Package ‘harbChIP’

March 23, 2017

Title Experimental Data Package: harbChIP
Description data from a yeast ChIP-chip experiment
Version 1.12.0
Author VJ Carey
Maintainer VJ Carey <stvjc@channing.harvard.edu>
Depends R (>= 2.10.0), tools, utils, IRanges, Biobase (>= 2.5.5), Biostrings
Imports methods, stats
License Artistic-2.0
biocViews ExperimentData, Saccharomyces_cerevisiae_Data, SequencingData
NeedsCompilation no

R topics documented:

allhex ... 1
buildUpstreamSeqs2 2
chkMotif4TF 3
harbChIP 4
sceUpstr 4
upstreamSeqs-class 5

Index

allhex utility function: get all hexamers in upstream sequence for an ORF

Description
utility function: get all hexamers in upstream sequence for an ORF

Usage

allhex(orf, usobj)
Arguments

- **orf**: character string, ORF name
- **usobj**: upstreamSeqs object

Details

computes Biostrings Views

Value

computes Biostrings Views

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
data(sceUpstr)
allhex("YAL001C", sceUpstr)
```

Description

workflow component – build an upstreamSeqs instance from a FASTA read

Usage

```r
buildUpstreamSeqs2(fastaRead, organism="sce", provenance="harmen")
```

Arguments

- **fastaRead**: results of a readFASTA from Biostrings
- **organism**: string naming organism
- **provenance**: string or structure describing provenance

Details

generates an instance of upstreamSeqs

Value

generates an instance of upstreamSeqs

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
chkMotif4TF

Examples

```r
# x = readFASTA(...)  
# y = buildUpstreamSeqs2(x)
```

Description

analyze relationship between motif frequency and binding intensity for selected motif and TF

Usage

```r
chkMotif4TF(motif, TF, chset, upstr, bthresh=2, countthresh=0)
```

Arguments

- `motif` character string in alphabet known to Biostrings
- `TF` name of a TF (sample name in the ChIP-chip data structure `chset`
- `chset` an ExpressionSet instance harboring ChIP-chip data
- `upstr` an instance of upstreamSeqs
- `bthresh` threshold for binding intensity results to declare TF 'bound' to the upstream region
- `countthresh` threshold for motif count to be considered 'present' in upstream region

Details

Uses `countPattern` to perform motif count.

Value

a list with elements call, table, and test, the latter providing the result of `fisher.test`

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
# slow  
## Not run:  
data(harbChIP)  
data(sceUpstr)  
chkMotif4TF("CGGCCG", "RDS1", harbChIP, sceUpstr)  
## End(Not run)
```
Experimental Data Package: harbChIP

Description

binding ratios and intergenic region data from a ChIP-chip experiment in yeast

Usage

```r
data(harbChIP)
```

Format

The format is: An ExpressionSetObject with covariates:

- `txFac`: transcription factor symbol from Harbison website CSV file columnnames

Note

derived from web site jura.wi.mit.edu/young_public/regulatory_code/GWLD.html, binding ratios

Examples

```r
data(harbChIP)
harbChIP
experimentData(harbChIP)
exprs(harbChIP)[1:6,1:7]
dim(exprs(harbChIP))
pData(featureData(harbChIP))[1:6,]
```

Biostrings representations of S. cerevisiae upstream regions

Description

Biostrings representations of S. cerevisiae upstream regions

Usage

```r
data(sceUpstr)
```

Details

environment-based S4 object with DNAstring elements

Value

environment-based S4 object with DNAstring elements
Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data(sceUpstr)
sceUpstr
getUpstream("YAL001C", sceUpstr)

upstreamSeqs-class

Class "upstreamSeqs"

Description

Container for a collection of upstream sequences

Objects from the Class

Objects can be created by calls of the form new("upstreamSeqs", ...). Environments are used to store collections of DNAstrings.

Slots

seqs: Object of class "environment" ~~
chrom: Object of class "environment" ~~
revComp: Object of class "environment" ~~
type: Object of class "environment" ~~
organism: Object of class "character" ~~
provenance: Object of class "ANY" ~~

Methods

Nmers signature(n = "numeric", orf = "character", usobj = "upstreamSeqs"): obtain all subsequences of length n as view elements of a DNA string

keys signature(x = "upstreamSeqs"): ...

organism signature(x = "upstreamSeqs"): ...

seqs signature(x = "upstreamSeqs"): ...

show signature(object = "upstreamSeqs"): ...

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

showClass("upstreamSeqs")
data(sceUpstr)
sceUpstr
keys(sceUpstr)[1:5]
Index

- **Topic** classes
 - upstreamSeqs-class, 5
- **Topic** datasets
 - harbChIP, 4
- **Topic** models
 - allhex, 1
 - buildUpstreamSeqs2, 2
 - chkMotif4TF, 3
 - sceUpstr, 4
 - allhex, 1
 - buildUpstreamSeqs2, 2
 - chkAllUS (chkMotif4TF), 3
 - chkMotif4TF, 3
 - countPattern, 3
 - fisher.test, 3
 - getUpstream (upstreamSeqs-class), 5
 - harbChIP, 4
 - keys (upstreamSeqs-class), 5
 - keys, upstreamSeqs-method (upstreamSeqs-class), 5
 - Nmers (upstreamSeqs-class), 5
 - Nmers, numeric, character, upstreamSeqs-method (upstreamSeqs-class), 5
 - organism (upstreamSeqs-class), 5
 - organism, upstreamSeqs-method (upstreamSeqs-class), 5
 - sceUpstr, 4
 - seqs (upstreamSeqs-class), 5
 - seqs, upstreamSeqs-method (upstreamSeqs-class), 5
 - show, upstreamSeqs-method (upstreamSeqs-class), 5
 - upstreamSeqs-class, 5