Package ‘HD2013SGI’

February 1, 2017

Type Package

Title Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping

Version 1.14.0

Author Bernd Fischer

Maintainer Bernd Fischer <b.fischer@dkfz.de>

License Artistic-2.0

LazyLoad true

Depends R (>= 2.10.0), RColorBrewer, gplots, geneplotter, splots, limma, vcd, LSD,EBImage

Suggests BiocStyle

SystemRequirements GNU make

biocViews ExperimentData, CancerData, ColonCancerData, MicrotitrePlateAssayData, CellCulture, Homo_sapiens_Data, HighThroughputImagingData

NeedsCompilation no

R topics documented:

HD2013SGI-package ... 2
datamatrix .. 3
datamatrixfull .. 4
featuresPerWell ... 5
HD2013SGIHeatmapHuman 5
HD2013SGImaineffects 6
HD2013SGIorderDim ... 7
HD2013SGIselectByStability 8
Interactions .. 9
mainEffects .. 10
nrOfInteractionsPerTarget 11
QueryAnnotation .. 12
The interaction matrix can be loaded by data(Interactions, package="HD2013SGI"). Type ?Interactions to see a documentation of the interaction data.

The vignette of the package can be seen by typing >library("HD2013SGI") >vignette("HD2013SGI")
It contains the complete documentation and R-code for the analysis of the data published in the original publication.

All intermediate results are precomputed and can be loaded. the following datasets are available:

- **featuresPerWell**
 - The screen data in screen order
- **datamatrixFull**
 - The phenotype data of all pairwise genetic perturbation experiments before quality control and feature selection
- **QueryAnnotation**
 - Annotation of all the query genes in the screen
- **TargetAnnotation**
 - Annotation of all target genes in the screen
- **stabilitySelection**
 - Results from the feature selection step
- **datamatrix**
 - The phenotype data of all pairwise genetic perturbation experiments after quality control and feature selection
- **mainEffects**
 - estimated main effects (single knock down effects)
- **nrOfInteractionsPerTarget**
 - number of interactions per target gene
- **Interactions**
 - The genetic interaction data (pi-scores, p-values, and annotation)

A number of helper functions are defined in the package and used in the vignette.

- **HD2013SGIorderDim**
 - hclust on one out of three dimensions of an interaction matrix
datamatrix

HD2013SGIHeatmapHuman plotting a heatmap of a three dimensional array of pi-scores (target genes x query genes x features)

HD2013SGImaineffects estimation main effects

HD2013SGIselectByStability feature selection to select features most stable between replicated experiments

Author(s)
Bernd Fischer
Maintainer: Bernd Fischer <bernd.fischer@embl.de>

References

Examples
data(Interactions, package="HD2013SGI")

Phenotypic data after quality control and feature selection

Description
Phenotypic features of pairwise genetic perturbation experiments after selection of non-redundant features and quality control. \(D \) is the 6-dimensional array of experimental measurements. Its dimensions are target genes x target siRNA designs x query genes x query siRNA designs x features x replicates. The array has a dimnames attribute, but there exists a more comprehensive annotation of target genes, query genes, and phenotypes in Ann.

Usage
data(datamatrix)

Format
The format is: List of 2 $ D : num [1:289, 1:2, 1:20, 1:2, 1:11, 1:2] -0.05334 -0.20294 -0.10123 0.33203 0.00638 ... attr(*, "dimnames")=List of 6 ..- attr(*, "dimnames")=List of 6 ..$ targetGene : chr [1:289] "TDRD6" "PRDM11" "KDM1B" "INTS12"$ targetDesign: chr [1:2] "1" "2" ..$ queryGene : chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2"$ queryDesign : chr [1:2] "1" "2" ..$ features : chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity"$ replicate : chr [1:2] "1" "2" $ Anno:List of 3 ..$ target :'data.frame': 289 obs. of 4 variables: ..$ ID : chr [1:289] "B1" "B2" "B3" "B4"$ Symbol: chr [1:289] "TDRD6" "PRDM11" "KDM1B" "INTS12"$ Well : chr [1:289] "B1" "B2" "B3" "B4"$ group : chr [1:289] "sample" "sample" "sample" "sample" ... $phenotype: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...

