
Programming with R

Educational Materials
©2006 S. Falcon, R. Ihaka, and R. Gentleman

1

Data Structures

� R has a rich set of self-describing data structures.

> class(z)

[1] "character"

> class(x)

[1] "data.frame"

> x[1:2,]

type time

1 case 0.822737

2 case 1.964191

� There is no need to declare the types of the variables.

2

Data Structures (continued)

� vector - arrays of the same type

� list - can contain objects of different types

� environment - hashtable

� data.frame - table-like

� factor - categorical

� Classes - arbitrary record type

� function

3

Atomic Data Structures

� In R, vectors are the “base” type, not scalars.

� A vector contains an indexed set of values that are all of the
same type:

– logical

– numeric

– complex

– character

� The numeric type can be further broken down into integer,
single, and double types (but this is only important when
making calls to foreign functions, eg. C or Fortran.)

4

Creating Vectors

There are two symbols that can be used for assignment: <- and =.

> v <- 1

> v

[1] 1

> v <- c(1, 2, 3)

> v

[1] 1 2 3

> s <- "a string"

> t <- TRUE

> length(letters)

[1] 26

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"

[17] "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

5

Creating Vectors with Functions

� c - concatenate

� seq (also :) and rep - patterns

� vector - new vector with default value.

> seq(1, 3)

[1] 1 2 3

> 1:3

[1] 1 2 3

> rep(c(1, 2), 3)

[1] 1 2 1 2 1 2

> vector(mode = "character", length = 5)

[1] "" "" "" "" ""

6

Matrices and Arrays

� Can be created using matrix and array.

� Are represented as a vector with a dimension attribute.

� R is column oriented for matrices.

7

Matrix Examples

> x <- matrix(1:10, nrow = 2)

> dim(x)

[1] 2 5

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

8

Naming

The elements of a vector can (and often should) be given names.
Names can be specified

� at creation time

� using names, dimnames, rownames, colnames

> x <- c(a = 0, b = 2)

> x

a b

0 2

> names(x) <- c("Australia", "Brazil")

> x

Australia Brazil

0 2

9

Naming (continued)

> x <- matrix(c(4, 8, 5, 6), nrow = 2)

> dimnames(x) <- list(c("2005", "2006"), c("plane", "bus"))

> x

plane bus

2005 4 5

2006 8 6

10

Subsetting

� One of the most powerful features of R is its ability to
manipulate subsets of vectors and arrays.

� Subsetting is indicated by [,].

� Note that [is actually a function (try get("[")). The
behavior can be customized for particular classes of objects.

11

Subsetting with Positive Indices

� A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <- 1:10

> x[2]

[1] 2

> x[1:3]

[1] 1 2 3

� A subscript which is larger than the length of the vector being
subsetted produces an NA in the returned value.

> x[9:11]

[1] 9 10 NA

12

Subsetting with Positive Indices (continued)

� Subscripts which are zero are ignored and produce no
corresponding values in the result.

> x[0:1]

[1] 1

> x[c(0, 0, 0)]

numeric(0)

� Subscripts which are NA produce an NA in the result.

> x[c(10, 2, NA)]

[1] 10 2 NA

13

Assignments with Positive Indices

� Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x[2] <- 200

> x[8:10] <- 10

> x

[1] 1 200 3 4 5 6 7 10 10 10

� If a zero or NA occurs as a subscript in this situation, it is
ignored.

14

Subsetting with Negative Indexes

� A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]

[1] 4 5 6 7 10 10 10

� Subscripts which are zero are ignored and produce no
corresponding values in the result.

� NA subscripts are not allowed.

� Positive and negative subscripts cannot be mixed.

15

Assignments with Negative Indexes

� Negative subscripts can appear on the the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x = 1:10

> x[-(8:10)] = 10

> x

[1] 10 10 10 10 10 10 10 8 9 10

� Zero subscripts are ignored.

� NA subscripts are not permitted.

16

Subsetting by Logical Predicates

� Vector subsets can also be specified by a logical vector of TRUEs
and FALSEs.
> x = 1:10

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> x[x > 5]

[1] 6 7 8 9 10

� NA values used as logical subscripts produce NA values in the
output.

� The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

� The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

17

Subsetting by Name

� If a vector has named elements, it is possible to extract subsets
by specifying the names of the desired elements.

