements of XX
    xx[1:2]
    # Get the first one
    xx[[1]]
}
```

hgu95av2PATH2PROBE Map between Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway identifiers and Manufacturer Identifiers

Description

hgu95av2PATH2PROBE is an R environment that provides mappings between KEGG identifiers and manufacturer identifiers.

Details

Each KEGG identifier is mapped to a named vector of manufacturer identifiers. The name represents the KEGG identifier and the vector contains all manufacturer identifiers that are found in that particular pathway. An NA is reported for any KEGG identifier that cannot be mapped to any manufacturer identifiers.

Pathway name for a given pathway identifier can be obtained using the KEGG data package that can either be built using AnnBuilder or downloaded from Bioconductor http://www.bioconductor.org.

Graphic presentations of pathways are searchable at http://www.genome.ad.jp/kegg/pathway.html using pathway identifiers as keys.

Mappings were based on data provided by:

References

http://www.genome.ad.jp/kegg/
Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2PATH2PROBE)
# Remove pathway identifiers that do not map to any probe id
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
  # The probe identifiers for the first two elements of XX
  xx[1:2]
  # Get the first one
  xx[[1]]
}
```

hgu95av2PFAM

Map Manufacturer IDs to Pfam IDs

Description

hgu95av2PFAM is an R environment that provides mappings between a manufacturer identifier and the associated Pfam identifiers.

Details

Each manufacturer identifier maps to a named vector of Pfam identifiers. The name for each Pfam identifier is the IPI accession numbe where this Pfam identifier is found.

If the Pfam is a named NA, it means that the associated Entrez Gene id of this manufacturer identifier is found in an IPI entry of the IPI database, but there is no Pfam identifier in the entry.

If the Pfam is a non-named NA, it means that the associated Entrez Gene id of this manufacturer identifier is not found in any IPI entry of the IPI database.

References

Examples

```r
# Convert to a list
xxx <- as.list(hgu95av2PFAM)
# randomly display 10 probes
sample(xxx, 10)
```
hgu95av2PMID

Map between Manufacturer Identifiers and PubMed Identifiers

Description

hgu95av2PMID is an R environment that provides mappings between manufacturer identifiers and PubMed identifiers.

Details

Each manufacturer identifier is mapped to a named vector of PubMed identifiers. The name associated with each vector corresponds to the manufacturer identifier. The length of the vector may be one or greater, depending on how many PubMed identifiers a given manufacturer identifier is mapped to. An NA is reported for any manufacturer identifier that cannot be mapped to a PubMed identifier.

Titles, abstracts, and possibly full texts of articles can be obtained from PubMed by providing a valid PubMed identifier. The pubmed function of annotate can also be used for the same purpose.

Mappings were based on data provided by:

References

Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2PMID)
if(length(xx) > 0){
  # The probe identifiers for the first two elements of XX
  xx[1:2]
  # Get the first one
  xx[[1]]
  if(interactive() && !is.null(xx[[1]]) && !is.na(xx[[1]])
    && require(annotate)){
    # Gets article information as XML files
    xmls <- pubmed(xx[[1]], disp = "data")
    # Views article information using a browser
    pubmed(xx[[1]], disp = "browser")
  }
}
```
hgu95av2PMID2PROBE
Map between PubMed Identifiers and Manufacturer Identifiers

Description

hgu95av2PMID2PROBE is an R environment that provides mappings between PubMed identifiers and manufacturer identifiers.

Details

Each PubMed identifier is mapped to a named vector of manufacturer identifiers. The name represents the PubMed identifier and the vector contains all manufacturer identifiers that are represented by that PubMed identifier. The length of the vector may be one or longer, depending on how many manufacturer identifiers are mapped to a given PubMed identifier.

Titles, abstracts, and possibly full texts of articles can be obtained from PubMed by providing a valid PubMed identifier. The *pubmed* function of annotate can also be used for the same purpose.

Mappings were based on data provided by:

Examples