References
Laufer, Fischer et al., 2013
See Also

HD2013SGI

Examples

```r
data(datamatrixfull, package="HD2013SGI")
plot(datamatrixfull$D[,1,1,1,1,1])
```

datamatrixfull
Phenotypic data before quality control and feature selection

Description

Phenotypic features of pairwise genetic perturbation experiments **before** selection of non-redundant features and quality control. \(D \) is the 6-dimensional array of experimental measurements. Its dimensions are target genes x target siRNA designs x query genes x query siRNA designs x features x replicates. The array has a dimnames attribute.

Usage

```r
data(datamatrixfull)
```

Format

The format is: List of 1 $ D: num [1:345, 1:2, 1:20, 1:2, 1:353, 1:2] 2686 2573 2650 3000 2733
attr(*, "dimnames")=List of 6
..$ targetGene : chr [1:345] "B1" "B2" "B3" "B4"
..$ targetDesign: chr [1:2] "1" "2"
..$ queryGene : chr [1:20] "01" "02" "03" "04"
..$ queryDesign : chr [1:2] "1" "2"
..$ features : chr [1:353] "count" "nuc.0.m.cx" "nuc.0.m.cy" "nuc.0.m.majoraxis"
..$ replicate : chr [1:2] "1" "2"

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Examples

```r
data(datamatrixfull, package="HD2013SGI")
plot(datamatrixfull$D[,1,1,1,1,1])
```
featuresPerWell

Original phenotypic measurements in screen order

Description

Original phenotypic features in screen order. Anno contains the annotation for each experiment including the plate name, row, col, and field. data is a data.frame with a column for each phenotypic feature and rows as much as there are experiments in the screen.

Usage

data(featuresPerWell)

Format

The format is: List of 2 $ Anno:'data.frame': 231840 obs. of 4 variables: ..$ plate: chr [1:231840] "001CIQ01IRI" "001CIQ01IRI" "001CIQ01IRI" "001CIQ01IRI"$ row: chr [1:231840] "B" "B" "B" "B"$ col: chr [1:231840] "1" "1" "1" "1"$ field: chr [1:231840] "1" "2" "3" "4" ... $ data: num [1:231840, 1:353] 2780 3120 2242 2603 2170- attr(*, "dimnames")=List of 2$: NULL$: chr [1:353] "count" "nuc.0.m.cx" "nuc.0.m.cy" "nuc.0.m.majoraxis" ...

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Examples

data(featuresPerWell, package="HD2013SGI")
plot(log2(featuresPerWell$data[,1]),pch=".")

HD2013SGIHeatmapHuman

Plotting heatmaps of genetic interaction scores

Description

Plotting heatmaps of three-dimensional arrays of interaction scores. Two dimensions of the array will be flattened.

Usage

HD2013SGIHeatmapHuman(x, cuts, col, colnames = TRUE, rownames = FALSE, mrow = 10, mcol = 10, cexrow = ...)
Arguments

- **x**: A three dimensional array to be plotted as a heatmap.
- **cuts**: Cuts on the values of `x` for color coding. `length(cuts)` has to be one larger than `length(col)`.
- **col**: Values of `x` are mapped on color definitions as defined in `col` using the `cuts` argument.
- **colnames**: Gene names for columns of the matrix.
- **rownames**: Gene names for rows of the matrix.
- **mrow**: Row margin for printing gene names.
- **mcol**: Column margin for printing gene names.
- **cexrow**: `cex` for the row names.
- **cexcol**: `cex` for the column names.
- **border**: Line width of the border.
- **space**: Spacing between elements of the third array dimension of `x` after flattening.

Value

Nothing is returned.

Author(s)

Bernd Fischer

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Description

A function to estimate main effects (single knock-down effects) in genetic interaction screens.

Usage

```
HD2013SGImaineffects(x, TP, TargetNeg, QueryNeg, eps = 1e-04, maxiter = 100, na.rm = TRUE)
```
Arguments

- **x**: Two dimensional array.
- **TP**: Assignment of target genes to target plates. Used to compute target main effects for each target plate separately.
- **TargetNeg**: Negative controls within the set of target genes.
- **QueryNeg**: Negative controls within the set of query genes.
- **eps**: real number greater than 0. A tolerance for convergence.
- **maxiter**: the maximum number of iterations
- **na.rm**: logical. Should missing values be removed?