> x <- c(a = 1, b = 2, c = 3)

> x[c("c", "a", "foo")]

c a <NA>

3 1 NA

� If several elements have the same name, only the first of them
will be returned.

� Specifying a non-existent name produces an NA in the result.

18

Exercises

1. Determine (precisely) how R handles non-integer subscripts
(e.g. 1.2). How might this produce problems?

2. What value do the following expressions produce.

x = 1:10

x[-11]

3. How could you choose all elements of a vector which have odd
subscripts? Even subscripts?

4. How are complex subscripts treated?

19

Subsetting matrices

� when subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

� for arrays, the treatment is similar, for example y[,1,].

� these can also be used for assignment, x[1,]=20

20

Subsetting Arrays

� Rectangular subsets of arrays obey similar rules to those which
apply to vectors.

� One point to note is that arrays can be treated as either
matrices or vectors. This can be quite useful.

> x = matrix(1:9, ncol = 3)

> x[x > 6]

[1] 7 8 9

> x[row(x) > col(x)] = 0

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 0 5 8

[3,] 0 0 9

21

Custom Subsetting Example

> library("Biobase")

> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> dim(sample.ExpressionSet)

Rows Samples

500 26

> slotNames(sample.ExpressionSet)

[1] "assayData" "phenoData" "experimentData"

[4] "annotation"

22

Custom Subsetting Example

> sample.ExpressionSet

Instance of ExpressionSet

assayData

Storage mode: lockedEnvironment

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, AFFX-MurIL4_at, ..., 31738_at, 31739_at (500 total)

Dimensions:

se.exprs exprs

Rows 500 500

Samples 26 26

phenoData

sampleNames: A, B, C, ..., Y, Z (26 total)

varLabels:

sex: Female/Male

23

type: Case/Control

score: Testing Score

Experiment data

Experimenter name: Pierre Fermat

Laboratory: Francis Galton Lab

Contact information: pfermat@lab.not.exist

Title: Smoking-Cancer Experiment

URL: www.lab.not.exist

PMIDs:

Abstract: A 8 word abstract is available. Use 'abstract' method.

Annotation [1] "hgu95av2"

24

Custom Subsetting Example

> sample.ExpressionSet[1:2, 2:5]

Instance of ExpressionSet

assayData

Storage mode: lockedEnvironment

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at

Dimensions:

se.exprs exprs

Rows 2 2

Samples 4 4

phenoData

sampleNames: B, C, D, E

varLabels:

sex: Female/Male

25

type: Case/Control

score: Testing Score

Experiment data

Experimenter name: Pierre Fermat

Laboratory: Francis Galton Lab

Contact information: pfermat@lab.not.exist

Title: Smoking-Cancer Experiment

URL: www.lab.not.exist

PMIDs:

Abstract: A 8 word abstract is available. Use 'abstract' method.

Annotation [1] "hgu95av2"

26

Vectorized Arithmetic
� Most arithmetic operations in the R language are vectorized.

That means that the operation is applied element-wise.
> 1:3 + 10:12

[1] 11 13 15

� In cases where one operand is shorter than the other the short
operand is recycled, until it is the same length as the longer
operand.
> 1 + 1:5

[1] 2 3 4 5 6

> paste(1:5, "A", sep = "")

[1] "1A" "2A" "3A" "4A" "5A"

� Many operations which need to have explicit loops in other
languages do not need them with R. You should vectorize any
functions you write.

27

Lists

� In addition to atomic vectors, R has a number of recursive data
structures. Among the important members of this class are
lists and environments.

� A list is a vector which can contain vectors and other lists (in
fact arbitrary R objects) as elements. In contrast to atomic
vectors, whose elements are homogeneous, lists and
environments contain heterogeneous elements.
> lst = list(a = 1:3, b = "a list")

> lst

$a

[1] 1 2 3

$b

[1] "a list"

28

Environments
� One difference between lists and environments is that there is

no concept of ordering in an environment. All objects are
stored and retrieved by name.
> e1 = new.env(hash = TRUE)

> e1[["a"]] <- 1:3

> assign("b", "a list", e1)

> ls(e1)

[1] "a" "b"

� Another difference is that for lists partial matching of names is
used, for environments it is not.

29

Subsetting and Lists

� Lists are useful as containers for grouping related thing
together (many R functions return lists as their values).

� Because lists are a recursive structure it is useful to have two
ways of extracting subsets.