```r
# Convert the environment to a list
xx <- as.list(hgu95av2PMID2PROBE)
if(length(xx) > 0){
  # The probe identifiers for the first two elements of XX
  xx[1:2]
  # Get the first one
  xx[[1]]
  if(interactive() & require(annotate)){
    # Gets article information as XML files for a PubMed id
    xmls <- pubmed(names(xx)[1], disp = "data")
    # Views article information using a browser
    pubmed(names(xx)[1], disp = "browser")
  }
}
```

hgu95av2PROSITE
Map Manufacturer IDs to PROSITE ID

Description

hgu95av2PROSITE is an R environment that provides mappings between a manufacturer identifier and the associated PROSITE identifiers.
Details

Each manufacturer identifier maps to a named vector of PROSITE identifiers. The name for each PROSITE identifier is the IPI accession number where this PROSITE identifier is found.

If the PROSITE is a named NA, it means that the associated Entrez Gene ID of this manufacturer identifier is found in an IPI entry of the IPI database, but there is no PROSITE identifier in the entry.

If the PROSITE is a non-named NA, it means that the associated Entrez Gene ID of this manufacturer identifier is not found in any IPI entry of the IPI database.

References

Examples

```r
# Convert to a list
xxx <- as.list(hgu95av2PROSITE)
# randomly display 10 probes
xxx[sample(1:length(xxx), 10)]
```

hgu95av2QC Quality control information for hgu95av2

Description

hgu95av2QC is an R environment that provides quality control information for hgu95av2

Details

This file contains quality control information that can be displayed by typing hgu95av2() after loading the package using library(hgu95av2). The following items are included:

Date built: Date when the package was built.

Number of probes: total number of probes included

Probe number mismatch: if the total number of probes of any of the data file is different from a base file used to check the data files the name of the data file will be listed

Probe mismatch: if any of probes in a data file mismatched that of the base file, the name of the data file will be listed

Mappings found for probe based files: number of mappings obtained for the total number of probes

Mappings found for non-probe based files: total number of mappings obtained
Description

hgu95av2QC is a R list that provides quality control information for hgu95av2.

Details

This file contains quality control information that can be displayed by typing hgu95av2() after loading the package using `library(hgu95av2)`. The follow items are included:

- **Date built**: Date when the package was built.
- **Session information**
- **Number of probes**: total number of probes included
- **Probe number mismatch**: if the total number of probes of any of the data file is different from a base file used to check the data files the name of the data file will be listed
- **Probe mismatch**: if any of probes in a data file mismatched that of the base file, the name of the data file will be listed
- **Mappings found for probe based files**: number of mappings obtained for the total number of probes
- **Mappings found for non-probe based files**: total number of mappings obtained

Description

hgu95av2REFSEQ is an R environment that provides mappings between manufacturer identifiers and RefSeq identifiers.

Details

Each manufacturer identifier is mapped to a named vector of RefSeq identifiers. The name represents the manufacturer identifier and the vector contains all RefSeq identifiers that can be mapped to that manufacturer identifier. The length of the vector may be one or greater, depending on how many RefSeq identifiers a given manufacturer identifier can be mapped to. An NA is reported for any manufacturer identifier that cannot be mapped to a RefSeq identifier at this time.

