Using the NHLBI GRASP repository of GWAS test results with Bioconductor

Vincent J. Carey

October 9, 2014

Contents

1 Introduction 1

2 Installation 2

3 Demonstration 2

3.1 Attachment and messaging .. 2
3.2 Indexed p-value bins .. 2
3.3 Tabulations .. 3
3.4 Inspecting some relatively weak associations in asthma 3

4 Quick view of the basic interfaces 4

4.1 dplyr-oriented ... 4
4.2 RSQLite-oriented .. 4

5 Some QC (Consistency check): Are NHGRI GWAS catalog loci included? 5

1 Introduction

GRASP (Genome-Wide Repository of Associations Between SNPs and Phenotypes) v2.0 was released in September 2014. The primary GRASP web resource includes links to a web-based query interface. This document describes a Bioconductor package that replicates information in the v2.0 textual release.

From the main web page:

GRASP includes all available genetic association results from papers, their supplements and web-based content meeting the following guidelines:

- All associations with $P<0.05$ from GWAS defined as $\geq 25,000$ markers tested for 1 or more traits.
- Study exclusion criteria: CNV-only studies, replication/follow-up studies testing $<25K$ markers, non-human only studies, article not in English, gene-environment or gene-gene GWAS where single SNP main effects are not given, linkage only studies, aCGH/LOH only studies, heterozygosity/homozygosity (genome-wide or long run) studies, studies only presenting gene-based or pathway-based results, simulation-only studies, studies which we judge as redundant with prior studies since they do not provide significant inclusion of new samples or exposure of new results (e.g., many methodological papers on the WTCCC and FHS GWAS).
- More detailed methods and resources used in constructing the catalog are described at Methods & Resources.
- Terms of Use for GRASP data: http://apps.nhlbi.nih.gov/Grasp/Terms.aspx
2 Installation

Install the package in Bioconductor version 3.1 or later using BiocInstaller::biocLite("grasp2db").

The first time the grasp2 data base is referenced, via the GRASP2() function described below, a large (5.3Gb) file is downloaded to a local cache using AnnotationHub. This may take a considerable length of time (10’s of minutes, perhaps an hour or more depending on internet connections). Subsequent uses refer to the locally cached file, and are fast.

3 Demonstration

3.1 Attachment and messaging

Attach the package.

library(grasp2db)

Workflows start with a reference to the data base.

grasp2 <- GRASP2()
snapshotDate(): 2016-05-26
loading from cache '/home/biocbuild/.AnnotationHub/25509'

There are three tables. The ‘variant’ table summarizes 8864671 variants. The ‘study’ table contains 2044 citations from which the data are extracted; the ‘variant’ and ‘study’ tables are related by PMID identifier. The ‘count’ table contains 19793480 records summarizing SNPs observed in Discovery and Replication samples from 12 distinct Populations; the ‘variant’ and ‘count’ tables are related by NHLBIkey.

3.2 Indexed p-value bins

The database has been indexed on a number of fields, and an integer rounding of $-\log_{10}$ of the quantity recorded as the Pvalue of the association is available.

```
variant <- tbl(grasp2, "variant")
q1 = (variant %>% select(Pvalue, NegativeLog10PBin) %>%
    filter(NegativeLog10PBin > 8) %>%
    summarize(maxp = max(Pvalue), n=n()))
```

This shows that the quantities in NegativeLog10PBin are upper bounds on the exponents of the p-values in the integer-labeled bins defined by this quantity.

A useful utility from dplyr is the query explain method:
explain(q1)
<SQL>
SELECT "maxp", "n"
FROM (SELECT MAX("Pvalue") AS "maxp", COUNT() AS "n"
FROM "variant"
WHERE "NegativeLog10PBin" > 8.0) AS "zzz1"
##
<PLAN>
selectid order from
1 0 0 0
detail
1 SEARCH TABLE variant USING INDEX NegativeLog10PBin_index (NegativeLog10PBin>?)

