Package ‘tweeDEseqCountData’

March 23, 2017

Title RNA-seq count data employed in the vignette of the tweeDEseq package

Version 1.12.0

Depends Biobase, R (>= 2.10)

Author Juan R Gonzalez <jrgonzalez@creal.cat> and Mikel Esnaola <mesnaola@creal.cat> (with contributions from Robert Castelo <robert.castelo@upf.edu>)

Maintainer Juan R Gonzalez <jrgonzalez@creal.cat>

Description RNA-seq count data from Pickrell et al. (2010) employed to illustrate the use of the Poisson-Tweedie family of distributions with the tweeDEseq package.

biocViews Genome, Homo_sapiens_Data, RNASeqData

License GPL (>=2)

LazyLoad yes

URL http://www.creal.cat/jrgonzalez/software.htm

NeedsCompilation no

R topics documented:

 tweeDEseqCountData-package .. 2
 annotEnsembl63 ... 2
 cheung ... 3
 commonPickrell1Huang ... 4
 genderGenes ... 7
 hkGenes ... 8
 montgomery ... 9
 pickrell ... 10

Index 12
annotEnsembl63

Description

RNA-seq tables of counts employed in the vignette of the tweeDEseq package (Esnaola et al., submitted). These three data sets were downloaded from the ReCount repository at http://bowtie-bio.sourceforge.net/recount and contain tables of counts from RNA-seq experiments by Cheung et al. (2010), Montgomery et al. (2010) and Pickrell et al. (2010). The raw RNA-seq data was pre-processed according to the procedures described by Frazee et al. (2011). Please check the individual help pages of each data set for further details.

Source

References

See Also

annotEnsembl63 cheung montgomery pickrell genderGenes hkGenes

annotEnsembl63

Annotation data from Ensemble Release 63

Description

Annotation data for the human genes forming the tables of counts in pickrell.eset, montgomery.eset and cheung.eset.

Usage

data(annotEnsembl63)
cheung

Format

Symbol: gene symbol according to the HUGO Gene Nomenclature Committee (HGNC). Chr: chromosome. Start: start chromosomal position (Human genome version GRCh37). End: end chromosomal position (Human genome version GRCh37). EntrezID: Entrez gene identifier. Description: Short description of the gene. Length: Length of the longest cDNA of this gene. GCcontent: G+C content of the longest cDNA of this gene.

Details

Data for all columns except Length and GCcontent was retrieved from Ensembl release 63 using the biomaRt package. Data in columns Length and GCcontent was obtained by downloading the set of Ensembl Release 63 human cDNAs at ftp://ftp.ensembl.org/pub/release-63/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.63.cdna.all.fa.gz and selecting the longest cDNA for each Ensembl Gene from which length and G+C content was calculated.

References

See Also

pickrell pickrellNorm montgomery genderGenes hkGenes

Examples

data(annotEnsembl63)
dim(annotEnsembl63)
head(annotEnsembl63)

data(cheung)

Description

ExpressionSet object containing RNA-seq count data from lymphoblastoid cell lines from 41 unrelated Caucasian individuals of European descent. These count data are employed in the vignette of the package tweeDEseq Esnaola et al. (submitted). The original experimental data was published by Cheung et al. (2010) and the table of counts in this ExpressionSet object corresponds to the one in the ReCount repository available at http://bowtie-bio.sourceforge.net/recount. Details on the pre-processing steps to obtain this table of counts from the raw reads of Cheung et al. (2010) are provided on that website and in the publication by Frazee et al. (2011).

Usage

data(cheung)

Format

cheung.eset: ExpressionSet object containing read counts for 52,580 Ensembl genes for each of the 41 Caucasian individuals of European descent.
The table of counts is stored in the AssayData slot of an ExpressionSet object called cheung.eset whose phenotypic data contains the gender of each individual, among other bits of information.

Source

References

See Also

annotEnsembl63 pickrell cheung genderGenes hkGenes

Examples

suppressMessages(library(Biobase))
data(cheung)
cheung.eset
table(cheung.eset$gender)
commonPickrell1Huang

Format

huangArrayRMAnoBatchCommonSamples.eset: ExpressionSet object containing filtered, normalized and batch-removed microarray expression (RMA) values for 16,323 Ensembl Gene identifiers from 36 unrelated Nigerian individuals.

huangArrayRMAnoBatchCommon.eset: ExpressionSet object containing filtered, normalized and batch-removed microarray expression (RMA) values for 15,194 Ensembl Gene identifiers from 36 unrelated Nigerian individuals.

