
An introduction to R

Martin Morgan (mailto:mtmorgan@fhcrc.org)
Computational Biology Shared Resource
Fred Hutchinson Cancer Research Center

Seattle, WA, USA

11 September, 2008

Contents

1 Introduction 1
1.1 About the Computational Biology Shared Resource 2
1.2 Installing R . 2
1.3 Exercises: a very first R session 3

2 A first work flow 4
2.1 Data input . 4
2.2 Object exploration and manipulation 5
2.3 Visualization . 8
2.4 A little statistics . 9
2.5 Ending the session . 11
2.6 Exercises . 12

3 The R programming language 15
3.1 Basic data types . 15
3.2 Subsetting . 19
3.3 Useful programming operations 22
3.4 Exercises . 24

4 Power tips 27

1 Introduction

This document introduces R. It starts with the assumption that the user is new
to R, and concludes with the hope that the user is comfortable doing basic data
manipulation and analysis, and is equiped with the tools for discovering the
power and diversity of R for statistical programing.

This section describes the Computational Biology Shared Resource, and the
steps required to install and use R for the first time. The next section walks

1

mailto:mtmorgan@fhcrc.org

through a simple work flow reading in data, exploring it, and performing linear
regression (in the body of the text) or principle components analysis (in one
of the exercises). The third section introduces R as a programming environ-
ment. The document concludes with a few ‘power tips’ that might lead to more
productive use of R.

The initial sections are pedantic, but subsequent sections assume increasing
familiarity with R’s help system and the way R ‘works’; in these later sections
functions are used without explict discussion of what they are doing.

1.1 About the Computational Biology Shared Resource

The Computational Biology Shared Resource is a small (2 member!) service
group within Computational Biology. We take on a diversity of roles providing
center-wide assistance related to microarray data analysis, high throughput se-
quencing analysis and tool development, and training in software (especially R
and BioConductor) use. We’ll engage in ‘two-week’ projects on an ad hoc and pro
bono basis, and take larger stakes in projects when resources and opportunities
for involvement permit.

1.2 Installing R

We will install R from a thumb drive, to avoid overwhelming the network. Nor-
mally, though, R can be installed from the internet; one can also use R on PHS
servers. The starting point for access is http://cran.r-project.org and a
local mirror of the core of the repository is at http://cran.fhcrc.org (the
acronym CRAN stands for the Comprehensive R Archive Network). The R web
site and local mirror contain pre-compiled binaries with standard installers for
MacOS and Windows operating systems, and a number of linux distributions;
third party installations using a variety of Linux package managers are also
available.

R consists of a core application, required and recommended packages, and
on some operating systems a graphical user interface. The core application is
written primarily in C, released under the GPL, and the source code is read-
ily available (using SVN). Required and recommended packages implement key
functionality (e.g., base contains system and other core functionality, stats con-
tains functionality for standard descriptive statistics, probability distributions,
random number generators, parametric and non-parametric tests, linear models,
time series, factor analysis, and the like).

Interaction with R is through a command-line style interface. The user is
presented with a prompt >, types symbol names or expressions, and presses the
carriage return to submit the symbols to the R parser and evaluator. R responds
with numerical or graphical output. Graphical user interfaces available as part
of the basic R installation generally integrate the command-line style interface,
graphical output, and help systems; they do not provide a ‘point-and-click’
solution (other R packages such as Rcmdr attempt this, usually by presenting a
subset of R’s overall functionality).

2

http://cran.r-project.org
http://cran.fhcrc.org

A particular strength of R is that functionality provided in the basic instal-
lation is augmented by packages contributed by the user community. There are
well over 1000 user-contributed packages. Package quality can be excellent, im-
plementing very sophisticated functionality and cutting-edge research method-
ologies. CRAN provides a comprehensive registry of packages, including ‘views’
that attempt to group some packages by functionality. Additional projects such
as BioConductor (focussing on analysis of high-throughput biological data, with
over 250 packages) represent additional resources.

The R web site contains references to books on R,

1.3 Exercises: a very first R session

Exercise 1
Copy the OS-specific folder hierarchy from the memory stick to a convenient
location on your computer. The following assumes that you copied the hierarchy
to a folder named RIntro (it avoids confusion in R to use / for the file path
separator on Windows).

Exercise 2
Install R.

1. Windows and Mac: double click on the installer and follow directions.

2. Linux: consult with tutorial assistants.

Normally, R can be installed from http://cran.fhcrc.org .

Exercise 3
Check installation / a first R session.

1. Start R (e.g., double-click on the appropriate icon, or select from the ‘start’
menu.

2. Enter the text that appears after the > and confirm that you are using R
version 2.8.0 Under development (unstable) :

> sessionInfo()

R version 2.8.0 Under development (unstable) (2008-08-29 r46457)

x86_64-unknown-linux-gnu

locale:

LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics utils datasets grDevices methods

[7] base

3. Find help about the functions provided by a library with the command

3

http://cran.fhcrc.org

> library(help = stats)

4. Find help about a function, e.g., fivenum with the command

> `?`(fivenum)

5. Load a special purpose library (in this case, for more advanced plotting)

> library(lattice)

End the R session (select n when prompted to save the session).