Value

- **neg**: Effect of the negative control.
- **targetMainEffect**: target main effects
- **queryMainEffect**: query main effects
- **pi**: Pairwise interaction scores (pi-scores)

Author(s)

changes applied by Bernd Fischer to the implementation of R stats function `medpolish`

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

HD2013SGIorderDim

hclust on one out of three dimensions of an interaction matrix

Description

hclust on one out of three dimensions of a three-dimensional array of interaction scores (target genes x query genes x features)

Usage

```
HD2013SGIorderDim(x, i)
```

Arguments

- **x**: A three dimensional array to be clustered.
- **i**: The dimension of the array along which the data is clustered.
Value

Returns a cluster hierarchy of class hclust.

Author(s)

Bernd Fischer

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Description

A function to select features that are most stable across replicated experiments

Usage

HD2013SGIselectByStability(subsample, preselect = "count", Rdim = 40, verbose = TRUE)

Arguments

subsample This is the input data. Usually a subsample of the complete screen is enough to select the non-redundant features. subsample is a list with three elements: D is a three-dimensional array with dimensions samples x features x replicates. As samples usually 1000 to 5000 experiments are randomly selected. The function needs two replicates.

preselect Names of the features that should be preselected, e.g. count is preselected in this screen, because of its biological interpretability and comparability to other viability-based genetic interaction screens.

Rdim The maximum number of features to be selected.

verbose If TRUE information about the progress and the quality of the selected features is printed.

Value

(selected = selected, correlation = correlation, ratioPositive = ratioPositive, correlationAll = correlationAll)

selected The names of the selected features in the order as selected.

correlation The correlation of the residual features after fitting a linear function on the previously selected features. Correlations are in same order as selected.

ratioPositive The fraction of positively correlated features among all candidate features in each step. In same order as selected.
Interactions

The correlation of the residual features of all candidate features in each step of the selection process.

Author(s)

Bernd Fischer

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Description

The genetic interaction data. Pairwise interaction scores (\(p_{iscore}\)) are presented in a 6-dimensional array with dimensions target genes x target siRNA designs x query genes x query siRNA designs x features x replicates. BH-corrected p-values (padj) are presented in a 5-dimensional array with dimensions target genes x target siRNA designs x query genes x query siRNA designs x features. An annotation of target and query genes and of phenotypes can be found in (Anno). scale is the standard deviation measure used for normalization. At first standard deviations were computed between replicates for each experiment and afterwards the median of standard deviations was computed.

Usage

data(Interactions)

Format

The format is:

- \(piscore\): num [1:282, 1:2, 1:20, 1:2, 1:11, 1:2]
 -1.814 -2.457 -3.094 -1.448 -0.142 ...
 - attr(*, "dimnames")=List of 6
 - ..$ targetGene : chr [1:282] "TDRD6" "PRDM11" "KDM1B" "INTS12" ...
 - ..$ targetDesign: chr [1:2] "1" "2" ...
 - ..$ queryGene : chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ...
 - ..$ queryDesign : chr [1:2] "1" "2" ...
 - ..$ features : chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...
 - ..$ replicate : chr [1:2] "1" "2" $ scale : num [1:11] 0.214 0.125 0.139 0.193 0.207 ...
 - $ padj : num [1:282, 1:2, 1:20, 1:2, 1:11] 0.6838 0.4167 0.0949 0.5786 0.7933 ...
 - ..$ targetGene : chr [1:282] "TDRD6" "PRDM11" "KDM1B" "INTS12" ...
 - ..$ targetDesign: chr [1:2] "1" "2" ...
 - ..$ queryGene : chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ...
 - ..$ queryDesign : chr [1:2] "1" "2" ...
 - ..$ features : chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...
 - ..$ replicate : chr [1:2] "1" "2" $ scale : num [1:11] 0.214 0.125 0.139 0.193 0.207 ...
 - $ padj : num [1:282, 1:2, 1:20, 1:2, 1:11] 0.6838 0.4167 0.0949 0.5786 0.7933 ...
 - ..$ targetGene : chr [1:282] "TDRD6" "PRDM11" "KDM1B" "INTS12" ...
 - ..$ targetDesign: chr [1:2] "1" "2" ...
 - ..$ queryGene : chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ...
 - ..$ queryDesign : chr [1:2] "1" "2" ...
 - ..$ features : chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...
 - ..$ replicate : chr [1:2] "1" "2" $ scale : num [1:11] 0.214 0.125 0.139 0.193 0.207 ...
 - $ padj : num [1:282, 1:2, 1:20, 1:2, 1:11] 0.6838 0.4167 0.0949 0.5786 0.7933 ...
 - ..$ targetGene : chr [1:282] "TDRD6" "PRDM11" "KDM1B" "INTS12" ...
 - ..$ targetDesign: chr [1:2] "1" "2" ...
 - ..$ queryGene : chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ...
 - ..$ queryDesign : chr [1:2] "1" "2" ...
 - ..$ features : chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...