pickrell1countsCommonSamples.eset: ExpressionSet object containing filtered RNA-seq read counts for 27,438 Ensembl Gene identifiers from 36 unrelated Nigerian individuals. This table of counts corresponds to RNA-seq data published by Pickrell et al. (2010) and processed by the pipeline described by Esnaola et al. (submitted).

pickrell1countsCommon.eset: ExpressionSet object containing filtered RNA-seq read counts for 15,194 Ensembl Gene identifiers from 36 unrelated Nigerian individuals. This table of counts corresponds to RNA-seq data published by Pickrell et al. (2010) and processed by the pipeline described by Esnaola et al. (submitted).

pickrell1countsCQNcommonSamples.eset: ExpressionSet object containing the table of read counts in pickrell1countsCommonSamples.eset normalized using the package cqn. The transformation from log CPM values and their offsets, as produced by cqn, into this table of normalized counts was done with the function normalizeCounts() of the tweeDEseq package.

pickrell1countsCQNcommon.eset: ExpressionSet object containing the table of read counts in pickrell1countsCommon.eset normalized using the package cqn. The transformation from log CPM values and their offsets, as produced by cqn, into this table of normalized counts was done with the function normalizeCounts() of the tweeDEseq package.

cqnNormCommonSamples: list object output by the cqn() function from the cqn package when normalizing the RNA-seq data in pickrell1countsCommonSamples.eset and used by the function normalizeCounts() from the tweeDEseq package to obtain the normalized count expression data matrix in the ExpressionSet object pickrell1countsCQNcommonSamples.eset. This object is necessary when using DE detection methods, such as edgeR, that employ the offsets given by cqn and the raw counts in pickrell1countsCommonSamples.eset instead of the transformed normalized counts in pickrell1countsCQNcommonSamples.eset.

cqnNormCommon: list object output by the cqn() function from the cqn package when normalizing the RNA-seq data in pickrell1countsCommon.eset and used by the function normalizeCounts() from the tweeDEseq package to obtain the normalized count expression data matrix in the ExpressionSet object pickrell1countsCQNcommon.eset. This object is necessary when using DE detection methods, such as edgeR, that employ the offsets given by cqn and the raw counts in pickrell1countsCommon.eset instead of the transformed normalized counts in pickrell1countsCQNcommon.eset.

Details

The microarray data was processed from the raw CEL files available at http://www.ncbi.nlm.nih.gov/geo under accession GSE7792. First, only Yoruba samples were considered. Second, data was processed using the Bioconductor oligo package. Quality assessment was performed by calculating NUSE and RLE diagnostics (Bolstad et al., 2005) and discarding those samples that either of the two reported diagnostics was considered below a minimum quality threshold. Third, using the RMA algorithm (Irizarry et al., 2003) implemented in the rma() function from the oligo package with argument target="core", expression values were background corrected, normalized and summarized into Affymetrix transcript clusters. Fourth, most samples formed part of family trios and only samples belonging to father or mother were kept. Fifth, using the getNetAffx() function from the oligo package, Ensembl Transcript identifiers well obtained for each Affymetrix transcript cluster identifier. Sixth, using the bioconductor package biomaRt, Ensembl Transcript
identifiers were translated into Ensembl Gene identifiers, resolving multiple assignments by keep-
ing the Ensembl Gene identifier that had a match in the Ensembl Gene identifiers forming the table
of counts of the Pickrell et al. (2010) RNA-seq data, or choosing one arbitrarily, otherwise. Seven,
duplicated assignments of the same Ensembl Gene identifier to multiple Affymetrix transcript cluster
identifiers were resolved by keeping the transcript cluster with largest expression variability
measured by its interquartile range (IQR).

At this point an expression data matrix of 16,323 Ensembl Genes by 74 samples was obtained and
using the scanning date of each CEL file, samples were grouped into 4 balanced batches stored
in the phenotypic variable Batch within the resulting ExpressionSet. Batch effect was removed
by using the QR-decomposition method implemented in the removeBatchEffect() function from
the package limma while keeping the sex-specific expression effect by setting the gender sam-
ple indicator variable within the design matrix argument. Finally, samples were further filtered
to match those from the RNA-seq table of counts and this resulted into the gene expression data
in huangArrayRMAnoBatchCommonSamples.eset, while an additional filtering of genes to match
those from the RNA-seq table of counts resulted into the gene expression data in huangArrayRMAnoBatchCommon.