> q()

2 A first work flow

2.1 Data input

Start R, and navigate so that files can be easily read. For example,

> setwd("~/sharedrsrc/presentations/RIntro")

Since \ is used to ‘escape’ characters in R, it is best to use / for the path
separator, even on Windows. To confirm that you’ve arrived at the intended
directory, execute the list.files function

> list.files()
[1] "extdata"

list.files is a fairly typical function. View its help page with the command
?list.files. The usage section indicates how the function can be invoked.
There are 6 arguments, all of which are named and have a default value (e.g., the
argument named path has default value "."). Above, we specified no arguments,
so R used default values for each. On the other hand, we might have written

> list.files("extdata", full.names = TRUE)

This illustrates two features of function invocation: unnamed arguments are
matched by position (i.e., R assigns extdata to path), named arguments are
matched exactly, regardless of position (i.e., full.names is assigned TRUE).

The directory extdata contains a ‘comma-separated value’ file, a format
exported by many spreadsheets. The file contains three columns of data. The
first is the row number. The second and third are plant weight, and a character
string representing whether the weights in the same row are from a ‘control’
or ‘treatment’ group. Our file has a header row, containing the names for
the columns, and the row names are in column 1. R has several functions
to read in text files. Here we use read.csv which, as its name suggests, is
specialized for reading comma-separated value files. Our file has a header row,
so we indicate this by setting the argument header to the logical value TRUE.
We use the row.names function argument to indicate the column containing

4

rows. To discover these arguments and their interpretation, we might have used
?read.csv to obtain the help page, or, when more confident of the function,
args(read.csv) to be reminded of the available arguments. We want to read
the contents of the file in to R, and to assign the result to a variable that we
can reference later. We’ll call the variable weights, and read the data in with

> weights <- read.csv("extdata/weights.csv", header = TRUE,

+ row.names = 1)

R automatically adds the ’+’ sign at the beginning of a line when it continues
an incomplete command. You don’t need to enter it.

2.2 Object exploration and manipulation

We can now manipulate weights to find out about it’s content. R has a number
of different classes of objects, including user-defined classes. We can find out
what class weights is

> class(weights)

[1] "data.frame"

Ah, weights is a data.frame. A look at ?data.frame might be good in the
long term. For now, a data.frame is a matrix-like object where all elements in
a row are of the same type, but columns can have different type. We can peek
at the top of our weights, and summarize its content:

> head(weights)

Weight Group
1 4.17 Ctl
2 5.58 Ctl
3 5.18 Ctl
4 6.11 Ctl
5 4.50 Ctl
6 4.61 Ctl

> dim(weights)

[1] 20 2

The display from head is a useful confirmation that we have read our data in
correctly: there are row names (integer values) followed by two columns of data.
dim can be used to determine the dimensions of array-like objects; here we see
that there are 20 rows and 2 columns.

The function summary provides a quick summary of each column of the data
frame.

> summary(weights)

5

Weight Group
Min. :3.590 Ctl:10
1st Qu.:4.388 Trt:10
Median :4.750
Mean :4.846
3rd Qu.:5.218
Max. :6.110

The Weight column contains numerical values, and the summary is appropriate
for this type of data: an indicate of the minimum, first, median, and third
quartiles, maximum, and mean of the 20 observations in the column. On the
other hand, the summary for Group is different: it indicates that there are 10
entries labeled Ctl, and an equal number labeled Trt.

It turns out that read.csv has read the two columns of data in as different
classes. We can determine the class of each column by selecting the column and
using class on the result. There are two ways to select a column of a data
frame, using $ or [[Thus:

> class(weights$Weight)

[1] "numeric"

> class(weights[["Weight"]])

[1] "numeric"

The Weight column contains numeric data. The numeric data type repre-
sents real numbers. Other common data numerical types include integer and
complex.

Let’s look at the column Weight in all its detail

> weights[["Weight"]]

[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17
[13] 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69

The display is of numeric values 4.17, 5.58, etc. For convenience, the index of
the numeric value is printed at the start of each line, e.g., [1] indicates the first
element.

The column Weights is an example of a vector. All atomic (the meaning of
‘atomic’ will become apparent later) objects in R are vectors. Most R operations
act on vectors. For instance,

> log(1 + weights[["Weight"]])

[1] 1.642873 1.884035 1.821318 1.961502 1.704748 1.724551
[7] 1.819699 1.710188 1.845300 1.814825 1.759581 1.642873
[13] 1.688249 1.523880 1.927164 1.574846 1.950187 1.773256
[19] 1.671473 1.738710

6

adds 1 to each element of Weight, and then takes the natural logarithm of each
value. This will be discussed further below.