� The [] form of subsetting produces a sub-list of the list being
subsetted.

� The [[]] form of subsetting can be used to extract a single
element from a list.

30

List Subsetting Examples

� Using the [] operator to extract a sublist.
> lst[1]

$a

[1] 1 2 3

� Using the [[]] operator to extract a list element.
> lst[[1]]

[1] 1 2 3

� As with vectors, indexing using logical expressions and names
are also possible.

31

List Subsetting by Name

� The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).
> lst$a

[1] 1 2 3

> lst[["a"]]

[1] 1 2 3

� For these accessors partial matching (!) is used.

32

Environment Accessing Elements

� Access to elements in environments can be through, get,
assign, mget.

� You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.
> e1$a

[1] 1 2 3

> e1[["b"]]

[1] "a list"

33

Assigning values in Lists and Environments

� Items in lists and environments can be replaced in much the
same way as items in vectors are replaced.
> lst[[1]] = list(2, 3)

> lst[[1]]

[[1]]

[1] 2

[[2]]

[1] 3

> e1$b = 1:10

> e1$b

[1] 1 2 3 4 5 6 7 8 9 10

34

Data Frames

� Data frames are a special R structure used to hold a set of
related variables. They are the R representation of a statistical
data matrix. In a data.frame, the observations are the rows
and the covariates are the columns.

� Data frames can be treated like matrices, and indexed with two
subscripts. The first subscript refers to the observation, the
second to the variable.

� Data frames are really lists, and list subsetting can also be used
on them.

35

Data Frames (continued)
> df <- data.frame(type = rep(c("case", "control"), c(2,

+ 3)), time = rexp(5))

> df

type time

1 case 0.5388906

2 case 1.8223102

3 control 1.2595001

4 control 0.4415987

5 control 1.8353047

> df$time

[1] 0.5388906 1.8223102 1.2595001 0.4415987 1.8353047

> names(df)

[1] "type" "time"

> rn <- paste("id", 1:5, sep = "")

> rownames(df) <- rn

> df[1:2,]

type time

id1 case 0.5388906

id2 case 1.8223102

36

Classes

� A class consists of a set of slots each containing a specific type
(character, numeric, etc.).

� methods can be defined for classes. A rectangle class that has
slots for length and width could have an area method.

� Slots are accessed using @, but accessor methods are preferred.

37

Classes (example)
> setClass("Person", representation(name = "character",

+ height = "numeric", country = "character"))

[1] "Person"

> p <- new("Person", name = "Alice", height = 5, country = "UK")

> p

An object of class "Person"

Slot "name":

[1] "Alice"

Slot "height":

[1] 5

Slot "country":

[1] "UK"

> p@name

[1] "Alice"

38

Getting Help There are a number of ways of getting help:

� help and ?: help("data.frame")

� help.search, apropos

� RSiteSearch (requires internet connection)

� help.start

� sessionInfo

� Online manuals

� Mailing lists (sessionInfo)

39

Packages

� In R one of primary mechanisms for distributing software is via
packages

� CRAN is the major repository for getting packages.

� You can either download packages manually or use
install.packages or update.packages to install and update
packages.

� In addition, on Windows and in some other GUIs, there are
menu items that facilitate package downloading and updating.

� It is important that you use the R package installation
facilities. You cannot simply unpack the archive in some
directory and expect it to work.

40

Packages - Bioconductor

� Bioconductor packages are hosted in CRAN-style repositories
and are accessible using install.packages.

� The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

� Bioconductor has both a release branch and a development
branch. Each Bioconductor release is compatible with a specific
R release.

� Bioconductor packages all have vignettes.

41

Packages

� Having, and needing many more packages can cause some
problems.

� When packages are loaded into R, they are essentially attached
to the search list, see search.

� This greatly increases the probabilities of variable masking,
that is one package provides a function that has the same name
as a different function in another package.

� Name spaces were introduced in R 1.7.0 to provide tools that
would help alleviate some of the problems.

42

Control-Flow R has a standard set of control flow functions:

� Looping: for, while and repeat.

� Conditional evaluation: if and switch.