The RNA-seq data was obtained by the pipeline described in Esnaola et al. (submitted) from the
raw reads deposited at http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads. The re-
sulting table of counts is available in this data package as an ExpressionSet object under the name
pickrell1.eset and consists of 38,415 Ensembl Genes by 69 samples. This table of counts was
first filtered to remove genes with very low expression levels by keeping only those with a minimum
average of 0.1 counts per million. Second, we further filtered this table of counts in order to match
the samples obtained after processing the LCL microarray data from Huang et al. (2007). At this
point we also generated a second gene expression data set by further filtering genes matching those
from the LCL microarray data from Huang et al. (2007). Third, we normalized both expression
data sets adjusting for gene length and G+C content using the Bioconductor package cqn (Hansen
et al., 2012). The corresponding gene length and G+C content information was obtained from the
data stored in the annotEnsembl63 data.frame object.

The resulting pair of sample-matching expression data matrices have 16,323 (microarray) and
27,438 (RNA-seq) genes by 36 samples, while the resulting pair of sample and gene-matching
expression data matrices have 15,194 genes by 36 samples.

Source
R.S. Huang, S. Duan, W.K. Bleibel, E.O. Kistner, W. Zhang, T.A. Clark, T.X. Chen, A.C. Schweitzer,

References
assessment of Affymetrix GeneChip data. In Bioinformatics and Computational Biology Solutions
K.D. Hansen, R.A. Irizarry and Z. Wu. Removing technical variability in RNA-seq data using
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
M. Esnaola, P. Puig, D. Gonzalez, R. Castelo, J.R. Gonzalez. A flexible count data model to fit
the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments,
submitted.
genderGenes

See Also

pickrell1 annotEnsembl63

Examples

suppressMessages(library(Biobase))
data(commonPickrell1Huang)
dim(huangArrayRMAnoBatchCommonSamples.eset)
dim(pickrell1countsCQNcommonSamples.eset)
table(huangArrayRMAnoBatchCommonSamples.eset$Gender)
table(pickrell1countsCQNcommonSamples.eset$Gender)
dim(huangArrayRMAnoBatchCommon.eset)
dim(pickrell1countsCQNcommon.eset)
table(huangArrayRMAnoBatchCommon.eset$Gender)
table(pickrell1countsCQNcommon.eset$Gender)

genderGenes Gene with documented sex-specific expression

Description

Genes with documented sex-specific expression and occurring within the set of genes that form the tables of counts in pickrell.eset, montgomery.eset and cheung.eset.

Usage

data(genderGenes)

Format

msYgenes: Ensembl gene identifiers from genes belonging to the male-specific region of chromosome Y (Skaletsky et al., 2003).

XiEgenes: Ensembl gene identifiers from genes located in the X chromosome and which have been reported to escape X-inactivation.

Details

These two lists of genes form a gold-standard set of genes with documented sex-specific expression which have been employed in the assessment of the method for differential expression analysis implemented in the tweeDEseq package (Esnaola et al., submitted). Both gene lists are restricted to genes occurring within the set of genes that form the tables of counts in pickrell.eset, montgomery.eset and cheung.eset.

Source

References

See Also

annotEnsembl63 pickrell pickrellNorm montgomery hkGenes

Examples

```r
data(genderGenes)
length(msYgenes)
length(XiEgenes)
```

hkGenes

Housekeeping Genes from Eisenberg and Levanon (2003)

Description

Housekeeping genes reported by Eisenberg and Levanon (2003) and occurring within the set of genes that form the tables of counts in *pickrell.eset, montgomery.eset* and *cheung.eset* in this experimental data package.

Usage

```r
data(hkGenes)
```

Format

hkGenes: Ensembl gene identifiers from the list of housekeeping genes occurring within the set of genes that form the tables of counts in *pickrell.eset, montgomery.eset* and *cheung.eset* in this experimental data package.

Details

This list of genes has been derived from mapping the original list in http://www.cgen.com/supp_info/Housekeeping_genes.html to Ensemble Gene identifiers using the *org.Hs.eg.db* package. This list of housekeeping genes has been employed to compare count data distributions from genes with different expression dynamics in (Esnaola et al., submitted) and is restricted to genes occurring within the set of genes that form the tables of counts in *pickrell.eset, montgomery.eset* and *cheung.eset* in this experimental data package.

Source

References

See Also

annotEnsembl63 pickrell pickrellNorm montgomery genderGenes

Examples

data(hkGenes)
length(hkGenes)
head(hkGenes)

montgomery

RNA-seq count data from Montgomery et al. (2010)

Description

ExpressionSet object containing RNA-seq count data from lymphoblastoid cell lines from 60 unrelated Caucasian individuals of European descent. These count data are employed in the vignette of the package tweeDEseq Esnaola et al. (submitted). The original experimental data was published by Montgomery et al. (2010) and the table of counts in this ExpressionSet object corresponds to the one in the ReCount repository available at http://bowtie-bio.sourceforge.net/recount. Details on the pre-processing steps to obtain this table of counts from the raw reads of Montgomery et al. (2010) are provided on that website and in the publication by Frazee et al. (2011).

