Package ‘harbChIP’

January 22, 2017

Title Experimental Data Package: harbChIP
Description data from a yeast ChIP-chip experiment
Version 1.12.0
Author VJ Carey
Maintainer VJ Carey <stvjc@channing.harvard.edu>
Depends R (>= 2.10.0), tools, utils, IRanges, Biobase (>= 2.5.5), Biostrings
Imports methods, stats
License Artistic-2.0
biocViews ExperimentData, Saccharomyces_cerevisiae_Data, SequencingData
NeedsCompilation no

R topics documented:

allhex . 1
buildUpstreamSeqs2 . 2
chkMotif4TF . 3
harbChIP . 4
sceUpstr . 4
upstreamSeqs-class . 5

Index 6

allhex utility function: get all hexamers in upstream sequence for an ORF

Description

utility function: get all hexamers in upstream sequence for an ORF

Usage

allhex(orf, usobj)
Arguments

- **orf** character string, ORF name
- **usobj** upstreamSeqs object

Details

computes Biostrings Views

Value

computes Biostrings Views

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
data(sceUpstr)
allhex("YAL001C", sceUpstr)
```

Description

workflow component – build an upstreamSeqs instance from a FASTA read

Usage

```r
buildUpstreamSeqs2(fastaRead, organism="sce", provenance="harmen")
```

Arguments

- **fastaRead** results of a readFASTA from Biostrings
- **organism** string naming organism
- **provenance** string or structure describing provenance

Details

generates an instance of upstreamSeqs

Value

generates an instance of upstreamSeqs

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
chkMotif4TF

Examples

x = readFASTA(...)
y = buildUpstreamSeqs2(x)

chkMotif4TF
\textit{analyze relationship between motif frequency and binding intensity for selected motif and TF}

Description

analyze relationship between motif frequency and binding intensity for selected motif and TF

Usage

chkMotif4TF(motif, TF, chset, upstr, bthresh=2, countthresh=0)

Arguments

- \texttt{motif} character string in alphabet known to Biostrings
- \texttt{TF} name of a TF (sample name in the ChIP-chip data structure \texttt{chset})
- \texttt{chset} an ExpressionSet instance harboring ChIP-chip data
- \texttt{upstr} an instance of upstreamSeqs
- \texttt{bthresh} threshold for binding intensity results to declare TF 'bound' to the upstream region
- \texttt{countthresh} threshold for motif count to be considered 'present' in upstream region

Details

Uses \texttt{countPattern} to perform motif count.

Value

a list with elements \texttt{call}, \texttt{table}, and \texttt{test}, the latter providing the result of \texttt{fisher.test}

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

slow
Not run:
data(harbChIP)
data(sceUpstr)
chkMotif4TF("CGGCCG", "RDS1", harbChIP, sceUpstr)
End(Not run)
harbChIP

Experimental Data Package: harbChIP

Description

binding ratios and intergenic region data from a ChIP-chip experiment in yeast

Usage

data(harbChIP)

Format

The format is: An ExpressionSetObject with covariates:

- txFac: transcription factor symbol from Harbison website CSV file columnnames

Note

derived from web site jura.wi.mit.edu/young_public/regulatory_code/GWLD.html, binding ratios

Examples

data(harbChIP)
harbChIP
experimentData(harbChIP)
exprs(harbChIP)[1:6,1:7]
dim(exprs(harbChIP))
pData(featureData(harbChIP))[1:6,]

sceUpstr

Biostrings representations of S. cerevisiae upstream regions

Description

Biostrings representations of S. cerevisiae upstream regions

Usage

data(sceUpstr)

Details

environment-based S4 object with DNAstring elements

Value

environment-based S4 object with DNAstring elements
upstreamSeqs-class

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data(sceUpstr)
sceUpstr
getUpstream("YAL001C", sceUpstr)

Description

Container for a collection of upstream sequences

Objects from the Class

Objects can be created by calls of the form new("upstreamSeqs", ...). Environments are used to store collections of DNAstrings.

Slots

seqs: Object of class "environment" ~
chrom: Object of class "environment" ~
revComp: Object of class "environment" ~
type: Object of class "environment" ~
organism: Object of class "character" ~
provenance: Object of class "ANY" ~

Methods

Nmers signature(n = "numeric", orf = "character", usobj = "upstreamSeqs"): obtain all subsequences of length n as view elements of a DNA string
keys signature(x = "upstreamSeqs"): ...
organism signature(x = "upstreamSeqs"): ...
seqs signature(x = "upstreamSeqs"): ...
show signature(object = "upstreamSeqs"): ...

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

showClass("upstreamSeqs")
data(sceUpstr)
sceUpstr
keys(sceUpstr)[1:5]
Index

*Topic classes
 upstreamSeqs-class, 5

*Topic datasets
 harbChIP, 4

*Topic models
 allhex, 1
 buildUpstreamSeqs2, 2
 chkMotif4TF, 3
 sceUpstr, 4
 allhex, 1
 buildUpstreamSeqs2, 2
 chkAllUS(chkMotif4TF), 3
 chkMotif4TF, 3
 countPattern, 3
 fisher.test, 3
 getUpstream(upstreamSeqs-class), 5
 harbChIP, 4
 keys(upstreamSeqs-class), 5
 keys,upstreamSeqs-method (upstreamSeqs-class), 5
 Nmers(upstreamSeqs-class), 5
 Nmers,numeric,character,upstreamSeqs-method (upstreamSeqs-class), 5
 organism(upstreamSeqs-class), 5
 organism,upstreamSeqs-method (upstreamSeqs-class), 5
 sceUpstr, 4
 seqs(upstreamSeqs-class), 5
 seqs,upstreamSeqs-method (upstreamSeqs-class), 5
 show,upstreamSeqs-method (upstreamSeqs-class), 5
 upstreamSeqs-class, 5