Anno:

- target : 'data.frame': 282 obs. of 4 variables:
 - ..$ ID : chr [1:282] "B1" "B2" "B3" "B4" ...
 - ..$ Symbol: chr [1:282] "TDRD6" "PRDM11" "KDM1B" "INTS12" ...
 - ..$ Well : chr [1:282] "B1" "B2" "B3" "B4" ...
 - ..$ group : chr [1:282] "sample" "sample" "sample" ...

- query : 'data.frame': 20 obs. of 2 variables:
 - ..$ ID : chr [1:20] "01" "02" "03" "04" ...
 - ..$ Symbol: chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ...

- phenotype: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...
mainEffects

Estimated main effects

description

Estimated main effects (single knock-down effects) for target and query genes. Additional overall effects for each phenotype are contained. The dataset contains an annotation of target genes, query genes, and phenotypes.

Usage

data(mainEffects)

Format

The format is: List of 4 $ target: num [1:289, 1:2, 1:11, 1:2]-0.31065 -0.32253 -0.08466 -0.00367 -0.60867 ... attr(*, "dimnames")=List of 5 $ targetGene: chr [1:289] "TDRD6" "FRDM111" "KDM1B" "INTS12" ... $ targetDesign: chr [1:2] "1" "2" $ queryDesign: chr [1:2] "1" "2" $ features: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ... $ replicate: chr [1:2] "1" "2" $ query: num [1:2, 1:2, 1:11, 1:2] 0.277 0.265 0.235 0.226 1.165 ... $ targetDesign: chr [1:2] "1" "2" ... $ queryGene: chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ... $ features: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ... $ replicate: chr [1:2] "1" "2" $ overall: num [1:2, 1:11, 1:2] 0.3685 0.4638 0.3331 0.487 -0.0985 ... $ targetDesign: chr [1:2] "1" "2" $ queryDesign: chr [1:2] "1" "2" $ features: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ... $ replicate: chr [1:2] "1" "2" $ Anno: List of 3 $ target: data.frame: 289 obs. of 4 variables: ... $ ID: chr [1:289] "B1" "B2" "B3" "B4" ... $ Symbol: chr [1:289] "FRDM111" "KDM1B" "INTS12" ... $ Well: chr [1:289] "B1" "B2" "B3" "B4" ... $ group: chr [1:289] "sample" "sample" "sample" "sample" ... $ query: data.frame: 20 obs. of 2 variables: ... $ ID: chr [1:20] "01" "02" "03" "04" ... $ Symbol: chr [1:20] "DPF2" "SMARCA1" "SMARCC1" "SMARCD2" ... $ phenotype: chr [1:11] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001" "nuc.0.m.eccentricity" ...

References

Laufer, Fischer et al., 2013
nrOfInteractionsPerTarget

Description

Number of genetic interactions per target gene.

Usage

data(nrOfInteractionsPerTarget)

Format

The format is: int [1:282] 1 3 0 2 0 3 1 1 0 1 ...

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Examples

data(nrOfInteractionsPerTarget, package="HD2013SGI")
plot(nrOfInteractionsPerTarget)
QueryAnnotation
Annotation of all query genes in the screen.

Usage
```
data(QueryAnnotation)
```

Format
A data frame with 20 observations on the following 2 variables.