Usage

data(montgomery)

Format

montgomery.eset: ExpressionSet object containing read counts for 52,580 Ensembl genes for each of the 60 Caucasian individuals of European descent.

Details

The table of counts is stored in the AssayData slot of an ExpressionSet object called montgomery.eset whose phenotypic data contains the gender of each individual, among other bits of information.

Source

References

See Also

annotEnsembl63 pickrell cheung genderGenes hkGenes

Examples

```r
suppressMessages(library(Biobase))
data(montgomery)
montgomery.eset
table(montgomery.eset$gender)
```

Description

ExpressionSet objects containing RNA-seq count data from lymphoblastoid cell lines from 69 unrelated Nigerian individuals. These count data are employed in the vignette of the package tweeDEseq Esnaola et al. (submitted). The original experimental data was published by Pickrell et al. (2010). The table of counts in pickrell.eset corresponds to the one in the ReCount repository available at http://bowtie-bio.sourceforge.net/recount. Details on the pre-processing steps to obtain this table of counts from the raw reads of Pickrell et al. (2010) are provided on that website and in the publication by Frazee et al. (2011). The other object pickrellNorm.eset contains the corresponding filtered and normalized table of counts.

The table of counts in pickrell1.eset was obtained by Esnaola et al. (2010) by the pre-processing steps described on that article and pickrell1Norm.eset contains the corresponding filtered and normalized table of counts.

Usage

```r
data(pickrell)
```

Format

pickrell.eset: ExpressionSet object containing read counts for 52,580 Ensembl genes for each of the 69 Nigerian individuals. pickrellNorm.eset: ExpressionSet object containing filtered and normalized read counts for 10,231 Ensembl genes for each of the 69 Nigerian individuals. pickrell1.eset: ExpressionSet object containing read counts for 38,415 Ensembl genes for each of the 69 Nigerian individuals. pickrell1Norm.eset: ExpressionSet object containing filtered and normalized read counts for 22,060 Ensembl genes for each of the 69 Nigerian individuals.

Details

These tables of counts are stored in the AssayData slot of the previously enumerated ExpressionSet objects whose phenotypic data contains the gender of each individual, among other bits of information. The filtered and normalized table of counts was obtained from the raw counts in pickrell.eset and pickrell1.eset by first removing genes with less than 0.5 cpm (counts per million reads) in all samples but one and then applying the conditional quantile normalization procedure by Hansen et al. (2011).
Source

References

See Also

annotEnsembl63 montgomery cheung genderGenes hkGenes

Examples

suppressMessages(library(Biobase))
data(pickrell)
pickrell.eset
table(pickrell.eset$gender)
data(pickrellNorm)
pickrellNorm.eset
Index

Topic datasets

- annotEnsembl63, 2
- cheung, 3
- commonPickrell1Huang, 4
- genderGenes, 7
- hkGenes, 8
- montgomery, 9
- pickrell, 10
- tweeDEseqCountData-package, 2

annotEnsembl63, 2, 2, 4, 6–11
cheung, 2, 3, 4, 10, 11
cheung.eset, 2, 7, 8
commonPickrell1Huang, 4
cqnNormCommon (commonPickrell1Huang), 4
cqnNormCommonSamples (commonPickrell1Huang), 4
genderGenes, 2–4, 7, 9–11
hkGenes, 2–4, 8, 8, 10, 11
huangArrayRMAnoBatchCommon.eset (commonPickrell1Huang), 4
huangArrayRMAnoBatchCommonSamples.eset (commonPickrell1Huang), 4

montgomery, 2, 3, 8, 9, 9, 11
montgomery.eset, 2, 7, 8
msYgenes (genderGenes), 7
org.Hs.eg.db, 8
pickrell, 2–4, 8–10, 10
pickrell.eset, 2, 7, 8
pickrell1, 7
pickrell1 (pickrell), 10
pickrell1.eset, 6
pickrell1countsCommon.eset (commonPickrell1Huang), 4
pickrell1countsCommonSamples.eset (commonPickrell1Huang), 4
pickrell1countsCQNcommon.eset (commonPickrell1Huang), 4

pickrell1countsCQNcommonSamples.eset (commonPickrell1Huang), 4
pickrell1Norm (pickrell), 10
pickrell1Norm, 3, 8, 9
pickrell1Norm (pickrell), 10
tweeDEseqCountData-package, 2
XiEgenes (genderGenes), 7