Returning to our exploration of the weights data frame, the Group column
can be accessed and its class determined in the same fashion as Weights:

> weights[["Group"]]

[1] Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Trt Trt Trt Trt Trt
[16] Trt Trt Trt Trt Trt
Levels: Ctl Trt

> class(weights[["Group"]])

[1] "factor"

R recognized the column of character values in the input file, and interpreted
them as factors in the statistical sense. The value of Group is again a vector,
but this time a vector of factor levels. There are two different levels of the Group
factor:

> levels(weights[["Group"]])

[1] "Ctl" "Trt"

These levels are unordered; R also understands ordered factors, and can treat
character sequences as just strings without statistical meaning; the stringsAs-
Factors and colClasses arguments to read.csv influence how data types are
read in to R. A factor is not usefully summarized by concepts such as minimum
or median, so summary provides a different description: a tabulation of the num-
ber of observations of each level. A more direct way of obtaining the counts is
with the table function:

> table(weights[["Group"]])

Ctl Trt
10 10

One often wants to operate on (e.g., determine the class of) columns of a
data frame (or rows or columns of a matrix). R offers a number of apply-like
functions that make it convenient to perform the same operation repeatedly.
For example, we can ‘apply’ the class function to each column of weights,
and simplify the result to a vector of characters

> sapply(weights, class)

Weight Group
"numeric" "factor"

A final useful tool for exploring R objects is str, which reveals the internal
structure of the object.

7

> str(weights)

'data.frame': 20 obs. of 2 variables:
$ Weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ Group : Factor w/ 2 levels "Ctl","Trt": 1 1 1 1 1 1 1 1 1 1 ...

We see in the result of this function all of the information we have discovered
already, but in a single place and compactly represented: weights is a data
frame with 20 observations of 2 variables. The first variable, Weights, is a
numeric (‘num’) vector the first several values of which are presented, and so
on. Aspects of the presentation are cryptic at first (e.g., why are the entries
for Group given as integers?) but are informative as R becomes more familiar
(factor objects are encoded as integers indexing the corresponding level; this
makes important operations on factors compact and efficient).

2.3 Visualization

Complex data objects, especially relations between variables, are often best
explored through visualization. One way to visualize our data is with the plot
function, providing ‘x’ and ‘y’ variables as arguments, for instance

> plot(weights[["Group"]], weights[["Weight"]])

Let’s take two steps that are more complicated than this. First, we add a package
to the library of packages available in the current session of R. A package is a
collection of R functions and other objects that augment built-in functionality.
R starts with a list of packages already loaded. We’ll add the lattice package to
this list, with the following command:

> library(lattice)

We can see the set of packages that R searches for functions and other objects
with

> search()

[1] ".GlobalEnv" "package:lattice" "package:stats"
[4] "package:graphics" "package:utils" "package:datasets"
[7] "package:grDevices" "package:methods" "Autoloads"
[10] "package:base"

When the user requests an object, e.g., by invoking a function or attempting to
display the contents of a data frame, R searches first in the ‘global environment’,
which is where user objects like weights get created by default. If the object
is not found in the global environment, R continues to search loaded packages,
in the order specified by search(), until the object is found. For instance, the
function class is found in the base package.

We will use bwplot from lattice to visualize our data; ‘bw’ is an abbreviation
of box-and-whiskers; loading lattice loads associated help files, so ?bwplot would

8

W
ei

gh
t

3.5

4.0

4.5

5.0

5.5

6.0

Ctl Trt

●

●

●

W
ei

gh
t

3.5

4.0

4.5

5.0

5.5

6.0

Ctl Trt

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Box-and-whisker and strip plots of weights, using the formula Weight
~ Group

take us to the help page for this function. The first argument to bwplot is
formula. A formula is a notation with a left-hand side and a right-hand side,
separated by the ~ character. We could think of visuallizing weights as a box-
and-whiskers plot where the left-hand side (Weight), plotted on the y-axis) is a
function of the Group to which the Weight belongs (plotted on the x-axis). The
formula is Weight ~ Group. We finish creating the plot by telling bwplot where
to find the variables specified in the formula (i.e., in the weights data frame)
and then print the result

> print(bwplot(Weight ~ Group, weights))

A more detailed look at the data might use stripplot with the additional
argument jitter=TRUE to add small random offsets to the group classification
and thus reduce problems distinguishing overlapping data points (not really a
problem with the current small data set).

> print(stripplot(Weight ~ Group, weights, jitter = TRUE))

Results of these displays are in Figure 1.

2.4 A little statistics

As an elementary introduction to statistical analysis in R, we can calculate the
mean (or other) statistical value of each level in Group with another member of
the apply family mentioned above:

> tapply(weights[["Weight"]], weights[["Group"]], mean)

Ctl Trt
5.032 4.661

9

A slightly more elaborate example fits a linear model to our data, treating
Weight as the dependent and Group as the independent variable, using the
formula notation introduced above.