3.3 Tabulations

This query select variants with large effect from the 'variant' table, and joins them to their published phenotypic effect in the 'study' table.

```r
study <- tbl(grasp2, "study")
large_effect <-
  variant %>%
  select(PMID, SNPid_dbSNP134, NegativeLog10PBin) %>%
  filter(NegativeLog10PBin > 5)
phenotype <-
  left_join(large_effect,
    study %>%
    select(PMID, PaperPhenotypeDescription))
```

```
# From: sqlite 3.8.6 [AnnotationHub()[["AH21414"]]]

## PMID SNPid_dbSNP134 NegativeLog10PBin PaperPhenotypeDescription
## (chr) (int) (int) (chr)
## 1 20502693 253 6 Gene expression in monocytes
## 2 19913121 255 6 Lipid level measurements
## 3 19913121 256 6 Lipid level measurements
## 4 19913121 263 6 Lipid level measurements
## 5 19913121 264 6 Lipid level measurements
## 6 19913121 271 6 Lipid level measurements
## 7 19913121 285 6 Lipid level measurements
## 8 19913121 301 6 Lipid level measurements
## 9 20502693 326 6 Gene expression in monocytes
## 10 20502693 327 6 Gene expression in monocytes
## ...
## 3.4 Inspecting some relatively weak associations in asthma

lkaw <- semi_join(
  variant %>%
  filter(NegativeLog10PBin <= 4) %>%
  select(PMID, chr_hg19, SNPid_dbSNP134, PolyPhen2),
...
We materialize the filtered table into a data.frame and check how many PolyPhen2 notations including a substring of 'Damaging':

```r
lkaw %>% filter(PolyPhen2 %like% "%amaging%")
```

## Joining by: "PMID"

## Source: sqlite 3.8.6 [AnnotationHub()["AH21414"]]
## From: <derived table> [?? x 4]
## Filter: PolyPhen2 %like% "%amaging%"

## PMID chr_hg19 SNPid_dbSNP134
## (chr) (chr) (int)
## 1 20860503 1 4762
## 2 20860503 1 880633
## 3 20860503 1 880633
## 4 20860503 3 1053338
## 5 20860503 19 1054940
## 6 20860503 1 1060622
## 7 20860503 1 1156281
## 8 20860503 13 1536207
## 9 20860503 10 1799853
## 10 20860503 11 2186797
## ... ... ...

## Variables not shown: PolyPhen2 (chr)

## 4 Quick view of the basic interfaces

### 4.1 dplyr-oriented

```r
gp22
src: sqlite 3.8.6 [AnnotationHub()["AH21414"]]
tibs: count, study, variant
```

### 4.2 RSQLite-oriented

```r
library(RSQLite)
gcon
<SQLiteConnection>
dbListTables(gcon)
[1] "count" "study" "variant"
```

Note that the package opens the SQLite data base in 'read-only' mode, but updates are possible (e.g., directly opening a connection to the data base without restricting access). There may be implicit control if the user does not have write access to the file.
Using the NHLBI GRASP repository of GWAS test results with Bioconductor

5 Some QC (Consistency check): Are NHGRI GWAS catalog loci included?

We have an image of the NHGRI GWAS catalog inheriting from GRanges.