RefSeq identifiers differ in format according to the type of record the identifiers are for as shown below:

- **NG_XXXXX**: RefSeq accessions for genomic region (nucleotide) records
- **NM_XXXXX**: RefSeq accessions for mRNA records
- **NC_XXXXX**: RefSeq accessions for chromosome records
- **NP_XXXXX**: RefSeq accessions for protein records
- **XR_XXXXX**: RefSeq accessions for model RNAs that are not associated with protein products
- **XM_XXXXX**: RefSeq accessions for model mRNA records
XP_XXXXX: RefSeq accessions for model protein records
Where XXXXX is a sequence of integers.

Mappings were based on data provided by:

References

Examples
```r
# Convert the environment to a list
xx <- as.list(hgu95av2REFSEQ)
# Remove probe identifiers that do not map to any RefSeq
xx <- xx[!is.na(xx)]
if(length(xx) > 0){
    # The RefSeq for the first two elements of XX
    xx[1:2]
    # Get the first one
    xx[[1]]
}
```

hgu95av2SYMBOL Map between Manufacturer Identifiers and Gene Symbols

Description

hgu95av2SYMBOL is an R environment that provides mappings between manufacturer identifiers and gene abbreviations.

Details

Each manufacturer identifier is mapped to an abbreviation for the corresponding gene. An NA is reported if there is no known abbreviation for a given gene.

Symbols typically consist of 3 letters that define either a single gene (ABC) or multiple genes (ABC1, ABC2, ABC3). Gene symbols can be used as key words to query public databases such as Entrez Gene.

Mappings were based on data provided by:

References

Examples

Convert the environment to a list
xx <- as.list(hgu95av2SYMBOL)
if(length(xx) > 0){
 # The symbols for the first two elements of XX
 xx[1:2]
 # Get the first one
 xx[[1]]
}

hgu95av2UNIGENE
Map between Manufacturer Identifiers and UniGene cluster identifiers

Description

hgu95av2UNIGENE is an R environment that provides mappings between manufacturer identifiers and UniGene identifiers.

Details

Each manufacturer identifier is mapped to a UniGene identifier. An NA is reported if the manufacturer identifier cannot be mapped to UniGene at this time.

A UniGene identifier represents a cluster of sequences of a gene. Using UniGene identifiers one can query the UniGene database for information about the sequences or the Entrez Gene database for information about the genes.

Mappings were based on data provided by:

References

Examples

Convert the environment to a list
xx <- as.list(hgu95av2UNIGENE)
Remove probe identifiers that do not map to any UniGene id
xx <- xx[!is.null(xx)]
if(length(xx) > 0){
 # The UniGene identifiers for the first two elements of XX
 xx[1:2]
 # Get the first one
 xx[[1]]
}
Index

*Topic datasets
 hgu95av2, 1
 hgu95av2ACCNUM, 1
 hgu95av2CHR, 2
 hgu95av2CHRLengths, 3
 hgu95av2CHRLoc, 3
 hgu95av2ENTREZID, 4
 hgu95av2ENZYME, 5
 hgu95av2ENZYME2PROBE, 6
 hgu95av2GENENAME, 7
 hgu95av2GO, 8
 hgu95av2GO2ALLPROBES, 9
 hgu95av2GO2PROBE, 10
 hgu95av2MAP, 11
 hgu95av2OMIM, 12
 hgu95av2ORGANISM, 13
 hgu95av2PATH, 13
 hgu95av2PATH2PROBE, 14
 hgu95av2PFAM, 15
 hgu95av2PMID, 16
 hgu95av2PMID2PROBE, 17
 hgu95av2PROSITE, 17
 hgu95av2Q, 18
 hgu95av2QCDATA, 19
 hgu95av2REFSEQ, 19
 hgu95av2SYMBOL, 20
 hgu95av2UNIGENE, 21

hgu95av2, 1
hgu95av2ACCNUM, 1
hgu95av2CHR, 2
hgu95av2CHRLengths, 3
hgu95av2CHRLoc, 3
hgu95av2ENTREZID, 4
hgu95av2ENZYME, 5
hgu95av2ENZYME2PROBE, 6
hgu95av2GENENAME, 7
hgu95av2GO, 8
hgu95av2GO2ALLPROBES, 9
hgu95av2GO2PROBE, 10
hgu95av2LOCUSID (hgu95av2ENTREZID), 4
hgu95av2MAP, 11
hgu95av2MAPCOUNTS (hgu95av2Q), 18
hgu95av2OMIM, 12