> lm(Weight ~ Group, weights)

Call:
lm(formula = Weight ~ Group, data = weights)

Coefficients:
(Intercept) GroupTrt

5.032 -0.371

This model implicitly includes the intercept; a slightly different formula removes
the intercept

> fit <- lm(Weight ~ Group - 1, weights)

> fit

Call:
lm(formula = Weight ~ Group - 1, data = weights)

Coefficients:
GroupCtl GroupTrt

5.032 4.661

The forgoing illustrates that the result of a linear model can be assigned to a
variable (as can the result of the lattice plotting functions). That variable can
later be interrogated, e.g., to display alternative summaries

> summary(fit)

Call:
lm(formula = Weight ~ Group - 1, data = weights)

Residuals:
Min 1Q Median 3Q Max

-1.0710 -0.4937 0.0685 0.2462 1.3690

Coefficients:
Estimate Std. Error t value Pr(>|t|)

GroupCtl 5.0320 0.2202 22.85 9.55e-15 ***
GroupTrt 4.6610 0.2202 21.16 3.62e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

10

> anova(fit)

Analysis of Variance Table

Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 470.46 235.23 485.05 < 2.2e-16 ***
Residuals 18 8.73 0.48

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or to add the residuals and fitted values of the linear model to our data frame

> weights[["Residuals"]] <- resid(fit)

> weights[["Fitted"]] <- fitted(fit)

> head(weights)

Weight Group Residuals Fitted
1 4.17 Ctl -0.862 5.032
2 5.58 Ctl 0.548 5.032
3 5.18 Ctl 0.148 5.032
4 6.11 Ctl 1.078 5.032
5 4.50 Ctl -0.532 5.032
6 4.61 Ctl -0.422 5.032

The forgoing is meant as a glimpse into the statistical functionality provided
by R; statistical capabilities are much more extensive.

2.5 Ending the session

Suppose we have accomplished the tasks we set out to do, and it is now time
to end the R session. One might be interested in saving particular objects,
so that they can be easily recovered at a later session. To save the weights
and fit objects to a single file weightsAndFits.rda (the extension rda is a
convention for files containing R objects saved in the R internal representation)
in the (existing) directory data , one would evaluate, e.g.

> save(weights, fit, file = file.path("data", "weightsAndFits.rda"))

These objects could be read in to another R session with

> load(file = file.path("data", "weightsAndFits.rda"))

A different approach is to save the entire session, so that the session can be
restarted at the point where the analysis ended. This is done when quitting R,
e.g.,

> q(save = "yes")

11

By default, the session is saved in the current working directory as a file named
.RData. R searches for an .RData file in the directory in which R starts, and so
would read in and reestablish the session on startup (provided R is started from
a directory where the .Rdata file will be found).

Experienced R users rarely seem to use the save=”yes” argument to quit.
One reason is that the .RData file read in depends on the directory used to
start R, and the user is surprised to find unexpected (if .RData was read in on
startup, contrary to user expectation) or missing (if .RData was not read in)
values in their environment. Instead, the usual practice, especially for small or
computationally inexpensive analyses, is to write a script file MyScript.R and
use the source function to re-evaluate the script in a subsequent R session. The
script for the session we have just completed is in the file doc/IntroRLecture.R.

2.6 Exercises
Exercise 4
Repeat the analysis in the text. Specifically:

1. Use setwd to navigate to the extdata directory.

2. Use read.csv to read the file weights.csv into an R object weigths.

3. Use head to ‘peek’ at the data, summary to summarize the columns, and
the functions sapply and class to determine the class of each column.

4. Use library to load the package lattice to the library of packages available
in your R session.

5. Use bwplot and xyplot to visualize the relationship between Weight and
Group.

6. Use lm, summary, and anova to explore different formulations of a simple
liinear model relating Weight to Group.

See the text for solutions to this exercise.

Exercise 5
The file extdata/weights-table.txt contains the weights data in another typ-
ical format, with two tab-delimited columns. Here are the first five lines of the
file:

Weight Group

4.17 Ctl

5.58 Ctl

5.18 Ctl

6.11 Ctl

Read this data in to R and verify that the results of summary and the column
classes are the same as in the previous exercise. The file is tab-delimited, so use
the function read.delim consulting its help page (?read.delim) as necessary.

12

> wtsTable <- read.delim("extdata/weights-table.txt")

> head(wtsTable)

Weight Group
1 4.17 Ctl
2 5.58 Ctl
3 5.18 Ctl
4 6.11 Ctl
5 4.50 Ctl
6 4.61 Ctl

> summary(wtsTable)

Weight Group
Min. :3.590 Ctl:10
1st Qu.:4.388 Trt:10
Median :4.750
Mean :4.846
3rd Qu.:5.218
Max. :6.110

Exercise 6
Both read.csv and read.delim are ‘wrappers’ around the function read.table.
The wrappers are designed to make input of particular formats easy. How must
you invoke read.delim to successfully input the csv-delimited data? The tab-
delimited data?