```r
library(gwascat)
Loading required package: Homo.sapiens
Loading required package: AnnotationDbi
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
##
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
##
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:dplyr':
##
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
##
IQR, mad, xtabs
The following objects are masked from 'package:base':
##
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, cbind, colnames, do.call, duplicated, eval,
evalq, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unsplit
Loading required package: Biobase
Welcome to Bioconductor
##
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: IRanges
Loading required package: S4Vectors
##
Attaching package: 'S4Vectors'
The following objects are masked from 'package:dplyr':
##
first, rename
The following objects are masked from 'package:base':
##
colMeans, colSums, expand.grid, rowMeans, rowSums
##
Attaching package: 'IRanges'
The following objects are masked from 'package:dplyr':
##
collapse, desc, regroup, slice
##
Attaching package: 'AnnotationDbi'
```
## The following object is masked from 'package:dplyr':
##
## Loading required package: OrganismDbi
## Loading required package: GenomicFeatures
## Loading required package: GenomeInfoDb
## Loading required package: GenomicRanges
## Loading required package: GO.db
##
## Loading required package: org.Hs.eg.db
##
## Loading required package: TxDb.Hsapiens.UCSC.hg19.knownGene
## Warning: replacing previous import 'ggplot2::Position' by
## 'BiocGenerics::Position' when loading 'ggbio'
##
## gwascat loaded. Use data(ebicat38) for hg38 coordinates;
## data(ebicat37) for hg19 coordinates.
##
## gwasloc instance with 17254 records and 35 attributes per record.
##
## Genome: hg19
##
## Excerpt:
##
## GRanges object with 5 ranges and 35 metadata columns:
##
## # seqnames ranges strand | Date.Added.to.Catalog
## # | <Rle> | <IRanges> | <Rle> | #<character>
## # 1 chr19 [ 7739177, 7739177] * | 04/16/2014
## # 2 chr6 [ 32626601, 32626601] * | 08/02/2014
## # 3 chr4 [ 38799710, 38799710] * | 08/02/2014
## # 4 chr5 [110467499, 110467499] * | 08/02/2014
## # 5 chr2 [102966549, 102966549] * | 08/02/2014
##
## # PUBMEDID First.Author Date Journal
## # | <integer> | <character> | <character> | <character>
## # 1 24123702 Chung CM 03/03/2014 Diabetes Metab Res Rev
## # 2 24388013 Ferreira MA 12/30/2013 J Allergy Clin Immunol
## # 3 24388013 Ferreira MA 12/30/2013 J Allergy Clin Immunol
## # 4 24388013 Ferreira MA 12/30/2013 J Allergy Clin Immunol
## # 5 24388013 Ferreira MA 12/30/2013 J Allergy Clin Immunol
##
## # Link
## # | <character>
## # 1 http://www.ncbi.nlm.nih.gov/pubmed/24123702
## # 2 http://www.ncbi.nlm.nih.gov/pubmed/24388013
## # 3 http://www.ncbi.nlm.nih.gov/pubmed/24388013
## # 4 http://www.ncbi.nlm.nih.gov/pubmed/24388013
## # 5 http://www.ncbi.nlm.nih.gov/pubmed/24388013
##
##
## 1  Common quantitative trait locus downstream of RETN gene identified by genome-wide association study
## 2
## 3
## 4
## 5
## Disease.Trait
## | <character>
## 1  Resistin levels
Using the NHLBI GRASP repository of GWAS test results with Bioconductor

## 2 Asthma and hay fever
## 3 Asthma and hay fever
## 4 Asthma and hay fever
## 5 Asthma and hay fever

### Initial.Sample.Size

<table>
<thead>
<tr>
<th>Region</th>
<th>Chr_id</th>
<th>Chr_pos.hg38</th>
<th>Reported.Gene.s</th>
<th>Mapped_gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19p13.2</td>
<td>19</td>
<td>7674291</td>
<td>RETN - C19orf59</td>
</tr>
<tr>
<td>2</td>
<td>6p21.32</td>
<td>6</td>
<td>32658824</td>
<td>HLA-DQB1 - TRNA125</td>
</tr>
<tr>
<td>3</td>
<td>4p14</td>
<td>4</td>
<td>38798089</td>
<td>TLR1 - TLR1</td>
</tr>
<tr>
<td>4</td>
<td>5q22.1</td>
<td>5</td>
<td>111131801</td>
<td>WDR36 - RPS3AP21</td>
</tr>
<tr>
<td>5</td>
<td>2q12.1</td>
<td>2</td>
<td>102350089</td>
<td>IL1RL1 - IL1RL1</td>
</tr>
</tbody>
</table>

### Replication.Sample.Size

<table>
<thead>
<tr>
<th>Region</th>
<th>Chr_id</th>
<th>Chr_pos.hg38</th>
<th>Reported.Gene.s</th>
<th>Mapped_gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56729</td>
<td>199675</td>
<td>100189401</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>7096</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>134430</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>402287</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
<td>9173</td>
<td></td>
</tr>
</tbody>
</table>

### Upstream_gene_id Downstream_gene_id Snp_gene_ids

<table>
<thead>
<tr>
<th>Upstream_gene_id</th>
<th>Downstream_gene_id</th>
<th>Snp_gene_ids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>56729</td>
</tr>
<tr>
<td>2</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
</tr>
<tr>
<td>3</td>
<td>&lt;NA&gt;</td>
<td>134430</td>
</tr>
<tr>
<td>4</td>
<td>&lt;NA&gt;</td>
<td>134430</td>
</tr>
<tr>
<td>5</td>
<td>&lt;NA&gt;</td>
<td>134430</td>
</tr>
</tbody>
</table>

### Upstream_gene_distance Downstream_gene_distance

<table>
<thead>
<tr>
<th>Upstream_gene_distance</th>
<th>Downstream_gene_distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.84</td>
<td>2.77</td>
</tr>
<tr>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
</tr>
<tr>
<td>1.3</td>
<td>60.38</td>
</tr>
<tr>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
</tr>
</tbody>
</table>

### Strongest.SNP.Risk.Allele SNPs Merged Snp_id_current

<table>
<thead>
<tr>
<th>Strongest.SNP.Risk.Allele</th>
<th>SNPs</th>
<th>Merged Snp_id_current</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1423096-G</td>
<td>rs1423096</td>
<td>0</td>
</tr>
<tr>
<td>rs9273373-G</td>
<td>rs9273373</td>
<td>0</td>
</tr>
<tr>
<td>rs4833095-T</td>
<td>rs4833095</td>
<td>0</td>
</tr>
<tr>
<td>rs1438673-C</td>
<td>rs1438673</td>
<td>0</td>
</tr>
<tr>
<td>rs10197862-A</td>
<td>rs10197862</td>
<td>0</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intergenic</td>
<td>1</td>
<td>0.78</td>
<td>1e-07</td>
</tr>
<tr>
<td>2</td>
<td>Intergenic</td>
<td>0</td>
<td>0.34</td>
<td>4e-14</td>
</tr>
<tr>
<td>3</td>
<td>Intergenic</td>
<td>0</td>
<td>0.74</td>
<td>5e-12</td>
</tr>
<tr>
<td>4</td>
<td>Intergenic</td>
<td>1</td>
<td>0.49</td>
<td>3e-11</td>
</tr>
<tr>
<td>5</td>
<td>Intergenic</td>
<td>0</td>
<td>0.85</td>
<td>4e-11</td>
</tr>
</tbody>
</table>
Using the NHLBI GRASP repository of GWAS test results with Bioconductor

We would like to verify that the majority of the variants enumerated in the NHGRI catalog are also present in GRASP 2.0. We supply a function called checkAnti which obtains the anti-join between a chromosome-specific slice of the NHGRI catalogue and the slice of GRASP2 for the same chromosome. We compute for chromosome 22 the fraction of NHGRI records present in GRASP2.