43

Two Useful String Functions

1. Concatenate strings: paste

2. Search strings: grep

44

Example: paste

> s <- c("a", "b", "c")

> paste(s, "X", sep = "_")

[1] "a_X" "b_X" "c_X"

> paste(s, collapse = ", ")

[1] "a, b, c"

45

Example: grep

> library("ALL")

> data(ALL)

> class(ALL$mol.biol)

[1] "factor"

> negIdx <- grep("NEG", ALL$mol.biol)

> negIdx[1:10]

[1] NA NA NA NA NA NA NA NA NA NA

46

The apply Family

� A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or
elements of an environment.

� The members of this family of functions are different with
regard to the data structures they work on and how the
answers are dealt with.

� Some examples, apply, sapply, lapply, mapply, eapply.

47

Using apply

� apply applies a function over the margins of an array.

� For example,
> apply(x, 2, mean)

computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

� (apply) is implemented in a way which avoids the overhead
associated with looping. (But it is still slow and you might use
rowSums or colSums).

48

Writing Functions

� Writing R functions provides a means of adding new
functionality to the language.

� Functions that a user writes have the same status as those
which are provided with R.

� Reading the functions provided with the R system is a good
way to learn how to write functions.

� If a user chooses she can make modifications to the system
functions and use her modified ones, in preference to the
system ones.

49

A Simple Function

� Here is a function that computes the square of its argument.
> square = function(x) x * x

> square(10)

[1] 100

� Because the underlying arithmetic is vectorized, so is this
function.
> square(1:4)

[1] 1 4 9 16

50

Composition of Functions

� Once a function is defined, it is possible to call it from other
functions.
> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385

51

Returning Values

� Any single R object can be returned as the value of a function;
including a function.

� If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object, and return
that.

� The value returned by a function is either the value of the last
statement executed, or the value of an explicit call to return.

� return takes a single argument, and can be called from any
where in a function.

� return is lexically scoped, and can be passed out to other
functions, to effect non-local returns.

52

Control of Evaluation

� In some cases you want to evaluate a function that may fail,
but you do not want to exit from the middle of an evaluation.

� In these cases the function try can be used.

� try(expr) will either return the value of the expression expr,
or an object of class try-error

� tryCatch provides a much more substantial mechanism for
condition handling and error recovery.

53

Name Spaces

� Name spaces were introduced in R 1.7.0, see R News, Vol 3/1
for more details.

� They provide a mechanism that allows package writers to
control what functions they import (and hence use) and export
(and hence let others use).

� Related functions: loadedNamespaces and ::.

54

Object Oriented Programming

� Object oriented programming is a style of programming where
one attempts to have software reflections of real-world objects
and to write functions (methods) that operate on these objects.

� The R language has two different object oriented paradigms,
one S3 is older and should not be used for new projects. The
second, S4 is newer and is currently under active development.

� These objects systems are more like OOP in Scheme, Lisp or
Dylan than they are like OOP in Java or C++.

55

Classes

� In OOP there are two basic ingredients, objects and methods.

� An object is an instance of a class, and most OOP
implementations have mechanisms to ensure that all objects of
a particular class have some common characteristics.

� In most implementations there is some notion of inheritance or
class extension. Class B is said to extend class A if a member
of B has all the attributes that a member of A does, plus some
other attributes.

56

Generic Functions

� A generic function is an interface, or a dispatcher, that
examines the type or class of its arguments and invokes the
most appropriate method.

� A method is registered with a generic function, by indicating
its existence together with the number and types (classes) of its
arguments.

� In the previous example, if a generic function is called with an
instance of class B and there is no class B method, a class A
method could be used.

57

S3

� S3 OOP has no real mechanism for defining classes or for
creating objects from a specific class.

� One can make any object an instance of class foo, by assigning
a class attribute, class(x) = "foo".

� S3 handles inheritance by setting several different class
attributes (but these are not always handled correctly).

� S3 is not suitable for the development of large scale complex
systems.

58

S3 Generic Functions
� The relationship between a generic function and its methods is

done by a naming convention. The generic function must have
a call to UseMethod and the method must have a name that is
the name of the generic function concatenated with the name
of the class, with the two names separated by a dot.
> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

> methods("mean")

[1] mean.Date mean.POSIXct mean.POSIXlt mean.data.frame

[5] mean.default mean.difftime

59

References

� The New S Language, Statistical models in S, Programming
with Data, by John Chambers and various co-authors.

� Modern Applied Statistics, S Programming by W. N. Venables
and B. D. Ripley.

� Introductory Statistics with R by P. Dalgaard.

� Data Analysis and Graphics Using R by J. Maindonald and J.
Braun.

60