> df1 <- read.table("extdata/weights.csv", header = TRUE,

+ sep = ",", row.names = 1)

> df2 <- read.table("extdata/weights-table.txt", header = TRUE)

Exercise 7
R packages contain many ‘built-in’ data sets. Read in Fisher’s ‘iris’ data using
the data command

> data(iris)

Read a brief description of the iris data set by consulting its help page with
the command ?iris.

1. Get a feeling for the data with head and summary. How many variables
and observations are there? What variables are present? What are their
classes?

13

2. Use splom(iris) to view a conditional scatter plot matrix of the data.
Use the argument pch to change the plot character used to represent points,
e.g., as solid circles (pch=20) or as small dots (pch="."). Available plot
characters are documented on the ?points page.

3. Use xyplot with the formula Sepal.Width ~ Petal.Width and the iris

data frame to visualize the relationship between sepal and petal widths.
Using the same formula, add the argument group=Species.

4. The princomp function performs principle components analysis. One way
of invoking this function is to provide a formula and a data frame as
arguments. The formula has the form ~ x + y + z, where the left-hand
side of the formula is empty and the right hand side of the formula is an
expression containing the names of the columns of the data frame that
are to be used in the analysis. Using these hints, construct a formula
to perform principle components analysis of the variables Sepal.Length,
Sepal.Width, Petal.Length, and Petal.Width. Use this formula and
the iris data set as arguments to perform a principle components analysis;
assign the results to a new variable, e.g., ipc. View the results, and
use summary to view a summary. Consult ?princomp for some additional
ideas.

Data exploration might proceed as:

> data(iris)

> head(iris)

> summary(iris)

> splom(iris, pch = 20)

> xyplot(Sepal.Width ~ Petal.Width, iris, group = Species)

A principle components analysis might start with:

> ipc <- princomp(~Sepal.Length + Sepal.Width + Petal.Length +

+ Petal.Width, iris)

> summary(ipc)

Importance of components:
Comp.1 Comp.2 Comp.3

Standard deviation 2.0494032 0.49097143 0.27872586
Proportion of Variance 0.9246187 0.05306648 0.01710261
Cumulative Proportion 0.9246187 0.97768521 0.99478782

Comp.4
Standard deviation 0.153870700
Proportion of Variance 0.005212184
Cumulative Proportion 1.000000000

14

3 The R programming language

This section highlights a few key features of the R programming language. Ad-
ditional detail can be found in the R_intro_lecture.pdf file distributed with
these course notes, and in An Introduction to R.

3.1 Basic data types

Basic data types in R are atomic vectors. Atomic vectors include logical,
integer, numeric, complex, or character types. Atomic vectors can be created
with calls to ‘constructor’ functions such as

> numeric(5)

[1] 0 0 0 0 0

which creates a numeric vector of length 5, initialized with all elements equal
to 0. Additional constructors are useful, for example constructing a range of
integer values

> 1:5

[1] 1 2 3 4 5

> seq(1, 10, by = 2)

[1] 1 3 5 7 9

The c function concatentates specific values into a vector, with implict coercion
to the type required to represent the elements as an atomic vector.

> c(1, 2, 3) # numeric (i.e., real) vector of length 3

[1] 1 2 3

> c(1L, 2L, 3L) # integer vector, 'L' used to specify integer type

[1] 1 2 3

> c(1L, 2L, 3) # coerced to common type: numeric vector

[1] 1 2 3

> c(12, "A") # coercion to character vector

[1] "12" "A"

Repeating elements can be constructed with rep

> rep(c(TRUE, FALSE), each = 3)

15

http://cran.fhcrc.org/doc/manuals/R-intro.html

[1] TRUE TRUE TRUE FALSE FALSE FALSE

R has useful pre-defined variables, e.g.,

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"
[16] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> pi

[1] 3.141593

Atomic vectors support standard programing concepts of Inf and NaN, but also
the statistical concept of NA

> x <- c(1, Inf, -Inf, NaN, NA)

> x

[1] 1 Inf -Inf NaN NA

> typeof(x)

[1] "double"

> typeof(c(1L, NA))

[1] "integer"

The elements of atomic vectors can be named,

> x <- c(a = 1, b = 2)

> x

a b
1 2

> names(x)

[1] "a" "b"

This can add very useful structure to simple data, and as illustrated below
can facilitate element extraction. Coercion between types is often implict (e.g.,
c(1L, 2L, 3) is coerced to type numeric), but can be made explicit.

> as.integer(c(1.41, 3.14))

[1] 1 3

16

R supports higher dimensional matrices (2-dimensional) and arrays (2 or
more dimensions). All elements of a matrix or array must be of the same
atomic type. A matrix can be constructed in many ways, but one way that
makes R’s internal representation apparent is to start with a vector and specify
dimensions, e.g.,

> matrix(1:12, nrow = 3)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Notice that the matrix is in column-major order; in fact, R represents the ma-
trix as a vector, with addition attributes describing how the vector is to be
interpretted.