```r
gr22 = variant %>% filter(chr_hg19 == "22")
abs22 = checkAnti("22")
1 - (abs22 %>% nrow())/(gr22 %>% nrow())
[1] 0.9999338
```

The absent records can be seen to be relatively recent additions to the NHGRI catalog.

```r
abs22
Source: local data frame [8 x 42]
##
seqnames start end width strand Date.Added.to.Catalog PUBMEDID
(fctr) (int) (int) (int) (fctr) (chr) (int)
1 22 35371248 35371248 1 * 04/04/2013 23319000
2 22 37544486 37544486 1 * 04/10/2014 24057671
3 22 34851665 34851665 1 * 05/02/2014 24159190
4 22 49842289 49842289 1 * 05/02/2014 24159190
5 22 37586792 37586792 1 * 07/23/2014 24324551
6 22 22047969 22047969 1 * 07/23/2014 24324551
7 22 35144411 35144411 1 * 07/23/2014 24324551
8 22 48923459 48923459 1 * 07/28/2014 24322204
Variables not shown: First.Author (chr), Date (chr), Journal (chr), Link (chr), Study (chr), Disease.Trait (chr), Initial.Sample.Size (chr), Replication.Sample.Size (chr), Region (chr), Chr_id (chr), Chr_pos_hg38 (dbi), Reported.Gene.s. (chr), Mapped_gene (chr), Upstream_gene_id (chr), Downstream_gene_id (chr), Snp_gene_ids (chr), Upstream_gene_distance (chr), Downstream_gene_distance (chr), Strongest.SNP.Risk.Allele (chr), SNPs (chr), Merged (chr)
```
## Snp_id_current (chr), Context (chr), Intergenic (chr),
## Risk.Allele.Frequency (chr), p.Value (dbl), Pvalue_mlog (dbl),
## p.Value..text. (chr), OR.or.beta (dbl), X95..CI..text. (chr),
## Platform..SNPs.passing.QC. (chr), CNV (chr), num.Risk.Allele.Frequency
## (dbl), chr_hg19 (chr), pos_hg19 (int)