- **ID**
 a character vector

- **Symbol**
 a character vector

References
Laufer, Fischer et al., 2013

See Also
HD2013SGI

Examples
```
data(QueryAnnotation, package="HD2013SGI")
print(QueryAnnotation$Symbol)
```

stabilitySelection
Results from the feature selection method.

Description
Results from the feature selection method.

Usage
```
data(stabilitySelection)
```

Format
The format is: List of 4 $ selected:
chr [1:25] "count" "cell.act.m.majoraxis" "nuc.nuc.b.q001"
"nuc.0.m.eccentricity" ...
$ correlation: num [1:25] 0.917 0.972 0.938 0.928 0.896 ...
$ ratioPositive: num [1:25] 1 1 0.947 0.942 0.937 ...
$ correlationAll: List of 25
..$: Named num [1:227] 0.917 0.884 0.93 0.897 0.882 ...
...- attr(*, "names")= chr [1:227] "count" "nuc.0.m.majoraxis"
"nuc.0.m.eccentricity" "nuc.0.s.area" ...
..$: Named num [1:226] 0.884 0.931 0.899 0.887 0.9 ...
...- attr(*, "names")= chr [1:226] "nuc.0.m.majoraxis" "nuc.0.m.eccentricity" "nuc.0.s.area"
"nuc.0.s.perimeter" ...
...$: Named num [1:225] 0.884 0.934 0.884 0.882 0.883 ...
...- attr(*,
"names")= chr [1:225] "nuc.0.m.majoraxis" "nuc.0.m.eccentricity" "nuc.0.s.area" "nuc.0.s.perimeter"
... ...
TargetAnnotation

Details

`selected` is a vector of the selected feature names. `correlation` are the Pearson correlation coefficients of the residual features. `ratioPositive` is the fraction of positively correlated features among all candidate features for selection. `correlationAll` contains a vector of correlations of the residual features of all candidate features for each step in the selection process.

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI

Examples

```r
data(stabilitySelection, package="HD2013SGI")
barplot(stabilitySelection$correlation, names.arg=stabilitySelection$selected, las=2)
barplot(stabilitySelection$ratioPositive-0.5, offset=0.5, names.arg=stabilitySelection$selected, las=2)
```

TargetAnnotation

Annotation of all target genes in the screen

Description

Annotation of the target genes on one target plate. It includes an ENSEMBL gene identifier, the HUGO name, the position on the plate (well), and the group of the target siRNA (sample or control).

Usage

```r
data(TargetAnnotation)
```

Format

A data frame with 345 observations on the following 4 variables.

- **ID** a character vector
- **Symbol** a character vector
- **Well** a character vector
- **group** a character vector

References

Laufer, Fischer et al., 2013

See Also

HD2013SGI
Examples

```r
data(TargetAnnotation, package="HD2013SGI")
print(TargetAnnotation$Symbol)
```
Index

*Topic textasciitildekwd1
 HD2013SGIHeatmapHuman, 5
 HD2013SGImaineffects, 6
 HD2013SGIorderDim, 7
 HD2013SGIselectByStability, 8

*Topic textasciitildekwd2
 HD2013SGIHeatmapHuman, 5
 HD2013SGImaineffects, 6
 HD2013SGIorderDim, 7
 HD2013SGIselectByStability, 8

*Topic datasets
 datamatrix, 3
 datamatrixfull, 4
 featuresPerWell, 5
 Interactions, 9
 mainEffects, 10
 nrOfInteractionsPerTarget, 11
 QueryAnnotation, 12
 stabilitySelection, 12
 TargetAnnotation, 13

*Topic package
 HD2013SGI-package, 2

 datamatrix, 2, 3
 datamatrixfull, 2, 4
 featuresPerWell, 2, 5
 HD2013SGI, 4–13
 HD2013SGI (HD2013SGI-package), 2
 HD2013SGI-package, 2
 HD2013SGIHeatmapHuman, 3, 5
 HD2013SGImaineffects, 3, 6
 HD2013SGIorderDim, 2, 7
 HD2013SGIselectByStability, 3, 8
 Interactions, 2, 9
 mainEffects, 2, 10
 medpolish, 7
 nrOfInteractionsPerTarget, 2, 11
 QueryAnnotation, 2, 12

stabilitySelection, 2, 12
TargetAnnotation, 2, 13