> attributes(matrix(1:12, nrow = 3))

$dim
[1] 3 4

Row and column elements of matricies (and arrays) can be named, as can the
dimension itself

> matrix(1:12, nrow = 3, dimnames = list(MyRows = LETTERS[1:3],

+ MyCols = letters[1:4]))

MyCols
MyRows a b c d

A 1 4 7 10
B 2 5 8 11
C 3 6 9 12

This example uses a list. A list is a potentially heterogenous collection of
elements. The elements may be atomic or otherwise, including other lists. List
elements can be named.

> list(alpha = letters[1:4], ints = 1:4, m = matrix(1:12,

+ nrow = 3))

$alpha
[1] "a" "b" "c" "d"

$ints
[1] 1 2 3 4

$m
[,1] [,2] [,3] [,4]

17

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

We have already had extensive contact with the data.frame, which is a special
type of list. A data frame is a list, with the restriction that each element of the
list must be an atomic type, and that all elements must be the same length. A
data frame is constructed as, for instance,

> data.frame(alpha = letters[1:4], ints = 1:4)

alpha ints
1 a 1
2 b 2
3 c 3
4 d 4

An environment is like a list, in that it can store heterogenous collections of
values. Unlike lists, all elements of an environment must be named. And as
will become apparent below, environments are almost unique amongst R data
structures in providing pass by reference semantics rather than pass by value.
An environment is one way to represent an efficient hash table.

A final and perhaps surprising data type on our tour is the function. Users
create a function by providing an argument list and body consisting of lines
of valid R code. A function returns the value of the last line it executes, so no
explicit return statement is needed. Users typically assign functions to variables
that can then be manipulated by other variables. Here is a simple function that
takes one argument, x , and squares it. The squared value is the last line (and
the first!) of the function that is executed, and is thus the value returned by
the function.

> square <- function(x) {

+ x * x

+ }

We’ll see that arithemtic operations are vectorized, so our square function works
on vectors too.

> square(1:4)

[1] 1 4 9 16

Notice that our square is as much a function as any other function in R, and
so can be used in, for instance, other functions like sapply (here, sapply is
taking each element of its first argument, and applying the function in its second
argument to the element; what happens in the second line, below?).

> sapply(list(1:4, 3:1), square)

18

[[1]]
[1] 1 4 9 16

[[2]]
[1] 9 4 1

> sapply(sapply(list(1:4, 3:1), square), sum)

[1] 30 14

3.2 Subsetting

One of the most common operations associated with atomic and other objects
is subsetting. We have already seen this to some extent, for instance in selecting
the first four entries of the character variable letters. For any atomic vector
we can subset using positive integers, in any order, to select the corresponding
element. We can also select outside the range of the vector index to extend the
vector (though this is not usually a good idea). Negative indices remove the
corresponding entries; positive and negative indices cannot be used in the same
step.

> letters[c(2:3, 15:17, 18:16)]

[1] "b" "c" "o" "p" "q" "r" "q" "p"

> letters[25:28]

[1] "y" "z" NA NA

> letters[-c(1:20)]

[1] "u" "v" "w" "x" "y" "z"

When atomic types or lists contain named elements, the name can be used to
retrieve a specific element.

> x <- c(a = 1, b = 2, c = 3)

> x[c("a", "c")]

a c
1 3

Logical vectors can be used for subsetting, and have the useful property that
they are recycled to match the length of the object they are subsetting. So for
a vector of length 10 we can choose every third element with

> x <- 1:10

> x[c(FALSE, FALSE, TRUE)]

19

[1] 3 6 9

We have seen, e.g., in square, that arithmetic operations are vectorized. So
one way of chosing values of a vector that are, say, divisible by 3 might be
to construct a logical index from the appropriate comparison, e.g., using the
modulus operator %%

> x <- c(1, 3, 6:9)

> idx <- x%%3 == 0

> idx

[1] FALSE TRUE TRUE FALSE FALSE TRUE

> x[idx]

[1] 3 6 9

This would often be abbreviated into the one-liner x[x %% 3 == 0].
Subsetting extends to matrices and arrays, with a two-dimension comma-

separated subscript (for a matrix) replacing the single subscript for a vector.
A subscript can be missing, in which case all the corresponding elements of
that dimension (all rows, for instance) are selected. Dimensions can be subset
differently, e.g., rows subset by negative integer values, columns by logical values
or names.

> m <- matrix(1:12, nrow = 3)

> m[1:2, -3]

[,1] [,2] [,3]
[1,] 1 4 10
[2,] 2 5 11

Selecting a single row or column of a matrix will return a vector, unless the
optional argument drop is set to FALSE

> m[1,]

[1] 1 4 7 10

> m[1, , drop = FALSE]

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10

Elements of vectors or matrices can be replaced using subsetting on the left
side of the assignment operator.

> x <- 1:3

> x[2] <- 4

> x

20

[1] 1 4 3

Note that R usually has pass by value semantics. This means that changing one
object does not change any copies of that object:

> x <- 1:3

> y <- x # x and y 'the same', i.e., numerically equal

> x[2] <- 4 # change x

> x # x changed

[1] 1 4 3

> y # not y

[1] 1 2 3

A final subsetting operation involves the ’double-subset’, [[. The distinction
between this and the single subset operator [is primarily apparent with lists and
environments. With a list, the single subset returns a list containing the specified
elements. With the double subset, only a single element can be specified, and
the result is the element itself and not a list. In the following, the first operation
returns a list containing a matrix, the double subset returns the matrix itself.

> l <- list(m = matrix(1:12, nrow = 3), n = 1:5)

> l

$m
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

$n
[1] 1 2 3 4 5

> l["m"]

$m
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> l[["m"]]

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

21

Environments can only be subset using the double subset operator, and must be
subset using a character vector to identify a named element. Assignment using
double subsetting is like that for single subsetting on lists; environments have
pass by reference semantics and assignment has the side effect of modifying any
copy of the environment. This is generally surprising behavior to the user, so
environments are used only in specific circumstances.

> env <- new.env() # create a new environment, see ?new.env

> env[["x"]] <- 1 # create an element "x", and assign value 1 to it

> env[["x"]]

[1] 1

> env_copy <- env # make a copy of the environment

> env[["x"]] <- 2 # change the original

> env[["x"]] # env modified

[1] 2

> env_copy[["x"]] # but so is env_copy!

[1] 2

3.3 Useful programming operations

R supports a complete range of built-in operations for manipulating numeri-
cal (e.g., +, sqrt, abs, exp, cos), logical (e.g., ! for logical negation, any
to test whether any element of a logical vector is TRUE), and character (e.g.,
nchar, gsub, substr) data. R has additional functions useful for statistical
analysis (e.g., rnorm for generating normal random deviates; combn for generat-
ing all combinations of elements, intersect to calculate the intersection of two
vectors). A distinct feature of R is that many of these operations are vectorized,
so that ‘looping through a vector’ is often unnecessary (and very inefficient).
Arithmetic operations use recycling, so that in the first line the vector 1 is (con-
ceptually) expanded to a vector of length five, and then added element-wise to
the square root of the numbers 1 through 5.

> log(1 + sqrt(1:5))

[1] 0.6931472 0.8813736 1.0050525 1.0986123 1.1743590

> dev <- rnorm(100)

> max(dev)

[1] 2.486159

> any(dev > 2)

[1] TRUE

22

> sum(dev > 2)

[1] 1

> s <- c("Fred", "Frank")

> sub("F", "G", s)

[1] "Gred" "Grank"

Specifics of these functions are found on their help pages, e.g., ?any.
R supports all common programming constructs. For instance, conditional

evaluation occurs with if:

> dev <- rnorm(100)

> if (any(dev > 2)) {

+ cat("some deviates greater than 2\n")

+ } else {

+ cat("hmm, all deviates less than 2\n")

+ }

some deviates greater than 2

Braces are used to group multiple lines of code into a single expression.
Iteration over vectors uses for:

> for (i in 2:1) {

+ cat("I am", i, "\n")

+ }

I am 2
I am 1

> lst <- list(a = 1, b = 2)

> for (elt in lst) {

+ cat("I am", elt, "\n")

+ }

I am 1
I am 2

The second example shows that iteration is over elements of atomic vectors.
When a for loop is used to assign elements to a vector, it is efficient to ‘pre-
allocate’

> results <- numeric(10000)

> for (i in seq_along(results)) {

+ results[[i]] <- aFancyCalculation()

+ }

23

Conversely, sapply or lapply is often a better choice when the task is to iterate
over a set of values, e.g.,

> cls1 <- sapply(iris, class)

instead of

> cls2 <- character(ncol(iris))

> for (i in seq_along(cls2)) {

+ cls2[[i]] <- class(iris[[i]])

+ }

> names(cls2) <- names(iris)

> identical(cls1, cls2)

[1] TRUE

More detail about R syntax can be found with ?Syntax. Details on pro-
gramming language constructs can be found with ?if, etc. The manual An
Introduction to R is a useful starting point.

3.4 Exercises
Exercise 8
This exercise develops familiarity with subsetting and R’s vectorized evaluation.

1. Define a variable x that contains the integers -5 through 5. Evaluate x

* x. Note the length and value of the result, i.e., that the evaluation
calculated the square of each element of x.

2. What’s the result of evalutating sum(x*x)? sqrt(x)? x %*% x?

3. Subset x to display the sixth value. Now use the subset operator on the
left-hand side of the assignment operator to replace the sixth value with
NA. What is the result of x * x? sum(x * x)?

4. Consult the help page for sum, especially the argument na.rm. Can you
arrange for a variant of sum(x * x) to return a non-NA value?

5. Use is.na to determine which values of x are NA. Use is.na, logical
negation (!) and the subsetting and assignment operators to create a new
variable y containing only non-NA values of x. Can you remove values of
x that are either NA or whose square is greater than 10? (hint: | is the
logical or operator applied to vectors).

> x <- -5:5

> x * x

[1] 25 16 9 4 1 0 1 4 9 16 25

24

http://cran.fhcrc.org/doc/manuals/R-intro.html
http://cran.fhcrc.org/doc/manuals/R-intro.html

> sum(x * x)

[1] 110

> sqrt(x)

[1] NaN NaN NaN NaN NaN 0.000000
[7] 1.000000 1.414214 1.732051 2.000000 2.236068

> x %*% x

[,1]
[1,] 110

> length(x * x)

[1] 11

> x[6]

[1] 0

> x[6] <- NA

> x * x

[1] 25 16 9 4 1 NA 1 4 9 16 25

> sum(x * x)

[1] NA

> sum(x * x, na.rm = TRUE)

[1] 110

> is.na(x)

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[11] FALSE

> y <- x[!is.na(x)]

> x[!is.na(x) | (x * x) <= 10]

[1] -5 -4 -3 -2 -1 NA 1 2 3 4 5

Exercise 9
This exercise explores functions and program constructs in a more detail.

1. We wrote the function square, defined as

25

> square <- function(x) {

+ x * x

+ }

Use this as a template to write a function sumsq that returns the sum of
squares of its argument. Test this with some vectors of your chosing.

2. Modify sumsq to take a second argument, na.rm. Have this argument take
on a default logical value, say FALSE. Pass this argument through to the
sum function inside sumsq. Is this function more or less flexible than your
previous version?

3. Taking a peek at the solution offered for the previous exercise, and re-
membering that function arguments can be matched by name or, failing
that, by position, can you reason why sumsq(na.rm=TRUE, c(1, 2, NA))

works?

4. What happens if you try to use sumsq on a character vector? Can you
modify the body of sumsq to use is.numeric to test whether x is numeric,
and if not to issue an error, using stop, indicating the class of the argument
provided, and the class expected?

5. What does R think the sum of squares of a zero-length numeric vector is?
What do you think it is?

> sumsq <- function(x) {

+ sum(x * x)

+ }

> sumsq((-5):5)

[1] 110

> sumsq(c(1, 2, NA))

[1] NA

> sumsq <- function(x, na.rm = FALSE) {

+ sum(x * x, na.rm = na.rm)

+ }

> sumsq(c(1, 2, NA))

[1] NA

> sumsq(c(1, 2, NA), na.rm = TRUE)

[1] 5

> sumsq(c(1, 2, NA), na.rm = FALSE)

26

[1] NA

> sumsq(na.rm = TRUE, c(1, 2, NA))

[1] 5

> try(sumsq(letters))

> sumsq <- function(x, na.rm = FALSE) {

+ if (!is.numeric(x)) {

+ stop("'x' is '", class(x), "' but should be 'numeric'")

+ }

+ sum(x * x, na.rm = na.rm)

+ }

> try(sumsq(letters))

> sumsq(numeric(0))

[1] 0

4 Power tips

Effectively using R requires developing a working enviroment that allows you to
effectively edit and re-submit commands without excessive typing. One strategy
is to open and edit R files (typically ending with .R) in a text editor, and
transfering code chunks (e.g., via cut and paste) into an interactive R session.
For this to work, one would really like an editor that knows about R (or perhaps
C) syntax, so that indentation, keyword coloring, and even function lookup are
available. Those comfortable with emacs will find ESS (emacs speaks statistics)
a very effective tool.

A typical analysis might start with an empty file, e.g., script.R. The steps
of the analysis might be worked out through interaction with R, with the final
version of each step forming a few lines of script.R. When complete, the anal-
ysis will be contained in script.R, and can be performed in its entirety using
a command like

> source("script.R")

or, from the command line,

R CMD BATCH script.R

Much of the power and flexibility of R comes from it very rich set of functions.
Becoming familiar with these functions involves reading introductory documen-
tation (like An Introduction to R), frequently consulting help pages, exploring
available packages on CRAN (see ?install.packages for instructions on how
to install additional packages), and seeking help from knowledgable R users. The
Hutch has a particularly rich set of R experts, in the form of the Computational

27

http://ess.r-project.org/downloads/ess
http://cran.fhcrc.org/doc/manuals/R-intro.html

Biology Shared Resource and more generally members of the Computational
Biology program involved in the BioConductor project. The R-help mailing list
is invaluable both as an archive of previous questions and a resource for getting
usually helpful, friendly, and accurate advice.

28

http://cran.fhcrc.org

	Introduction
	About the Computational Biology Shared Resource
	Installing R
	Exercises: a very first R session

	A first work flow
	Data input
	Object exploration and manipulation
	Visualization
	A little statistics
	Ending the session
	Exercises

	The R programming language
	Basic data types
	Subsetting
	Useful programming operations
	Exercises

	Power tips

